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Abstract: The graph autoencoder has emerged as a proficient model for graph representation learning, demonstrating
remarkable efficacy in tasks like link prediction. Nevertheless, most graph autoencoders are characterized by their
shallow architecture, leading to diminished efficiency as the number of hidden layers increases. Moreover, these
approaches predominantly leverage graph convolutional networks for encoding adjacency matrices and attribute
matrices, thereby underutilizing higher-order structural characteristics, such as second-order information. To address
these issues, the Variational Graph Autoencoder model OS-SeVAE and the Autoencoder model OS-SeAE, which
integrate One-Shot aggregation and second-order information, have been introduced. Initially, deep encoders are
formulated by combining graph convolution and second-order graph convolution, alongside the incorporation of One-
Shot aggregation and the Exponential Linear Unit (ELU) function. Subsequently, the decoder component employs inner
product decoding to reconstruct the graph's topological structure. To prevent overfitting during model training, a
regularization term is introduced based on the autoencoder loss function. Experimental results show that One-Shot
aggregation and ELU function can effectively improve the performance of deep graph autoencoders, enhance the
gradient information propagation of the model, and the introduction of second-order information strengthens the
model's representation capability. In link prediction tasks conducted on three benchmark citation datasets, the
experimental results of OSA-VAE and OS-SeAE are superior to current state-of-the-art baseline models.

Keywords: Graph representation learning; Graph convolutional network; One-shot aggregation; Second-order
information

1 INTRODUCTION

As a kind of non-Euclidean data, graphs contain information with high-dimensional implicit characteristics, which
makes traditional graph representation learning methods based on manually designed features usually extremely
complex [1]. Graph representation learning models based on deep learning algorithms [2] have strong characterization
capabilities, which can effectively model the nonlinear structure of graph data while reducing the data dimensionality,
retaining important information such as topology and node attributes, and have become a research hotspot for Graph
representation learning models. Among them, unsupervised models based on deep learning are able to select
representative features from the data in the absence of a priori knowledge or limited labeling information, so that the
generated node embeddings take into account smaller embedding dimensions while retaining attributes and edge
information as much as possible.

Currently, unsupervised Graph representation learning models based on deep learning are mainly categorized into
random walk [3] and autoencoder models [4]. Random walk-based models obtain a training corpus by random walks,
and then integrate the corpus into Skip-Gram [5] to obtain low-dimensional embedding representations of nodes. Such
methods usually take the entire network structure as input and can effectively capture neighborhood similarity, but fail
to fully utilize the node attributes that provide important information about the original graph in the embedding
generation process. Autoencoder-based Graph representation learning models take the topology and node attribute
information of the graph as encoder inputs to generate low-dimensional embeddings, and then utilize a decoder to
reconstruct the graph structure. Although deep graph representation learning methods have achieved great success [6],
there are still some problems. A recent study exposes that the performance of Graph representation learning models
based on graph convolutional autoencoders decreases with increasing neural network depth and quantitatively measures
it [7]. This performance degradation is related to many factors, such as gradient vanishing in backpropagation,
overfitting due to parameter increase, and over-smoothing phenomenon [8]. Li et al. were the first to investigate the
over-smoothing phenomenon [9], demonstrating that graph convolution employed by Graph Convolutional Networks
(GCN) [10] is a special form of Laplace smoothing, which is a smoothing operation capable of fusing the features of a
node's own and its neighbors, resulting in the similarity of features of nodes in the same cluster. This property allows
shallow GCN models to achieve excellent experimental performance, but as the number of layers increases, the features
of each node will converge to similar values, causing nodes from different clusters to become indistinguishable and the
phenomenon of over-smoothing. For the graph convolutional autoencoder model, an increase in encoder depth similarly
leads to over-smoothing of the model, resulting in the generation of low-dimensional embeddings that perform poorly in
downstream graph analysis tasks.

To address the above problems, this paper proposes deep Graph AutoEncoder (GAE) and Variational Graph
AutoEncoder (VGAE) models based on One-Shot aggregation [11] and Exponential Linear Unit (ELU) function [12] to
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solve the phenomena of gradient vanishing and over-smoothing of the encoder due to depth increase. Meanwhile, a
regularization term is introduced into the loss function to prevent the model from parameter overfitting due to depth
increase. The above improvement effectively solves the problem that the performance of deep graph embedded model
decreases due to the increase of model depth. In addition, a novel Second-Order Proximity Graph Convolutional
Networks (SeGCN) is proposed in this paper to construct encoders for deep GAE and VGAE models to enhance the
characterization ability.

In summary, the main contributions of this paper are as follows: (1) A modification of the GCN proposes a SeGCN that
preserves second-order similarity information; (2) presents OS-SeVAE and OS-SeAE models using One-Shot
aggregation, ELU activation function and SeGCN encoder to enhance the representation of the models while addressing
the phenomena of vanishing gradient, parameter overfitting and over-smoothing in deep models; (3) in link prediction
experiments on the three benchmark citation datasets, OS-SeVAE and OS-SeAE consistently outperform the baseline
model at the same depth; (4) OS-SeVAE and OS-SeAE performances do not show large fluctuations with the increase
in the number of hidden layers, and the experimental performances are also more stable compared to the baseline
model.

The rest of the paper is organized as follows: the section 2 gives an introduction to the basic algorithms and related
theories used in the models, the section 3 describes the model structure and loss function in detail, the section 4 proves
the reasonableness and effectiveness of the method through many experiments, and finally concludes the research in the
section 5.

2 PRELIMINARIES
2.1 Variational AutoEncoder

VAE utilizes neural networks to construct two probability density distribution models on the original AE structure: (1)
an inference network, which is used for variational inference of the original input data to generate variational
probability distributions of the hidden variables; (2) a generation network, which generates approximate distributions of
the original data based on the hidden variable probability distributions. Specifically, the inferential network utilizes an
encoder to generate the mean g and variance o of the Gaussian distribution, and the generative network utilizes a
decoder to generate the reconstructed probability distribution. In fact, VAE is the addition of appropriate noise to the
AE coding process. First, using the neural network encoder, the mean encoding u=(g,u,,x,) and the variance

encoding o =(o,,0,,0,) are computed. The variance encoding ¢ is used to control the weights of the noise
encoding £ = (¢,,¢,,&,) and thus the degree of noise interference, and an exponential operation is applied to ¢ in order

to ensure that the weights assigned to ¢ are positive. Then, the mean value encoding and the noise encoding after weight
assignment are superimposed to generate a vector representation of the input data y = (y,,y,,»,) . Finally, y is fed to the

decoder for reduction. In contrast to AE, VAE introduces constraints about noise in addition to the use of reconstruction
loss:

Z(e“' —(+0)+(w)") (1)

Assuming that the above constraints are not added, the model, in order to ensure the quality of the generated results,
encodes the results with the hope that the noise will interfere as little as possible with the generated results, and so
assigns smaller weights to the noise (the effect of noise can be eliminated when the variance encoding is set to close to
negative infinity). This usually results in a model that is well trained, but generates results with poor performance. With
the addition of equation (1), the derivation of & yields ¢® —1, and the derivative equation takes a minimal value at ¢ =0,
which constrains the variance coding from rapidly converging to negative infinity, and thus acts as a regularization
constraint. The VAE is constructed as a probabilistic model from a Gaussian mixture model, so the reconstruction loss
and noise constraints are usually rewritten in the following form using the prior distribution, the posterior distribution,
and the KL dispersion [13]:

Ly = Eq(y\x) [log(x | »)]-KL[g(y | x)[| p(»)] 2)

Compared with the original AE, VAE has the following main differences: (1) the distribution of the hidden layer
representation in AE is unknown, whereas the hidden variables in VAE obey a normal distribution; (2) what is learned
in AE is only the encoder and the decoder, on top of which VAE learns the distribution of the hidden variables, the
mean and the variance of the Gaussian distribution; and (3) while AE is only able to derive the corresponding encoding
from the samples, VAE learns the the parameters of the Gaussian distribution obeyed by the hidden variables and is
able to generate new samples.

2.2 Deep Modeling Strategy

Theoretically, as the depth of the neural network increases, the model is able to extract more complex features and
obtain better experimental results. In practice, the model performance is usually degraded by the increase in network
depth, leading to saturation or even a decrease in accuracy, while the gradient may disappear during the training process.
To solve the above problems, ResNet [14] introduces residual units, which sum up the inputs and outputs of each layer
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to realize cross-layer connections and improve the gradient updating of the deep model. DenseNet [15] uses dense
connections, the inputs of each layer are derived from the outputs of all the previous layers, to improve the problem of
vanishing gradient. Compared with ResNet, DenseNet is able to retain the feature maps of multiple receptive fields and
utilize the feature information more fully, but the dense connection increases the input channels, which leads to a
serious reduction in the computational efficiency of the model. VoVnet [11] uses One-Shot aggregation to aggregate all
feature maps to the last layer, which solves the problem of inefficiency of the dense connection while inheriting the
advantages of DenseNet. The above method significantly improves the problem of gradient disappearance of CNN with
increasing depth, and this paper draws on the above modeling ideas to improve the Graph representation learning model
based on deep GNN encoder.

For deep neural network models, choosing a suitable activation function can likewise alleviate the gradient vanishing
problem. For example, the Rectified Linear Unit (ReLU) [16]:

max(0,x), x>0

ReLU(x) = 3
) {0, x<0 )
ReLU overcomes the gradient vanishing problem and dramatically improves the computational speed of the model, but
negative gradients are set to zero at x <0 , causing neurons to necrose and no longer respond to any data. ELU

introduces an exponential function on top of ReLU, allowing it to return information even with negative input values:
X x>0

ELU(x) = 4)
{a(ex— 1) x<0

Compared to ReLU, ELU has a certain output when the input is negative, thus eliminating the problem of neuronal

necrosis in ReLU. In addition, the output mean of ELU is close to 0, which reduces the bias effect and makes the

normal gradient close to the natural gradient; the negative value can saturate quickly when the input is small and is

robust to noise.

2.3 Second-order Similarity of Graphs

The second-order similarity of a graph indicates the similarity of nodes' neighborhood structures, reflecting the global
structural information of the graph, while the first-order similarity of a graph indicates the pairwise proximity between
nodes connected by edges, reflecting the local structural information of the graph. Due to the sparsity of graphs, many
links in real-world datasets are unobserved or missing, making it difficult to adequately represent the structural features
of graphs using only first-order similarity information. In order to solve the topology and sparsity preservation problems,
second-order similarity information needs to be introduced into the learning process of the model. In contrast to first-
order similarity, second-order similarity is not determined by visible edges, but by the neighborhood structure shared by
the nodes. Simply put, first-order similarity can be interpreted as higher similarity of connected nodes, and second-order
similarity can be interpreted as higher similarity of nodes with similar neighborhood structure. Many sociological
principles reflect the properties of second-order similarity, the strength of a connection between two people in a social
network is related to the degree of overlap in their friendship networks [17], people who have many friends in common
are likely to have the same interests and become friends. The introduction of second-order similarity can provide more
information as a complement to first-order similarity when characterizing the topology.

3 GRAPH REPRESENTATION LEARNING MODEL

This section proposes OS-SeVAE and OS-SeAE, graph representation learning models based on One-Shot aggregation
and second-order information, and discusses their algorithmic principles. This section first introduces the overall
framework of the models, then proposes SeGCN that preserves second-order similarity, constructs the model encoder
and decoder, and finally discusses the loss function of the models.

3.1 Overall Framework

The structure of OS-SeVAE and OS-SeAE is mainly divided into two parts: the encoder, which takes node attribute
matrix X and neighbor matrix 4 as input, and the decoder, which reconstructs the neighbor matrix as output, to realize
the original graph feature extraction and data dimensionality reduction, and to generate the low-dimensional embedding
representation of each node.OS-SeVAE is constructed with the VAE as the basic framework, and the encoder part is
constructed by using the multilayer GCN and SeGCN based on One-Shot OS-SeVAE is constructed based on VAE, and
the encoder part uses multilayer GCN and SeGCN based on One-Shot aggregation to generate the mean encodingthe 4
and variance encoding o, and then superimposes g and & to generate the embedding matrix, and the decoder part uses
the inner product of the embedding matrix to reconstruct the neighboring matrices. OS-SeAE is constructed based on
ordinary AE, and the encoder part uses multilayer SeGCN based on One-Shot aggregation to generate the embedding
matrix, and the decoder part uses the inner product of the embedding matrix to reconstruct the neighboring matrix. The
depth of OS-SeAE and OS-SeVAE encoders is determined by the number of stacked Graph Layers (including SeGCN
Layer and GCN Layer).

3.2 Second-order Similarity Graph Convolution
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In this section, a novel graph convolutional network, SeGCN, is proposed to capture the second-order similarity of
graphs, preserving the global structural information of the original graph. The original graph convolution model is
usually defined as a linear shift-invariant operation of the adjacency matrix 4, and a neural network model is
constructed using polynomials based on the adjacency matrix f (x, 4) [18]:

Solx,4)= ;e'kAkx (5)

where, ®=(6,,6,,---,6,) , denotes the weights of different order neighbor matrix kernels. At this point, the graph
convolution is expressed as a linear combination of the aggregated features of different order adjacency matrices. Kipf
et al. [19] further simplified on this basis and proposed the neural network model for aggregating first-order
neighborhood information f,(x, A) :

1 1
fi(x,A)=6(I, +D >AD *)x (6)
where, D is the diagonal matrix of A. Since it is difficult to adequately represent the global structural features of the
graph by the adjacency matrix 4 containing first-order similarity, the squared adjacency matrix 4> containing second-
order similarity is introduced as a complement to modify f(x,A) to propose f,(x,A) that aggregates the first-order

and second-order neighborhood information:
L —~ 1
fo(6, )= Ol + D[ A+ 41D, }x M

where, D, is the diagonal matrix of A+ A* and A* denotes the symmetrically normalized second-order adjacency

matrix.
1

— L 1
A*=D,>A’D,’ ®)
where D, is the diagonal matrix of A® . Referring to the renormalization trick used by Kipf et al. in GCN, Eq. (7) is

modified and the convolution expression for SeGCN is:
1

1
Z=D;}A,D X0 ©)

where, A, =1, + A+ £, ﬁu is the diagonal matrix of lev X is the input signal matrix, ® is the filter parameter matrix,

2
and Z is the convolution signal matrix. Compared with the original GCN, SeGCN introduces the second-order
adjacency matrix as a supplement, which is able to aggregate the features of the second-order neighborhood of the
nodes, thus retaining the second-order similarity information of the original graphs and improving the model

characterization ability.
3.3 Encoder Structure

GCN and SeGCN utilize convolutional operations to extract features from the graph and generate feature vectors
containing information about topology and node attributes, with interlayer propagation formulas, respectively:

HY) = 5(AH"W ")
H = 5(;1;HU)W(/))

SeGCN

(10)

S B | . . . . .
where, A=D 24D 2, A, =D2A,D.? , d() are the ELU activation functions, W is the trainable parameter matrix for
each layer, and H© is the activation matrix for each layer (for / = 0, H® is the input node attribute matrix X). The
encoder part of OS-SeAE extracts features using a multilayer SeGCN that introduces One-Shot aggregation to generate

the embedding matrix Y. The encoder part of OS-SeAE is used for the extraction of features:
Y=4, (ng)cczv + Hé?GCN +oot H_(sjéczv )W(Fmal) (11)
where L is the number of layers of SeGCN in the encoder. The encoder part of OS-SeVAE generates the mean vectoru

using a multilayer GCN introduced into One-Shot aggregation and the variance vector ¢ using a multilayer SeGCN
introduced into One-Shot aggregation:

_ 1) (2) (L) (w0
.”—A(HGCN +H oy +"'+HGCN)W "

— (12)
Ino =4, (H;)ouv + Héfgfuv Tt Héf(),czv W
The sampling layer uses u# and o to generate the embedding matrix ¥ from a Gaussian prior distribution:
Y=u+o0e¢ (13)

where, €~ N (0,1) . Finally, the embedding is reparameterized as a distribution of probabilities over the latent space

[11]:
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Y| X,A) = 1X,A4
q(¥ | ) l;[q(y,\ ) 14)

q(y,1 X, 4) =N (y,diag(c))

where, ¥ = {y,},, N is the number of nodes, and y, is the low-dimensional embedding of node i.

3.4 Decoder Structure

For the OS-SeAE model, the decoder is a non-probabilistic model that reconstructs the adjacency matrix using the
embedded inner product of two nodes:

A'=p(YY") (15)

where A" denotes the reconstructed adjacency matrix and ¢ denotes the sigmoid function. For the OS-SeVAE model,
the decoder is the probabilistic model of reconstructing the adjacency matrix using the embedded inner product of two
nodes:

pAI) =111, 1.5) (16)

i=1 j=1
where A;; is an element of the adjacency matrix 4.

3.5 Loss function

0OS-SeAE is trained by minimizing the reconstruction loss of 4 and A" with the expression:
L os sear = Eq(Y\X,A)[lnp(A | ¥)]+ Lreg (17)

0OS-SeVAE is trained by maximizing the variational lower bound as well as minimizing the reconstruction loss with the
expression:

L os-serar = Eq(Y\X,A) [In(4]Y)]-KL[g(Y | X, A4) || p(¥)]+ Lreg (18)
where KL[g(- )||p(- )] is the KL scatter of ¢(- ) and p(- ), the
r)=1Tr)=TIN (0.0 (19)

In order to avoid parameter overfitting due to increased model depth, an L2 normalization regularization term is
introduced in the OS-SeVAE and OS-SeAE loss functions ng :

Ly = %g“W(k) “i (20)

During training, the input and output dimensions of the encoder's GCN and SeGCN layers must be the same in order to
use One-Shot aggregation. In addition, both OS-SeVAE and OS-SeAE perform full batch gradient descent and are
trained using the reparameterization trick.

4 EXPERIMENT
4.1 Dataset

In this paper, we use three benchmark citation network datasets, Cora, Citeseer, and Pubmed [20], to evaluate the
performance of low-dimensional embedding representations generated by OS-SeVAE and OS-SeAE in a link prediction
task. In the datasets, nodes denote papers, edges denote citations of one paper to another, node features are bag-of-
words representations of papers, and node labels are manually set academic topics of papers. Table 1 shows the
statistics of the three datasets.

Table 1 Statistical Information of Citation Networks

Dataset #Nodes #Edges #Attributes #Labels
Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6

Pubmed 19717 44338 500 3

4.2 Baseline

This paper uses the following model as a baseline:

e  VGAE: This model migrates VAE to graph representation learning with the basic idea of using GCN to obtain the
probability distribution of node representations, then sampling in the distribution to generate the node
representations, and finally reconstructing the adjacency matrix of the graph using inner product decoding.
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e  GAE: This model directly generates node embeddings using a GCN-based encoder and then reconstructs the
adjacency matrix using an inner product decoder.

e  VGNAE [21]: This model replaces the GCN encoder in VGAE using the Graph Normalized Convolutional
Network (GNCN) [21] which introduces L2 normalization, and the decoder is the same as VGAE.

e  GNAE [21]: This model replaces the GCN encoder in GAE using the GNCN that introduces the L2 normalization,
and the decoder is the same as in GAE.

e  Linear-VAE [22]: This model replaces the GCN encoder in VGAE using a simple linear model of the normalized
adjacency matrix, with the same decoder as in VGAE.

e  Linear-AE [22]: This model replaces the GCN encoder in GAE using a simple linear model of the normalized
adjacency matrix with the same decoder as in GAE.

e  Res-VGAE [23]: This model introduces residual connectivity in multilayer GCN encoders to improve the
experimental performance of deep VGAE models.

e  Res-GAE [23]: This model introduces residual connectivity in multilayer GCN encoders to improve the
experimental performance of deep GAE models.

e  OSA-VGAE [24]: This model introduces One-Shot aggregation in multilayer GCN encoders to improve the
experimental performance of deep VGAE models.

e  OSA-GAE [24]: This model introduces One-Shot aggregation in multilayer GCN encoders to improve the
experimental performance of deep GAE models.

4.3 Evaluation Metrics

The link prediction task compares the model performance based on the ability of the model to correctly classify edges
and non-edges, and usually adopts the Area Under the Curve (AUC) and Average Precision (AP) as the evaluation
metrics.The AUC is calculated by setting the threshold value immediately below each positive example, calculating the
checking rate of the negative class, and then taking the average value. The AUC is calculated by setting the threshold
immediately below each positive example, calculating the detection rate of the positive category, and then taking the
average value; AUC is calculated by taking into account the classifier's ability to categorize both positive and negative
examples, which can still provide a reasonable evaluation of the classifier in the case of sample imbalance, while AP is
used to measure the model's classification performance on each category.

4.4 Link Prediction

In order to validate the experimental performance of the model in the link prediction task, the benchmark citation
network dataset needs to be preprocessed by (1) retaining the attribute information of all nodes and removing some
edges from the graph; (2) randomly sampling the number of node pairs without edges other than the removed edges
with the same number of edges as the number of edges previously removed; and (3) dividing the removed edges and
edgeless nodes into a validation set and a test set, which contain, respectively, 5 % and 10% real links and an equal
number of edgeless node pairs. All models are trained using the preprocessed dataset, and then the neighbor matrix is
reconstructed using the node embedding inner product for link prediction.

0S-SeVAE, OS-SeAE, and each baseline model were developed from VGAE and GAE.To ensure the fairness and
consistency of the experiments, all the models were initialized according to the parameters suggested in the original
papers of VGAE and GAE.The dimensionality of the hidden layer was set to 32, the dimensionality of the generative
embedding was set to 16, and the training was performed using Adam's optimizer®” with the learning rate set to 0.01,
and the number of iterations was set to 200. Each model was trained 10 times, and the dataset was randomly initialized
for each training, and the mean and standard deviation of the AUC and AP scores (%) were recorded. The experimental
results of link prediction are shown in Tables 2 to 4. From the results, the following analysis is made:

(1) In most cases, the experimental results predicted by the OS-SeVAE and OS-SeAE links outperform the baseline
model at the same depth with smaller standard deviations, especially on the Cora and Citeseer datasets, where the mean
values of AUC and AP scores are consistently higher than those of the baseline model for OS-SeVAE and OS-SeAE.
The above results indicate that the One-Shot aggregation and ELU function can significantly improve the deep model
performance to avoid gradient vanishing and oversmoothing. In addition, SeGCN, which preserves second-order
information, enhances the model's ability to characterize the topology, further improving the experimental performance
of the link prediction task.

(2) Table 2 compares the experimental results of different models using 1 layer. On the three datasets, OS-SeVAE and
OS-SeAE have the highest AUC and AP, OSA-VGAE and OSA-VGAE using the same deep layer strategy are the next
highest, Linear-VAE and Linear-AE using linear coding have the worst experimental performance, and the other
baseline models are very close in terms of AUC and AP. The experimental results show that the use of One-Shot
aggregation, ELU activation function and SeGCN encoder in the shallow model can improve the experimental
performance of the model.

(3) Table 3 compares the experimental results of different models using the three layers. On the three datasets, Linear-
VAE and Linear-AE using the linear encoder have the worst experimental performance, Res-VGAE and Res-GAE
introducing the residual linkage perform slightly better than the model with the direct superimposition of the GCN layer,
VGNAE and GNAE using the GNCN have similar performance and less degradation than the residual model, OSA-
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VGAE, OSA-GAE, OSA-SeVAE and OSA-SeVAE using the One-Shot aggregation and the ELU activation function of
OSA-VGAE, OSA-GAE, OS-SeVAE and OS-SeAE perform significantly better than the other models. The
experimental results show that the normalized operation of GNCN makes the model performance does not show
significant changes with the increase of depth, the residual connection can improve the performance of the deep model
to a certain extent, and the One-Shot aggregation and ELU activation function can effectively improve the deep
modelability. In addition, comparing OSA-VGAE and OSA-GAE, OS-SeVAE and OS-SeAE using SeGCN encoder are
able to extract the second-order information of the graph during the embedding generation process, which further
improves the experimental performance of the link prediction task.

(4) Table 4 compares the experimental results of different models using six layers. On the three datasets, the
experimental performance of VGAE, GAE, Linear-VAE, Linear-AE, Res-VGAE, and Res-GAE without the use of the
normalization operation, One-Shot aggregation, and ELU activation function drops sharply, the experimental
performance of VGNAE and GNAE with the use of the normalization operation decreases marginally, and OSA-VGAE,
OSA-GAE, OS-SeVAE and OS-SeAE perform well in the majority of cases. The experimental results show that the
performance of the models without normalization operation and deep strategy decreases sharply due to the increase of
depth, the residual linkage improves the deep model very limitedly, the normalization operation can effectively keep the
stability of the experimental results, and the One-Shot aggregation and ELU activation function can significantly
improve the performance of the deep model.

Table 2 AUC and AP Scores (1-Graph Layer)

Cora Citeseer Pubmed
Model
AUC AP AUC AP AUC AP
GAE 89.49+0.95 91.23+0.85 88.27+1.18 90.54+0.98 95.10+0.26 95.82+0.20
VGAE 90.22+0.89 91.48+0.71 88.35+0.91 90.02+0.60 95.34+0.34 95.82+0.22
GNAE 88.73+0.34 89.74+0.60 89.13+0.70 90.61+0.60 93.26+0.22 93.79+0.25
VGNAE 89.22+0.50 90.11+0.61 90.43+0.82 91.54+0.81 93.42+0.34 93.92+0.36
Linear-AE 86.38+0.93 88.38+0.76 82.94+0.96 85.79+1.41 91.64+1.80 92.03+1.67
Linear-VAE 87.45+0.95 88.74+0.76 85.50+1.17 86.93+1.14 93.52+0.26 93.86+0.26
Res-GAE 90.34+1.25 91.20+0.73 88.86+0.55 89.70+0.80 94.26+1.07 95.05+0.86
Res-VGAE 90.84+0.48 92.05+0.39 89.63+1.30 91.24+1.13 95.39+0.23 95.77+0.18
OSA-GAE 93.09+0.46 93.64+0.60 93.20+0.39 93.81+0.51 95.91+0.53 96.11+0.49
OSA-VGAE 93.16+0.68 93.46+0.62 93.37+0.46 93.87+0.44 95.35+0.94 95.52+0.77
OS-SeAE 93.39+0.69 93.90+0.63 93.50+0.55 94.1540.55 96.26+0.11 96.50+0.08
OS-SeVAE 93.48+0.62 94.04+0.51 93.44+0.38 94.19+0.37 96.50+0.24 96.73+0.28
Table 3 AUC and AP Scores (3-Graph Layer)
Cora Citeseer Pubmed
Model
AUC AP AUC AP AUC AP
GAE 87.44+1.13 89.62+0.93 84.64+1.04 87.79+0.82 91.62+0.90 93.42+0.61
VGAE 87.30+1.23 88.68+1.00 85.54+0.60 87.77+0.77 92.77+0.66 94.12+0.45
GNAE 87.74+0.48 89.06+0.49 88.24+0.83 89.96+0.73 92.79+0.24 93.40+0.27
VGNAE 88.15+0.32 89.40+0.74 89.44+0.85 90.68+0.68 92.99+0.24 93.60+0.26
Linear-AE 83.51+0.83 83.51+0.83 80.23+1.03 83.36+1.04 90.07+1.64 91.18+1.44
Linear-VAE 84.00+1.36 85.62+0.90 81.83+1.15 83.89+1.17 91.80+0.25 92.34+0.21
Res-GAE 88.43+1.11 90.19+0.72 85.95+1.23 88.44+0.91 92.89+0.39 94.13+0.38
Res-VGAE 89.19+0.64 90.35+0.64 86.31+1.16 88.28+1.02 93.03+1.33 93.98+1.09
OSA-GAE 92.47+0.78 92.90+0.76 92.40+0.68 93.18+0.53 94.22+1.21 94.58+1.08
OSA-VGAE 92.14+1.09 92.54+0.85 92.14+0.35 92.69+0.56 95.18+0.44 95.30+0.49
OS-SeAE 92.83+0.95 93.20+0.88 92.7540.58 93.51+0.50 95.72+0.17 96.00+0.18
0S-SeVAE 93.10+0.70 93.58+0.80 92.89+0.71 93.71+0.62 95.37+0.97 95.66+0.78
Table 4 AUC and AP Scores (6-Graph Layer)
Cora Citeseer Pubmed
Model
AUC AP AUC AP AUC AP
GAE 82.97+1.80 84.90+1.67 80.79+1.74 83.94+1.88 88.72+1.25 91.22+0.97
VGAE 84.44+1.12 85.63+1.04 83.25+1.29 85.30+0.98 88.88+1.95 91.29+1.11
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GNAE 87.26+0.59 88.72+0.61 87.72+0.78 89.59+0.67 92.51+0.23 93.21+0.30
VGNAE 87.63+0.32 89.07+0.66 88.85+0.75 90.27+0.64 92.71+£0.29 93.38+0.32
Linear-AE 79.51+0.94 80.99+1.06 77.20+1.29 80.38+1.16 88.89+1.68 90.00+1.64
Linear-VAE 79.17+5.08 79.93+5.02 77.83+1.68 79.06+1.81 89.10+1.73 90.08+1.68
Res-GAE 85.55+1.19 87.20+1.27 82.34+1.36 85.66+1.11 89.02+1.94 91.25+1.38
Res-VGAE 86.06+1.61 87.06+2.22 83.18+1.72 85.07+1.66 87.51£2.76 88.96+3.15
OSA-GAE 91.61+0.73 92.06+0.89 91.24+0.65 91.83+0.73 91.95+1.47 92.78+1.28
OSA-VGAE 89.35+2.98 89.71£2.55 90.38+1.76 91.04+1.55 93.82+1.35 93.94+1.25
OS-SeAE 92.08+0.61 92.46+0.57 91.81+0.78 92.52+40.88 95.27+0.35 95.57+£0.35
OS-SeVAE 92.61+£0.97 92.96+0.92 92.97+0.65 93.58+0.56 93.39+1.26 93.9740.98

Figures 1 shows the AUC and AP scores of different models on the cora dataset from layer 1 to 6. Compared with
VGAE and GAE, with the increase of depth, Linear-VAE and Linear-AE using linear encoder cannot effectively extract
and retain the original graph-related features, and the performance decreases the fastest, and the experimental
performance is the worst; Res-VGAE and Res-GAE introducing residual linkage alleviate the problem of performance
degradation of deeper models to a certain degree, but the experimental performance is VGAE and GAE are very close;
using the normalization operation VGNAE and GNAE have lower performance than VGAE and GAE in the shallow
layer, but with the gradual increase of the depth, the experimental performance of VGAE and GAE decreases rapidly,
while the performance of VGNAE and GNAE decreases to a lesser extent, and the experimental performance is
gradually better than that of VGAE and GAE with the depth increase; the experimental performance of OSA using the
One-Shot aggregation and the ELU activation functions, OSA-VGAE, OSA-GAE, OS-SeVAE, and OS-SeAE
significantly not only improve the experimental performance of the deep model, but also outperform VGAE and GAE
in the shallow model. In addition, comparing OSA-VGAE, OSA-GAE, OS-SeVAE, and OS-SeAE with the same deep
strategy, the OS-SeVAE using the SeGCN encoder outperforms OSA-VGAE and OSA-GAE in most cases, and OS-
SeAE consistently outperforms OSA-VGAE, OSA-GAE, and the other baseline models. The above experimental results
further demonstrate that the use of One-Shot aggregation and ELU function can improve the gradient information
transfer and over-smoothing problems of deep models, preventing the model performance from decreasing dramatically
due to the increase in depth, while the encoder constructed using SeGCN can enhance the model representation ability
and improve the model performance.

94

82 4

79

Layers Layers

GAE VGAE —e—GNAE ——VGNAE —o—Linear-AE ——Linear-VAE
©—Res-GAE *—Res-VGAE ——0SA-GAE —*—0SA-VGAE ——08-SeAE —%—08-SeVAE

Figure 1 AUC and AP on the Cora Dataset
4.5 Ablation Study

In order to validate the effect of using One-Shot aggregation and ELU functions in the OS-SeAE and OS-SeVAE
models on the performance of the algorithms, ablation experiments were performed on the Cora dataset, where the
mean values of the AUC and AP scores were recorded, comparing the performance of the variants that used the One-
Shot aggregation and the ELU functions alone. The variants using only One-Shot aggregation are SeAE-OSA and
SeVAE-OSA, and the variants using only the ELU function are SeAE-ELU and SeVAE-ELU.To ensure fairness of the
experiments, the parameters of the learning rate, number of iterations, hidden layer dimensions, and embedding
dimensions are kept consistent. The results of the ablation experiments are shown in Table 5. Compared to the variants
using One-Shot aggregation or ELU function alone, OS-SeAE and OS-SeVAE obtain the best performance, proving
that the simultaneous use of the above two modules can further improve the deep model performance.
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Table 5 Results of Ablation Experiments
1 layer 2 layers 3 layers 4 layers 5 layers 6 layers

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP
SeAE-OSA 92.04 92.08 91.84 92.03 9145 91.73 91.75 92.01 91.81 92.03 9156 91.88
SeAE-ELU 9296 9336 9252 9274 9221 9250 91.76 92.02 91.08 9129 90.14 90.61
OS-SeAE 93.39 9390 9299 9350 9283 9320 9224 9274 92.09 92.64 92.08 92.46
SeVAE-OSA 9326 93.62 9320 9349 9298 9328 9274 93.05 9246 9275 9250 92.86
SeVAE-ELU  93.10 93.57 9274 93.11 9237 9265 9219 9247 9126 91.69 91.18 91.62
OS-SeVAE 9348 94.04 9324 93.69 93.10 93.58 9278 9323 92.68 93.02 92.61 92.96

Model

4.6 Hyperparameter Study

Among the parameters of OS-SeAE and OS-SeVAE, the embedding dimension is an important parameter for Graph
representation learning models compared to the common parameters such as learning rate and number of iterations. Too
small or too large a dimension can significantly affect the model performance [25]. In order to further explore the
relationship between embedding dimension and model performance, parameter experiments were conducted using OS-
SeAE and OS-SeVAE (learning rate of 0.01, number of iterations of 200, and hidden layer dimension of 200) with 1
graph layer. Figures 2 and 3 record the AUC and AP scores on the three citation datasets using different dimensions.
From Figures 2 and 3, it can be seen that initially AUC and AP rise with increasing dimensionality, which is due to the
fact that more dimensions encode more useful information about the original data in the embedding and enhance the
experimental performance. However, with further increase in dimensionality, AUC and AP fluctuate, and higher
dimensionality does not lead to better experimental results, this is because the number of training samples is limited,
and for each class of nodes there exists an optimal embedding dimensionality that maximizes the model performance,
and when the actual dimensionality exceeds the optimal dimensionality, noisy information is encoded in the embedding,
leading to a decrease in model performance. Therefore, it is very important to choose the appropriate dimension when
generating node embeddings. Overall, when observing and analyzing Figures 2 and 3, when the embedding dimensions
are set at 16~64, the performance of OS-SeAE and OS-SeVAE is relatively less affected by the embedding dimensions,
and at the same time, they are able to maintain relatively good experimental performance.
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Figure 2 OS-SeAE Dimensionality Experiments
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Figure 3 OS-SeVAE Dimension Experiments
4.7 Variant Analysis

To further validate the effectiveness of the symmetric normalized second-order adjacency matrix . used by SeGCN,
experiments were conducted in the link prediction task on the three citation datasets in comparison with the variant
models that do not use second-order information as well as those that use other ways of retaining the second-order
information (1 layer and with the same parameters). Among other things, the relevant information for each variant is as
follows:
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e OS-AE, OS-VAE: Replace the modeled SeGCN encoder with a GCN that does not use second-order information.

e OS-SeAE-A2, OS-SeVAE-A2: Modify SeGCN in OS-SeAE and OS-SeVAE encoders by replacing A with
square A of the adjacency matrix.

e OS-SeAE-T2, OS-SeVAE-T2: Modify SeGCN in OS-SeAE and OS-SeVAE encoders by replacing A with the
second-order transfer probability matrix 72 [26].
From the results of the variants performance experiments in Figures 4 and 5, there is the following analysis: (1) on all
three datasets, the experimental results of OS-SeAE and OS-SeVAE using SeGCN consistently outperform the other
three variants, demonstrating that SeGCN with the introduction of symmetric normalized second-order adjacency
matrices characterizes the graph structure better than the original GCN and outperforms the other methods that retain
second-order information; (2) comparing the variants without second-order information (OS-AE and OS-VAE) and
with other ways of retaining second-order information (OS-SeAE-A2, OS-SeVAE-A2, OS-SeAE-T2, and OS-SeVAE-
T2), the experimental performances of OS-AE and OS-VAE are better in most of the cases, which proves that different
ways of retaining second-order information have different effects on model performance. This proves that different
second-order information retention methods have different effects on the model performance, and that appropriate
second-order information retention methods can enhance the model characterization ability and improve the
experimental performance, while inappropriate second-order information retention methods not only fail to improve the
model performance, but also perform lower than that of the GCN that only uses first-order information; (3)

comparing A” , A> and T2, the symmetric normalization operation retains the symmetry of the square of the adjacency
matrix as well as normalization, which not only retains the symmetry of 4 when superimposed with the adjacency
matrix 4, but also avoids the interference of the original adjacency relationship by the oversized value in A2, thus
effectively retaining the second-order information of the original diagram.
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Figure 4 OS-SeAE and its Variants
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Figure 5 OS-SeVAE and its Variants

5 CONCLUSION

The OS-SeVAE and OS-SeAE models based on One-Shot aggregation, ELU activation function and SeGCN proposed
in this paper retain richer structural information and enhance the representation ability of the models while improving
the gradient information transfer of the deep models and avoiding the occurrence of over-smoothing in the deep GCN
encoder. The experimental results show that it is beneficial to introduce deep strategies in computer vision to Graph
representation learning models, which can effectively improve the experimental performance of deep models. In the
ablation experiments, the simultaneous use of One-Shot aggregation and ELU function improves the performance more
significantly than a single strategy. Meanwhile, the experimental performance of OS-SeVAE and OS-SeAE is further
improved compared to OSA-VGAE and OSA-GAE using only GCN encoder, proving the effectiveness of SeGCN. In
future work, in addition to improving the structure of the existing encoder models, more efficient neighborhood
aggregation and neighborhood interaction encoder modeling, such as the attention mechanism-based approach, will be
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used; in the decoder part, experiments with different decoders and probability distributions will be attempted. In
addition, subsequent work will quantify and analyze the model complexity, model generalization ability, and model
avoidance of overfitting ability.
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