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Abstract: The d-orbital energy level splitting of free Fe2+ ions under electrostatic and spin-orbit interactions leads to d-
electron rearrangement and the formation of different energy states, which may result in the occurrence of electron
jumps between different energy levels. When Fe2+ is doped with K2FeF4, the combination of electrons in the Fe2+ d-
orbitals changes, and accordingly new d-d absorption spectra are generated. In this thesis, from the crystal field theory,
the center field approximation method, crystal field matrix meta-algorithm and electron spin-orbit interaction matrix
meta-algorithm are used in the study to establish the Hamiltonian quantities of the system and to calculate the fine
spectra of the system. Diagonalizing the full energy matrix can yield the Fe2+ d-d absorption spectra, and by analyzing
the experimental EPR zero-field splitting (ZFS) parameters Dq, B, C, and Z and combining them with the full energy
matrix, the energy values of the Fe2+ energy levels can be derived, and the results of this study show that the theoretical
values conform well to the experimental values. My research data can provide some theoretical references for the study
of the spectra of crystal doped Fe2+ ions. However, there are also experimental data that have not been derived, and it is
expected that they can be supplemented and improved in the future.
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1 INTRODUCTION

In recent years, complex crystals of transition metal ions have great prospects for many applications, and these crystals
are often widely used as good optoelectronic materials and nonlinear optical materials, etc. Especially when transition
metals are doped in semiconductors in trace amounts, its optical and magnetic properties change dramatically, so the
theoretical and experimental study of electron paramagnetic resonance (EPR) of transition metals has been a hot spot in
the field of crystal fields. The crystal field theory has been tightly integrated with spectroscopy and EPR techniques,
which has led to further investigation of the optical and magnetic properties of doped transition metal ion crystals [1].
Hamiltonian of the cubic system in the absence of an external magnetic field: H = Hee(B, C) + VA1(Dq) + Hso(ζ) .
According to quantum mechanics, the full energy matrix elements are obtained, each of which is a function of Dq，B，C，

ζ. The Hamiltonian coefficients Dq，B，C， ζ are obtained by experimental fitting, so that the eigenvalues of the
Hamiltonian quantities can be obtained, and the absorption spectra of Fe2+ can be obtained by jumping between energy
levels [2]. The central field approximation, full energy matrix method and theories related to crystal fields are adopted
in the process of investigating the case of free Fe2+ under electrostatic and spin-orbit effects, where the splitting of its
d-orbital energy levels leads to the rearrangement of the d-electrons and the formation of different energy states, which
may lead to the occurrence of the leaps of the electrons between the different energy levels. Under the center-field
approximation, following the symmetry of the group Oh to form the standard d-orbitals in the text, we then arrive at the
fact that for the d6 electronic grouping state there should be 210 energy levels if there is no simplicial merger. The free
Fe2+ ion has six electrons in the d-orbital, and its Hamiltonian consists of two terms: the electrostatic interaction term
between the electrons and the spin-orbit interaction term of the electrons. Using the previous single-electron wave
function we can construct 210 basis functions for the d6 system, each of which is a combinatorial form of the
determinant wave function [3].
This paper is a series of systematic studies of 3d energy levels and 3d ions in crystals, where in many crystals the
ground state is a spin=2 orbital, for which it exhibits a large zero-field splitting (ZFS). In the last decades, most
theoretical studies of the ZFS of 3d energy levels and 3d ions in crystals have been based on the D approximation, i.e.,
considering only the contribution of the high-spin state D of these ions to the ZFS and neglecting the low-spin state L
(L=DG ), however, spin-orbit (SO) and spin-spin (SS) interactions have triggered the validity of the D approximation to
make the energy of the L much larger than that of the D state, the spin triplet state's contribution to ZFS may be small.
This is significant for understanding the microscopic mechanism of crystal doping and may further provide a favorable
theoretical basis for material designers.

2 DOCTRINAL

2.1 ��(��)System Standard Base-standard D-track

Under the central field approximation, the one-electron solution of the fixed-state Schrödinger equation is
Rnl(r)Ylm(θφ)
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When l = 2, five standard d-orbitals are formed according to the symmetry of the group Oh as follows [4]：

(1)

The tracks are divided into two groups as follows

Genus eg , Genus t2g
constitute the standard d-orbitals of the incommensurable representations Eg and T2g,respectively,giving 10 spin d-
orbitals when the spins are accounted for:

θ，ε，ξ，η，ζ，

θ，ε，ξ，η，ζ
where the first five orbitals spin up and the last five spin down.The Slater function is a normalized determinant of order
m consisting of any m distinct d-orbitals dk1, dk2, …,dkm ,abbreviated as│dk1 dk2 …d km│,It satisfies the
antisymmetry requirement of the Bubbleley principle. In the d-orbit expression, Rd stands for Rn2 (r)； Z20

c 、Z22
c 、Z21

s

、Z21
c 、Z22

s is a real spherical harmonic function consisting of Y2m(θφ) [5];
Z20

c = Y20

Z22
c = 1

2
(Y22 + Y2−2) Z21

s = i
2

(Y21 + Y2−1)

Z21
C =−

1
2

(Y21 − Y2−1) Z21
C =−

1
2

(Y21 − Y2−1)

These real spherical harmonic functions satisfy the following relations:
Zl0

s = 0
< Zlα｜Zl'α' >= δll'δαα'

2.2 ��(��) Derivation of the Standard Basis Functions of the System

A strong-field group state is a cubic field group state defined by m t-electrons and n e-electrons, denoted t2
men . The

cubic crystal field energies of all states belonging to a strong-field group state are simply merged:
E(t2

men) = mE(t2g) + nE(eg) (5)
These groupings are divided into subgroups by electrostatic interactions between the dN electrons, and each subgroup
has a certain spin S belonging to a certain irreducible representation Γ of Oh.The totality of the states of a subgroup is
called a strong-field spectral term SΓ , or denoted 2S+1 Γ.
The strong-field spectral term wavefunction can be coupled into the strong-field spectral term wavefunction of the
general grouping according to the following equation t2

men [6]:
∣t2

m S1Γ1 en S2Γ2 , SΓMγ

=
M1M2

 � S1S2M1M2∣SM
γ1γ2

 � Γ1Γ2γ1γ2∣Γγ

⋅ t2
m S1Γ1M1γ1 ⊗ en S2Γ2M2γ2

included among these

(3)

(4)

(6)

(2)
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S1S2M1M2∣SM =
(S + M)! (S − M)! S1 − M1 ! S2 − M2 ! S1 + S2 − S ! (2S + 1)

S1 + M1 ! S2 + M2 ! S1 − S2 + S ! S2 − S1 + S ! S1 + S2 + S + 1 !

1/2

× δ M, M1 + M2
r

 � ( − 1)S1+r−M1
S1 + M1 + r ! S2 + S − r − M1 !

r! (S − M − r)! S1 − M1 − r ! S2 − S + M1 + r !
The "direct multiplication" method yields a Slater function of order m+n from an m-order and an n-order Slater function
in the following way:

thereby automatically satisfying the antisymmetrization requirement. We agree that t-electron comes first and e-electron
comes second.
The number of strong-field spectral term wavefunctions Ψ = ⃒t2

m(S1Γ1)en(S2Γ2), SΓMγ〉 corresponding to the d6(Oℎ)
system is 210.

3 CALCULATION OF MATRIX ELEMENTS

3.1 Computation of Electrostatic Matrix Elements

3.1.1 Two theorems related to the computation of electrostatic matrix elements
1. orthogonality theorem for invariant operator matrix elements
2. Wigner-Eckart theorem
Assuming that｜α jm〉 denotes a common eigenstate of (J2, Jz) and Tq

k is an irreducible tensor operator, one has
α'j'm'∣Tq

k∣αjm = jmkq∣j'm' 1

2j'+1
α'j' Tk αj (9)

3.1.2 The diagonal elements of the electrostatic matrix are

Vii = φi∣V� ∣φi =
k<λ

N
 � [J(k, λ) − K(k, λ)] (10)

included among these
Coulomb integral (math.)：J(k, λ) = J dk

i , dλ
i = dk

i dλ
i ∣V∣dk

i dλ
i = dk

i dk
i ; dλ

i dλ
i

Exchange Points：K(k, λ) = K dk
i , dλ

i = dλ
i dk

i ∣V∣dk
i , dλ

i = dλ
i dk

i ; dk
i dλ

i

3.1.3 Non-diagonal elements of electrostatic matrices
1. If φi and φj differ in only one orbit, for example dk

i ≠ dk
j ,The rest of the correspondences are the same, then

Vij =
λ(≠k)

N
 � dk

i dk
j ; dλ

i dλ
i − dk

i dλ
i ; dk

j dλ
i (11)

2. If only two orbits are different between φi and φj, for example dk
i ≠ dk

j and dλ
i ≠ dλ

j ,The rest of the correspondences
are the same, then

Vij = dk
i dk

j ; dλ
i dλ

j − dk
i dλ

j ; dλ
i dk

j (12)
3.If φi and φj have three or more different orbits, then

Vij = 0 (13)
4. (ab; cd) is nonzero only if a and b spin in the same direction and c and d also spin in the same direction. where

⟨ab∣V∣cd⟩ ≡ (ac; bd) ≡ ⟨a(1)b(2)∣V(12)∣c(1)d(2)⟩ (14)
ac and bd are about the 1st and 2nd electrons, respectively. For real d-orbitals:

(ab; cd) = (ba; cd) = (ab; dc) = (cd; ab) (15)

3.2 Calculation of Cubic Crystal Field Matrix Elements

The crystal field potential of the N ligands considered as point charges (coordinates RP(RP, θP, φP)) is

assume

In the d-electron problem, only the k=0, 2, 4 terms are meaningful.
The single-electron crystal field potential matrix element can be written as [7]

dij =− eq0 Pij r2 + Qij r4 (18)
included among these

(16)

(17)

(7)

(8)
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Sij = β00C00
ij = β00δij =

p=1

N
 �   1

Rp
δij (19)

Pij =
α

 � C2α
ij β2α (20)

Qij =
α

 � C4α
ij β4α (21)

βkα = 4π
2k+1 p=1

N
 � Zkα θpφp /Rp

k+1 (22)

The crystal field operator is a single-electron operator, and the crystal field matrix elements of the multi-electron system
can be reduced to the crystal field matrix elements between determinants, and then to the single-electron crystal field
matrix elements, and ultimately to the crystal field coefficients [8].
The crystal field coefficients of an ortho-octahedron are

Dq = -eq0 (23)
The crystal field coefficients of the orthotetrahedron are

(24)
Then for both of the above cases of cubic symmetry

d11= d22= 6Dq d33= d44= d55=-4Dq (25)
Thus the cubic crystal field matrix can be calculated in the standard basis functions [9].

3.3 Computation of the Spin-Orbit Matrix Element

3.3.1 Spin-rail coupling manifolds and standard basis
dN(Oℎ

∗) Constructive formulae for the standard basis functions of spin-orbit coupled manifolds
qi, SΓΓ�βΓ'γ' =

γγ�
 � qi, S�ΓM� γ |Γ�γ� ⟩⟨Γ�γ� | qi, S�ΓM� γ∣qi, SΓΓ�βΓ'γ'

=
γγ�

 � qi, S�ΓM� γ |Γ�γ� ⟩ qi, S�ΓM� γΓ�γ� ∣qi, SΓβΓ'γ'
(26)

abbreviated as
qi, SΓΓ�βΓ'γ' =

γγ�
 � ΓγΓ�γ� ∣βΓ'γ' qi, S�ΓM� γ |Γ�γ� ⟩ (27)

3.3.2 Calculation of spin-orbit matrix elements in spin-orbit manifolds
The spin-orbit coupling operator for the N-electron is

Hso = 1+γ* (28)
included among these

νγ∗−γ∗
1T1 = sγ∗l−γ∗ξ(r)

The spin-orbit coupling matrix element between a pair of SΓβ inside a given Γ'γ' block is
ℋij

so(Γ', S1Γ1β1, S2Γ2β2) = 〈qi, S1Γ1β1Γ'γ'｜ℋso｜qj, S2Γ2β2Γ'γ'〉 = K'〈 qi, S1Γ1‖V1T1‖qj, S2Γ2〉 (30)
K ' is known as the transfer coefficient.
The spinor matrix element obeys a selection law in the spinor manifold:
Γ1 × Γ2 must contain T1 (2) △ S = 0, ± 1 (3) △ M = 0, ±1
Computation of approximation matrix elements within uncoupled manifolds

qi, S1Γ1M1γ1∣ℋso∣qj, S2Γ2M2γ2

= qi, S1Γ1 V1T1 qj, S2Γ2

⋅
γ∗

 � S2M21γ∗∣S1M1 Γ2γ2T1−γ∗∣Γ1γ1
2S1+1 ⋅λ Γ1

( − 1)1+γ∗
(31)

4 CALCULATION RESULTS

Theoretical calculations were carried out through a Fortran program, where B=800cm-1，C=3200cm-1，Z=410cm-1，
Dq=0cm-1 was taken in the calculations, and the resulting d-d absorption spectra of Fe2+ were obtained, as shown in
Table 1.

Table 1 D-d Absorption Spectra of Fe2+

(29)
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Analyzing Table 1, we can see that the calculated results are basically consistent with the experimental results, and at
the same time, we also see that certain energy level errors are relatively large, which may be due to the fact that the
above three covariates are derived from fitting with the experiments, and a certain amount of error inevitably exists in
the fitting.
Changing the value of Dq, the theoretical calculations were carried out again, and six different sets of data were taken in
the calculations B=800cm-1, C=3200cm-1, Z=410cm-1, Dq (cm-1) thus obtaining six sets of absorption spectra, and
some of the intercepted data are shown in Table 2.

Table 2 D-d Absorption Spectra of Fe2+ for Different Values of Dq

energy level J Theoretical data(cm-1) Experimental data(cm-1)

3d6 4 0.00 0.000

3d6 3 436.20 422.478

3d6 2 738.90 721.891

3d6 1 932.40 915.202

3d6 0 1027.30 1010.188

3d6 6 20051.10 20043.808

3d6 5 20300.80 20266.731

3d6 4 20481.90 20433.095

3d6 2 21857.20 21930.043

3d6 5 24558.80 25365.580

3d6 4 24904.60 25760.185

3d6 3 25142.40 25942.025

3d6 6 30356.20 30216.503

3d6 4 30886.40 31893.814

3d6 2 40999.80 39783.966

J Dq=1000 Dq=900 Dq=800 Dq=700 Dq=600 Dq=500

1 0.000 0.000 0.000 0.000 0.000 0.000

1/2 184.501 185.406 185.764 185.551 184.658 182.829

1 200.146 200.758 201.121 201.221 200.999 200.306

0 450.276 453.111 454.320 453.932 451.685 446.902

1 483.480 485.850 487.443 488.318 488.427 487.578

1 505.833 508.196 510.205 511.984 513.628 515.219

0 6855.508 8513.547 8312.435 7314.898 6317.368 5320.061

1 8362.446 9280.636 8313.630 7317.505 6321.654 5326.529

1/2 8393.687 9305.514 8314.797 7320.085 6325.908 5332.940

1 8735.593 9309.666 8317.432 7324.056 6331.572 5340.926

0 9272.042 9310.437 8319.858 7327.920 6337.133 5348.791

1/2 10302.680 9310.482 9949.888 11095.306 11985.258 12858.947

1 10304.180 9313.359 10193.232 11127.496 12018.115 12892.485

1 10304.291 9317.063 10224.885 11137.045 12166.827 13111.188

1 10305.575 9655.897 10567.058 11469.026 12357.996 13228.810

0 10306.700 10421.200 11772.905 13348.132 14619.337 15151.458
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5 CONCLUSION

The three research methods used in this thesis are the center-field approximation, the crystal-field matrix meta-
algorithm, and the electron spin-orbit interaction matrix meta-algorithm. Under the center-field approximation, a one-
electron solution to the Schrödinger equation is obtained, which gives 10 d orbitals when l = 2 . This leads to the
introduction of the number of strong-field spectral term wavefunctions for this system, which is 210, i.e., there are 210
values of energy in the 3d energy level of the Fe2+ and K2FeF4 system. In this experiment, we reduce the problem of
constructing the electrostatic matrix to calculating the electrostatic matrix elements between the determinant wave
functions. The crystal field matrix elements of the multielectronic system can be reduced to the crystal field matrix
elements between the determinants and thus to the single-electron crystal field matrix elements, and ultimately to the
crystal field coefficients. In this way we can easily calculate the cubic crystal field matrix in the standard basis functions.
From the standard basis functions, we obtain the basis functions in the spin-orbit coupling manifold, which in turn leads
to the spin-orbit coupling matrix elements. In order to make a clear comparison, we take the energy of the first energy
level to be zero, which does not affect the results. By comparing the experimental data with the calculated results, some
theoretical values are in very good agreement with the experimental values, but some data differ from the experimental
results, which is a result of the lack of precision in the fitting of B, C, and Dq. My research data can provide a certain
basis for future spectroscopic research, and at the same time, there are some data that I have not been able to derive, and
I expect that they can be supplemented and improved in the future.
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