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Abstract: This paper aims to explore the development of credit cards in the Chinese market and the challenges posed
by the rise of internet finance, while also analyzing customer churn issues and their management strategies. Since the
introduction of credit cards to China in 1986, despite the initial lack of supporting facilities such as POS machines,
credit cards have served as a monetary credit voucher, facilitating the small loan business of commercial banks. Over
time, the credit card market has experienced rapid growth, becoming a vital channel for personal consumer loans.
However, the emergence of internet finance has had a profound impact on the traditional banking business model, with
customer churn becoming an increasingly prominent issue.
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1 INTRODUCTION

Since the introduction of credit cards in China in 1986, they have not only transformed traditional payment habits but
also provided financial support for the small credit services of commercial banks. The widespread use of credit cards
has enabled consumers to enjoy the convenience of "spend now, pay later," which has in turn spurred the rapid
development of the market. However, with the rise of internet finance, traditional banking services are facing
unprecedented challenges. Internet finance companies, taking advantage of the internet's convenience, have quickly
attracted a large number of customers, breaking the closed loop of banking services, especially in areas that banks find
difficult to reach, such as personal loans for college students.
The development of internet finance is not simply a matter of internet plus finance,but rather it is a new form of finance
that relies on new technologies such as cloud computing and mobile networks, and combines with new types of services
like online payments and social media. This transformation has not only reduced the cost of financial services but also
improved efficiency. However, it has also led to an increase in the rate of customer attrition from traditional banks.
According to data from the central bank, the growth rate of credit card issuance has been declining year by year since
2017, and the issue of customer attrition is becoming increasingly serious.
The application of machine learning to predict credit card customer churn has seen significant advancements. Studies
like those by Xu et al.[1] and Nie et al. [2] have shown that hybrid models and logistic regression can achieve high
accuracy in predicting customer churn. Lin et al.[3] and Caigny et al.[4] have further enriched the field with their
innovative approaches combining different techniques. Ensemble methods, as explored by de Bock and van den Poel[5],
have also proven effective. Collectively, these studies highlight the growing sophistication of predictive analytics in
customer retention strategies.
This paper utilizes a bank customer dataset obtained from the Kaggle website, employing text mining techniques to
extract the main characteristics of churned customers and conducting Exploratory Data Analysis (EDA) to gain a deeper
understanding of the data. Subsequently, a Random Forest model is applied for feature extraction to identify key
characteristics of churned customers, and effective customer churn control and risk prevention recommendations are
proposed.

2 MODELING ANALYSIS

2.1Model Introduction

Random Forest (RF) is an ensemble learning method with decision trees as its core building block. The algorithm
improves the accuracy and robustness of classification by constructing multiple decision trees and integrating their
prediction results. In a random forest, each decision tree classifies the input samples independently.
For the Random Forest algorithm, it is an ensemble classifier composed of K decision trees ( , ), 1, 2, ,kh X k K  
as the basic classifiers. When a sample to be classified is input, the classification result output by the Random Forest is
determined by the voting of the classification results of each decision tree. The sequence of random variables
, 1, 2, ,k k K   is determined by the two main randomization ideas of the Random Forest: Bagging and feature

subspace. Let N denote the number of training samples, and M represent the number of features. The construction
algorithm is as follows:
1) The number of input features m is used to determine the decision outcome at a node in the decision tree (m < M).
2) With replacement sampling is performed N times from the N training samples to form a training set
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(Bootstrap sampling).
3) For each node, m features are randomly selected, and the best way to classify based on these m features is

calculated.
4) The individual trees are combined to form the Random Forest.
The process of training each decision tree is to train the entire random forest, and because each decision tree is
independent of each other, its training can be carried out together, which will greatly improve the efficiency of the
model. Each decision tree is trained in the same way and then combined to obtain K decision trees, and the required
random forest model is formed. The samples to be predicted are obtained by ranking the weights of the problem solving,
and the average of the output results of each decision tree is taken as the result of random forest prediction.
Random Forest Regression (RFR) is formed by the growth of decision trees related to a random vector  , where the
dependent variable is a continuous variable, and it is assumed that the training set is independently drawn from the
distribution of a random variable. Let  ih x be the regression model result of a single decision tree, then the
predicted value of the Random Forest Regression is obtained by averaging the regression results of k decision
trees  { ( , ), 1, 2, , }ih X i k   , that is:

1

1( ) ( )
k

i
i

H x h x
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Where  H x represents the result of the combined regression model.
The Random Forest method uses the bootstrap resampling method to obtain different sample sets, and constructs
decision tree regression models using these sample sets, thereby increasing the differences between models and
enhancing the ability of extrapolation prediction.
In summary, the steps of the Random Forest algorithm are as follows:
Step 1: A set of samples   { , 1, 2, , }kT k K  is calculated by the weights selected by a decision tree for the problem.
Step 2: Classification results:
1) Individual decision trees are generated by randomly drawing K samples with replacement from the training set;
2) During the generation of the decision tree, a subset of attributes is randomly selected with equal probability;
3) The above two steps are repeated to generate K decision trees;
4) Finally, the optimal result of the final vote is output.

2.2 Indicator Selection

In order to identify the key factors influencing users' credit card satisfaction and the indicators that can reflect the trend
of users' credit card use intention, this study used text mining technology to screen out 18 key indicators from the hot
words related to credit card churn. These metrics include: user age, gender, household size, education level, marital
status, income level, credit card tier, credit card registration time (months), number of products held, number of inactive
months in the last 12 months, number of contacts in the last 12 months, total revolving credit card balance, average
open purchase credit limit, change in transaction value between Q4 and Q1, total transactions in the last 12 months,
number of transactions, and average frequency of credit card usage.

2.3Model Solving

The random forest model is a powerful tool that is able to assess the impact of different factors on the churn
rate of credit card users. In this study, we quantified the effect of each independent variable on the dependent
variable by adjusting the model parameters and training a random forest model by adjusting the model
parameters and using the churn rate of bank credit card users as the dependent variable. Once the model was
trained, we got an importance score for each variable, which reflects the relative impact of each factor on the
churn rate.
The relative error of the model is 0.0425, indicating that the model has high prediction accuracy. The results
of the analysis showed that the total number of transactions and the number of transactions were the two most
important factors influencing user churn, and their importance scores were significantly higher than those of
other variables. This is followed by changes in the total amount frozen and the number of transactions, which
constitute the second most important group of factors influencing user churn. The importance score of change
in transaction amount and average frequency of use is low, but still higher than other factors, making up the
third echelon. The importance score for the number of products held is in the fourth tier. The mean values for
age and open purchase credit are classified as the fifth band while the importance scores for credit card time
on book, months of inactivity, and number of contacts are in the sixth bracket. Factors such as educational
attainment, number of family members, gender, marital status, income rating, and other factors have
relatively low importance scores, while credit card ratings have the lowest degree of influence among all
factors. Through the analysis of the random forest model, we can clearly identify the main factors affecting
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the churn of bank credit card users, and provide targeted strategy suggestions for banks. Random forest model
impact factor importance ranking can be seen in Figure 1.

Figure 1 Random Forest Model Impact Factor Importance Ranking

According to the analysis results of the random forest model, we find that the main driving factors for the
churn of bank credit card users include key economic indicators such as total transaction value and number of
transactions. These findings point to the possibility that the credit card limits offered by banks for different
levels of users may not be sufficient to meet their needs. Specifically, the growth of total transaction value is
negatively correlated with the decrease in churn, suggesting that banks may be effective in reducing churn if
they can provide credit lines that match users' spending power.In addition, an increase in the number of
transactions is likewise associated with a lower churn rate. This means that frequent transaction activity may
enhance users' dependence on and satisfaction with banking services. Therefore, banks can appropriately
increase the frequency of credit card use on the premise of ensuring that users have the ability to repay, so as
to stabilize and increase the user base.
Based on the importance of the influencing factors shown by the random forest model, banks can formulate
targeted policies, such as adjusting credit limits and optimizing transaction experience, to reduce the churn
rate of credit card users. In addition, by building a churn early warning model, banks can more effectively
manage customers, identify high-risk customer groups, and take customer care measures to maximize the
retention of these customers, thereby enhancing the ability of enterprises to resist customer churn risks. This
data-driven strategy not only helps banks optimize customer relationship management, but also improves the
personalization and competitiveness of banking services, ultimately leading to increased customer
satisfaction and loyalty.

3 CONCLUSIONS AND RECOMMENDATIONS

The purpose of this paper is to use data mining technology to construct an early warning model for credit card customer
churn for a bank. By quantitatively analyzing the churn problem of credit card customers and applying modern data
mining methods such as random forest, an early warning model was successfully established, which can effectively
monitor the risk of customer churn. This study combines statistical testing and data mining techniques to realize the
integration of statistics and business practice, as well as the unification of qualitative and quantitative analysis methods.
Through the test of the validation dataset, the model confirms its effectiveness in the early warning of credit card user
churn, which provides strong support for solving the problem of user churn. The main results of this paper are
summarized below:
1) Personalized marketing strategy: With the intensification of business competition, Internet financial enterprises

need to implement personalized marketing for different credit card users. This study demonstrates the role of
random forest model in quantifying user behavior characteristics and assisting marketing decision-making, and
emphasizes the importance of data mining technology in banking business improvement and customer relationship
management.

2) Feasibility of model establishment: Based on expert survey and statistical analysis, this study discusses the
feasibility of establishing an early warning model for credit card customer churn and identifies the key factors
affecting customer churn.

3) Empirical research: Through the case study of text data mining, a random forest prediction model is established,
which provides an effective churn analysis framework for enterprises.

Credit card churn early warning analysis is an emerging field in credit card customer relationship management. The
variability of customer needs and the expansion of choice increase the risk of customer churn. Therefore, understanding
and maintaining valuable customers, improving the bank's competitiveness and reducing operational risks have become
the key to the bank's business.



An analysis of early warning for credit card customer churn

Volume 2, Issue 4, Pp 18-21, 2024

21

The user portrait system developed by the AI Lab provides the foundation for intelligent marketing in banks. Credit card
churn warning models not only help target potential churned customers and improve customer retention, but can also be
applied to all stages of the customer lifecycle, such as prospecting, nurturing high-value customers, increasing customer
loyalty, and extending customer lifecycles. It is expected that more intelligent marketing model technologies and
applications will be developed and applied in the future.
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