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Abstract: This paper develops a Bayesian Markov Chain Monte Carlo (MCMC) estimation method for multi-factor affine
term structure models (ATSMs). ATSMs are popular, but efficient estimation methods for them are not readily available.
Using simulated price data, the MCMC algorithms developed provide good estimates with their posterior distributions
converge. With real historical data, the in-sample pricing errors obtained are significantly smaller than those obtained from
alternative methods. A Bayesian forecast analysis documents the superior predictive power of the MCMC approach. Finally,
Bayesian model selection criteria are discussed.
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1 INTRODUCTION

Term structure models are essential building blocks for valuation, hedging and risk management of interest-rate-related
derivatives. The yield curve conveys important macroeconomic information and play an important role for monetary policy
transition, asset management, cross-border investment, etc. Among various term structure models, ATSMs are popular
mainly because of their analytical tractability and flexibility.
To balance between the economic richness and computational cost for ATSMs, Dai and Singleton (2000) classify the n -
factor affine family into n + 1 non-nested sub-families: A(m, n), m = 0, · · · , n[1]. The order m is the dimension of the
restricted state variables that enter the diffusion matrix. To incorporate the investor’s attitude toward factor risks, state
variable dynamics are specified differently under the data-generating measure P and the risk-neutral measure Q. Different
market price of risk specifications is proposed[1-3]. In this paper, we examine two models A(0, 3) and A(1,3) , under the
“extended affine” specification of Cheridito et al. (2007), which allows for more parameters and nests the “completely
affine” specification of Dai and Singleton (2000), and “essentially affine” specification of Duffee (2002)[1-3]. It also
imposes parameter constraints to impose no-arbitrage conditions.
Despite the analytical tractability of ATSMs, the estimation of these models is difficult. First, there is an issue of the
stochastic singularity. The ATSMs are driven by low dimensional latent state vectors, whereas we observe cross-sectional
yields with larger number of maturities. Measurement errors are added to the models to remove this singularity. However,
the choice of the measurement error distribution is arbitrary. Many researchers assume that yields with n number of
maturities are observed without error, where n is the dimension of the state variables[1, 3-5]. In contrast, other yields
present observation errors. However, the underlying assumption is stringent. As pointed out by Piazzesi (2008), it is more
plausible to assume all yields present observation errors[6]. With this alternative assumption, the state variables cannot be
inverted but be estimated.
Second, for the majority of ATSMs, maximum likelihood estimation methods are difficult to apply, as there are no closed-
form expressions for the transition densities of the state variables and parameters.
Finally, even in the rare cases where we do obtain closed-form expressions for the likelihood function, parameters enter
such functions in a highly non-linear way. As there is no analytical expression for the maximum likelihood estimators
(MLEs) in such cases, the MLEs require solving high-dimensional optimization problems by numerical methods. Some
deterministic search algorithms are often applied to locate the MLEs[3]. However, choices such as termination criteria and
initial parameter values can be non-trivial. Local maxima are frequent. Difficulties in estimation negatively affect the results
of ATSMs.
There are several methods to estimate ATSMs. As the likelihood functions do not have closed-form expressions for most
ATSMs, the first set of such methods attempt to approximate the likelihood function. One can apply the Euler discretization
scheme for the stochastic differential equations (SDEs) of the state dynamics. Estimators obtained by maximizing the
likelihood function based on the conditional Gaussian distribution are called quasi-maximum likelihood estimators, which is
feasible for any ATSMs. However, the resulting estimators are not consistent except for the linear Gaussian dynamics. One
can also numerically solve the forward Kolmogorov partial differential equations for conditional densities (Lo and
MacKinlay (1988)). However, such methods face the curse of dimensionality. Yet another approach attempts to
approximate the likelihood function using simulation techniques [7-9]. Such methods are also computationally costly,
especially for multi-dimensional problems. Recently, Ait-Sahalia and Kimmel (2010) propose a maximum likelihood
estimation method that relies on an approximation of the transition density of multi-dimensional state variables by Hermite
polynomial expansions[4]. Most likelihood-based methods depend on the assumption that some yields are observed without
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error. There is little empirical evidence for this assumption. The presence of measurement noise in all yields requires the
calculation of the filtered likelihood function, for which optimization is even more challenging. Another set of methods is
based on moment matching (Hansen (1982)), using the feature that moments of affine diffusions are available in closed
forms. However, one problem with this approach is that the states are never determined explicitly. Rather, it is possible to
obtain state variables that lie outside of their domain [2].
The Bayesian inference analysis for ATSMs in this paper complements the previous analysis that resides in the frequentist
domain. Specific to the ATSMs inference problem, the merits of Bayesian analysis can be exploited using MCMC methods.
Within this framework, it is straightforward to relax the stringent assumption that an arbitrary set of yields are observed
without error. This is empirically relevant. Our inference output based on market data indeed suggests that the measurement
errors are of similar magnitude for yields across maturities. They also exhibit cross-sectional correlations. Now, with the
relaxation of this assumption, the inversion method for state variables is not feasible.
In our MCMC framework, the latent states are inferred together with parameters. We use Gibbs samplers to alleviate the
curse of dimensionality. They allow us to decompose the problem of sampling from the joint posterior distribution of
parameters and latent states into a cycle of univariate sampling problems. Although the algorithm is designed to include the
sampling of latent states, it can be readily applied to ATSMs with explicit states, such as moments extracted from yield data
or macro factors[2,10]. Inference results on simulated yield data from different models show that our algorithm can closely
replicate the observations. In the setting with explicit state variables, the algorithm generates samplers and likelihood values
that converge to the true values. A common criticism against Bayesian analysis is the inclusion of prior distributions. We
use diffuse prior distributions for most parameters. The performances on simulated yield data show that the algorithm is
robust to disperse prior distributions.
We show that the MCMC algorithms also deliver good performances when applied to different market data sets. Data I
consists of yields constructed from LIBOR and swap weekly observations for 1989.03.31 – 2007.03.02 for maturities 1, 3, 6,
9 and 12 months and 2, 3, 5, 7 and 10 years. Data II is the Fama-Bliss zero-coupon bond yields with monthly observations
for 1972.01.31-2010.12.31 for maturities 1, 2, 3, 4 and 5 years. These two periods represent different economic episodes.
We document the strength of the MCMC methods in reconstructing yield data. The fitting errors, measured by the rooted
mean square errors (RMSE), are smaller than that obtained by the inversion-MLE method and the model-free method in
Collin-Dufresne et al. (2008)[10]. It is commonly thought that the principal component analysis (PCA) can produce small
fitting errors that are hard to beat by affine models, as pointed out in Piazzesi (2008)[6]. Our results from the A(1, 3) model
show that this is not necessarily the case. We obtain in-sample RMSEs that are comparable to that from the PCA.
We conduct an in-sample forecast analysis to identify missing data. The resulting pricing errors are within a few basis
points (One basis point is 0.0001). Some other data construction methods such as Cubic splines, Nelson-Siegel and
Svensson families are used in the industry[11-12]. These fitting methods explore the data in the cross-section but fail to
consistently fit them in the time-series. Furthermore, these models, including PCA, lack probabilistic interpretations and no-
arbitrage (NA) free. Our MCMC algorithms satisfy NA conditions by imposing parameter constraints provided in Cheridito
et al. (2007)[3].
Finally, we can construct the short rates from the output. To fit the short end of the yield curve has been challenging
because of seasonality and/or microstructure noise[6]. The inferred short rates from MCMC algorithms closely resemble the
1-month yield data, which are often used as a proxy for short rates.
Equipped with these efficient sampling schemes, we forecast future yield levels. For Data I, with the A(0,3) and A(1,3)
models, we can forecast the 12- week-ahead yield levels with out-of-sample RMSEs within 5 basis points. We run a horse-
race among several prediction methods. The Bayesian forecast performance of the A(1,3) model dominates the OLS
prediction and frequentist type prediction for all maturities. It also dominates the random walk prediction for all maturities
greater or equal to one year.
We also conduct a full-fledged Bayesian model comparison for different ATSMs. The model mis-specification analysis
from previous work has been exclusively based on goodness-of-fit tests[1,3]. Ait-Sahalia and Kimmel (2010) perform a
model comparison based on the likelihood ratio test for (non)-nested models[4]. However, illustrative examples in Bishop
(2007) show that estimation methods that perform well within the sample do not necessarily indicate a good predictive
behavior because of over-fitting[13]. Various information criteria, such as AIC and BIC, have been proposed to penalize for
over-parametrization, which often tend to favor simple models. From the Bayesian perspective, the problem of over-fitting
can be avoided because the effective model complexity adapts automatically to the data. We find that the ranking of the two
models by the model evidence is consistent with both in-sample fitting and out-of-sample forecast performances. Data I has
the features of non-normality of yield distribution and a humped shape of yield change volatility. It ranks the models as
A 1, 3 over A(0, 3). Data II also supports the non-normality feature but has a strong demand for the correlation between
state variables. The A(0, 3) model is preferred by the data.
The MCMC analysis has been successfully applied to a wide range of stochastic volatility models. Jacquier et al. (1994) use
MCMC methods to analyze the log stochastic volatility model, and then incorporate the leverage effect of stochastic
volatilities [14-15]. Eraker et al. (2003) examine the Heston’s volatility model by MCMC, and later extend the analysis to
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include jumps in volatility and return processes[16]. Johannes and Polson (2007) provide a review of recent developments
regarding the application of MCMC in estimating various financial models[17].
In the multi-factor ATSMs literature, the MCMC analysis is relatively new. This might be due to the difficulty in evaluating
the yields. In addition, state variable transition densities do not have closed-form expression for most ATSMs. Furthermore,
the data-collection frequency in the literature prevents the usage of Euler discretization, which is common in other areas
with wide application of MCMC. Early utilization of MCMC in ATSMs can be found in Chen and Scott (1993) and Hu
(2005)[9,18]. Chen and Scott (1993) apply the extended Kalman filter for the multi-factor CIR model[9]. Hu (2005)
conducts the MCMC analysis on multi-factor Vasicek and multi- factor CIR models[18]. As these models have limitations
in capturing market data features, here we study more general models. Furthermore, we provide results for yield level
forecasts and model comparison.
This chapter is organized as follows. In Section 2, we provide a brief introduction to MCMC methods. In Section 3, we
apply the MCMC algorithms for ATSMs and investigate its performance with simulated data. Results of empirical studies
on two sets of zero-coupon bond yield data are presented in Section 4. Section 5 concludes.

2 MCMCMETHODS

In this section, we give a brief introduction to the MCMC methods applied in this paper. A thorough treatment of the
theoretical foundations can be found in Robert and Casella (2004)[19]. The advantages of these methods rely mainly on two
facts. First, they are useful in sampling random variables for which the conventional sampling scheme are not available.
Second, they are beneficial in decomposing the problem of sampling from the high-dimensional density into a sequence of
univariate sampling problems. Both features are helpful in addressing the inference problem for ATSMs.
Suppose that we observe data Y. The latent state variables X and the parameter set Φ are unknowns. The target is to infer Φ
and X from the joint posterior distribution:

P(Φ, X|Y).
Depending on the specific ATSM and the sample size, there are many parameters (approximately 40-80) to estimate, most
of which enter the posterior density in a highly nonlinear way. As little is known about the density’s properties, the
traditional inversion and/or rejection-acceptance sampling schemes are not feasible. As discussed in the next paragraph, the
Metropolis-Hastings (MH) algorithms are applied to sample these parameters. In addition to the parameter set Φ, we need to
infer the latent states, which contribute 1000-3000 more random variables to sample, with the size depending on data
window. The decomposition of high-dimensional problems into small units is extremely useful in reducing the complexity
of the problem.

2.1 Metropolis-Hastings Algorithms

Suppose we want to sample a Markov chain {x(t), t = 1, 2, 3, · · ·} with the stationary distribution f(·), the target density.
Conditioning on x(t) , we can use the MH algorithms and choose a conditional density q(y|x) , the proposal or candidate
distribution, to help to sample x(t+1). The choice of q(·|x(t)) is delicate and needs to be tuned to specific problems. We will
provide guidance in choosing this proposal density for ATSMs in the next section.
Step 1: Generate:

�� ∼ � � � � ,
� ∼ �(0,1),

where U(0, 1) is the uniform distribution in (0, 1).
Two special cases of MH algorithms, the independent MH algorithm and the random walk MH algorithm, are used in this
paper. The former is useful when we have a good understanding of the target density and can propose efficient candidate
densities. The latter explores the neighborhood of the Markov chain and gathers local information about the target stepwise.
It is particularly useful for multi-dimensional densities.

2.2 The Independent Metropolis-Hastings Algorithm

Key: Candidate draws are independent of the previous states: Yt~q(y)
For this algorithm, a good candidate density q(·) needs to fulfill two requirements. First, it needs to approximate the target
density closely in the shape and location. With the close approximation, the acceptance probability for new samplers is high,
and the sampling scheme is efficient. This requires us to be informative about the target density. Second, the candidate
density should be diffusive to navigate through the entire support of the target density.
In many cases we have little information about the properties of the target density f(·), and thus it is hard to propose a good
candidate density. The random walk MH algorithm provides an alternative approach.
2.2.1 The random walk Metropolis-Hastings algorithm
Key: Candidate draws are current state with a symmetric random walk perturbation: Yt~g y − xt .
Here g(·) is a symmetric distribution that is independent of xt.

(1)

(2)
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The two algorithms described above are helpful for the inference problem of the ATSMs. The other difficulty that affects
the inference for ATSMs is that the posterior distribution is high-dimensional. The multistage Gibbs sampler described next
is suitable for tackling this problem.
2.2.2 The Gibbs sampler[20]
Key: Joint densities are decomposed into iterations of conditional densities.
Denote (X t , Φ(t)) as the samplers at the t-th entry in the Markov chain.
Step 1: Generate:

X(t+1) ∼ P1(x|Φ(t), Y).
Step 2: Generate:

Φ(t+1) ∼ P2(ϕ|X(t+1), Y).
Here P1 x Φ t , Y and P2 ϕ X t+1 , Y denote the distributions of each block of parameters or states conditioning on all
others. Hammersley and Clifford (1971) prove the convergence of distributions X t+1 , Φ t+1 to the stationary joint
distribution P(X, Φ|Y), as the number of iterations increases[21].
In the Gibbs sampling cycle, we decompose the target posterior distribution P(Φ, X|Y) into its full conditionals P1(x|Φ(t), Y)
and P2(ϕ|X(t+1), Y) . The distributions P1(x|Φ(t), Y) and P2(ϕ|X(t+1), Y) can be further decomposed into finer full
conditional densities until efficient sampling methods are available.

2.3 The Kalman Filter and FFBS

The forward filtering backward sampling (FFBS) method is designed for the linear Gaussian model and is an efficient
simulation version of smoothing recursions of the Kalman filter[22-23]. For the Gibbs sampler, we iterate through sampling
latent states and parameters. In the first step, the FFBS algorithm samples the latent linear Gaussian states in a block. In this
section, we first introduce the Kalman filter and then the FFBS algorithm.
Suppose that the state variables Xt t=0

T have a normal prior distribution at t = 0:
X0 ∼ Xp(m0, G0).

The observation equation and state equation follow the linear Gaussian system:
Yt = FtXt + vt, vt ∼ N(0, Vt),

Xt = GtXt−1 + wt, wt ∼ N(0,Wt).
First, assume that the parameter set Φ in the Ft, Vt, Gt, Wt matrices is known. Denote the observations of {Ys, s = 1···t}
as Y1:t . Because of the linear Gaussian structure and normal prior, the filtered distribution P(Xt−1|Y1:t−1, Φ) is normally
distributed, hence is fully characterized by its mean and variance. The Kalman filter is a mechanism for recursively
updating the mean and variance of P(Xt−1|Y1:t−1, Φ).
2.3.1 The Kalman filter[24]
Suppose at t − 1, the distribution of p(Xt−1|Y1:t−1, Φ) is:

p(Xt−1|Y1:t−1, Φ) ∼ N (mt−1, Ct−1).
The predictive distribution of P(Xt|Y1:t−1, Φ) is Gaussian:

p Xt Y1:t−1, Φ ∼ N at, Rt , at = Gtmt−1, Rt = GtCt−1Gt' + Wt.
The predictive distribution of p(Yt|Y1:t−1, Φ) is Gaussian:

p Yt Y1:t−1, Φ ∼ N ft, Qt , ft = Ftat, Qt = FtRtFt' + Vt.
The filtered distribution of p(Xt|Y1:t, Φ) is Gaussian:

p Xt Y1:t, Φ ∼ N mt, Ct , mt = a_t + RtFt'Qt−1et, Ct = Rt − R_tFt'Qt−1FtRt,
where et is the predicting error:

et = Yt − ft.
Now we assume the parameter set Φ is unknown. Denote the latent states {Xs, s = 1···t} as X1:t . To sample from
P(Φ, X1:T|Y), we iterate through the full conditional decompositions:

P1(X1:T|Φ, Y ), P2(Φ|X1:T , Y ).
The first component is sampled by the FFBS algorithm. The second component is sampled by the random walk MH,
independent MH, and/or other standard sampling schemes.
The target of interest is

P(X1:T|Y1:T , Φ).
This joint distribution can be decomposed as:

P(X1:T|Y1:T , Φ) = Πt=0
T P(Xt|Xt+1:T , Y1:T, Φ).

Starting from P XT Y1:T, Φ , the last component in the forward iteration of filtered distribution in the Kalman filter, we
iterate backward and sample sequentially:

P Xt Xt+1:T, Y1:T , Φ = P Xt Xt+1, Y1:t, Φ , t = 1, · · · , T − 1.
This last equality comes from the Markovian structure of the model.
2.3.2 The FFBS algorithm [22]

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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Initialization: Set:
P(XT|Y1:T, Φ) ∼ N(mT , CT).

Backward iteration: For t = T − 1, ··· , 0, we have:
p Xt Xt+1, Y1:t, Φ ∼ N ℎt, Ht , ht = mt + CtGt+1' Rt+1−1 Xt+1 − at+1 , Ht = Ct − CtGt+1' Rt+1−1 Gt+1 Ct.

The MH sampling algorithms, Gibbs iterations, and the FFBS algorithm provide the essential building blocks for our
MCMC algorithms for ATSMs. In the section of designing the MCMC algorithms, we tailor these algorithms to each
ATSM.

2.4 The Model Comparison

A full Bayesian treatment of ATSMs involves a model-comparison analysis. Denote a specific ATSM by M. The posterior
distribution is uniquely determined by the conditional probability of the unknowns given the observed data and the specific
model:

� �, � �, � =
� � �, �,� � �, � �

�
,

where P(Φ, X|M) is the prior distribution and P(Y |Φ, X, M) is the likelihood. The marginal likelihood Z is defined as:

Z ≡ P(Y|M) = P(Y|M, Φ, X)P(Φ, X|M)dΦdX�� .

The marginal likelihood Z is interpreted as the model evidence, as it measures the support for model M given data Y. The
quantity Z carries information that allows us to make a model comparison from a Bayesian perspective. Such a comparison
does not require alternative models to be nested. A detailed analysis of the advantages of Bayesian model comparison can
be found in Kass and Raftery (1995)[25].
Direct computation of the marginal likelihood Z is not feasible, as it involves multi-dimensional integration over the
parameters and latent states. Previously, the Schwarz information criterion (Schwarz (1978)) and the Laplace approximation
method have been used to approximate the model evidence factor. The latter is the Bayesian inference criterion (BIC) in the
frequentist framework[26]. As a quite different approach, the reversible-jump MCMC algorithm (Green (1995)) has been
developed to incorporate different models as discrete parameters in the Gibbs iterations. The MCMC algorithm switches
among different models during the iterations, and the model-comparison result is generated as an output of such algorithms.
For the ATSMs inference problem, as we can efficiently sample from the posterior distribution, we can approximate the
quantity Z by the harmonic mean of the likelihood values[27]:

Z� = 1
N i=1

N 1
P Y Xi,Φi�

−1
,

where N is the number of simulations, and {Xi, Φi} are the i-th simulation from the joint posterior distribution P(X, Φ|Y).

3 MCMC ALGORITHMS FOR ATSMS

We study two classes of ATSMs: A(0, n) and A(m, n) with m = 0,1 and n = 3. We cast the analysis under the “extended
affine” specification of Cheridito et al. (2007)[3]. In the A(m, n) model, the dynamics of state variables:

dX = OpXt + O0
p dt + diag CiXi + 1 0.5 dWt

P = OXt + O0 dt + diag CiXi + 1 0.5 dWt
Q ,

where Op, O ∈ Rn×n, O0
p, O0 ∈ Rn , and Ci is the i-th row of the matrix C with rank m. The parameter values are within the

constraints that insure the existence, stationary and no-arbitrage conditions. The term Wt
p is an n-dimensional Brownian

motion under the data-generating measure P, and Wt
Q is an n-dimensional Brownian motion under the risk-neutral measure

Q.
The short rate process is a linear combination of state variables:

rt = δ0 + δ'Xt,
for some δ0 ∈ R and δ ∈ Rn.The observation equation is

Yt = Vb' Xt − V0 + ϵ.
Here Yt is a T × 1 vector with the yields of T maturities at time t . Vb is a n × T matrix and V0 is a M × 1 vector. The
terms Vb and V0 solve Riccati-type ODEs in Duffie et al. (2000)[28]. In the A(0, n) model, Vb can be solved explicitly. The
measurement error, denoted by ϵ, has a normal distribution of N (0, Σ), where Σ is a T × T symmetric and positive definite
matrix.
For the A(0, n) model, we simulate zero coupon yield data for 43 years with monthly observations. The maturities are 1, 2,
4, 6, 7, 8 ad 10 years. These specifications are chosen to match those frequently used in the literature. For the simulated data,
the parameter values for different models are the estimation results in Cheridito et al. (2007) with slight modifications[3].
The parameter values are reported in Table 1 and 2.

Table 1 Parameter Inference Results, A(0,3) with Explicit States
Parameter True Value Mean Std. Dev. 95% Confidence Interval

(16)

(17)

(18)

(19)

(20)

(23)

(22)

(21)
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�0 0.0529 0.0537 0.0003 [0.0529, 0.0545]
�1 0.0209 0.0194 0.0004 [0.0186, 0.0202]
�2 0.0226 0.0222 0.0004 [0.0216, 0.0230]
�3 0.0279 0.0272 0.0003 [0.0268, 0.0278]
�01 0.4349 0.2655 0.1118 [0.0598, 0.4985]
�02 0.2360 0.2977 0.0864 [0.1226, 0.4538]
�03 0.3454 0.3411 0.0174 [0.3056, 0.3735]
�11 -0.8600 -0.4910 0.1136 [-0.7001, -0.3078]
�12 -0.1600 -0.2641 0.0814 [-0.3956, -0.1125]
�13 -0.3800 -0.2857 0.0626 [-0.4254, -0.1858]
�21 -0.3200 -0.4955 0.0962 [-0.6477, -0.3325]
�22 -0.6000 -0.4376 0.0679 [-0.6000, -0.3439]
�23 -0.1200 -0.1194 0.0502 [-0.2026, -0.0434]
�31 -0.1600 -0.1399 0.0220 [-0.1806, -0.0896]
�32 -0.2400 -0.2754 0.0167 [-0.3018, -0.2313]
�33 -0.4000 -0.4061 0.0122 [-0.4274, -0.3787]

*Note: This table reports the parameter inference results for the �(0,3) model with explicit states. Monthly observations of zero-coupon
bond yield data for 43 years with maturities 1 ,2, 4, 6, 7, 8 and 10 years are simulated with the true parameter values reported in the table.

Table 2 Parameter Inference Results, A(1,3) with Explicit States
Parameter True Value Mean Std. Dev. 95% Confidence Interval

�0 0.0529 0.0531 0.0003 [0.0526, 0.0536]
�1 0.0209 0.0209 0.0002 [0.0205, 0.0213]
�2 0.0226 0.0226 0.0001 [0.0224, 0.0227]
�3 0.0279 0.0279 0.0000 [0.0278, 0.0280]
��� 1.2349 1.1259 0.0052 [1.0232, 1.2003]
�01 0.2360 0.3176 0.0022 [0.2836, 0.3715]
�02 0.3454 0.3350 0.0050 [0.3255, 0.3441]
��� -0.8600 -0.8901 0.0427 [-0.9477, -0.7878]
��1 -0.3200 -0.2963 0.0357 [-0.3483, -0.2257]
��2 -0.1600 -0.1600 0.0106 [-0.1801, -0.1372]
�11 -0.6000 -0.6053 0.0141 [-0.6345, -0.5738]
�12 -0.1200 -0.1297 0.0074 [-0.1433, -0.1106]
�21 -0.2400 -0.2379 0.0056 [-0.2505, -0.2260]
�22 -0.4000 -0.3954 0.0031 [-0.4040, -0.3895]
�1 0.3000 0.2532 0.0765 [0.4078, 0.7520]
�2 0.3000 0.5229 0.0940 [0.1159, 0.3640]

*Note: This table contains the parameter inference results for the �(1,3) model with explicit states. Monthly observations of zero-coupon
bond yield data for 43 years with maturities 1, 2, 4, 6, 7, 8, and 10 years are simulated with the true parameter values reported in the table.

We denote the observation of yield data as Y ≡ {Ytτ}t=1T where τ is the maturity of zero-coupon bond. The state variables
are denoted as X ≡ {Xtτ}t=1T . The parameter space is denoted as Φ ≡ ΦP, ΦQ . Here ΦP is the parameters governing the
state dynamics under the data-generating measure P , and ΦQ are the parameters under the risk-neutral measure Q . We
sample the parameters and latent states from the posterior distribution:

P(ΦQ, ΦP, X|Y).
We can apply the Gibbs sampling to iterate through the full conditionals decomposition:

P ΦP ΦQ, X, Y , P ΦQ ΦP, X, Y , P X ΦP, ΦQ, Y .
In the sampling process for both ΦP and ΦQ, parameter constraints are imposed. The summary of parameter constraints for
existence, stationarity, and boundary non-attainable conditions can be found in Ait-Sahalia and Kimmel (2010)[4]. The
boundary non-attainable condition prevents arbitrage opportunities for the “extended affine” specification. Samplers falling
out of such constraints are discarded.
In what follows, we first discuss sampling algorithms for posterior distributions P(ΦP|ΦQ, X, Y) and P(ΦQ|ΦP, X, Y) . Then
we introduce the sampling of latent states under different models.

3.1 Sampling ��

As only ΦQ enters the pricing formula, the yield data do not contain information directly for ΦP . The data provide
information for ΦP indirectly through the channel of state variables X. To sample P(ΦP |ΦQ, X, Y), we need to sample from
the posterior distribution:

P(ΦP|X) = P(X|ΦP) × P0(ΦP), (26)

(25)

(24)
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where P0(ΦP) denotes the prior distribution for ΦP. The posterior distribution of ΦP cannot be sampled using conventional
schemes. Therefore, the random walk MH algorithm is applied.
In the rest of the sections, we focus on the sampling of ΦQ , as they are important for evaluating the performances of in-
sample fitting, out-of-sample forecast, and model comparison.

3.2 Sampling ��

To sample � �� ��, �, �), we explore information in both the state variables � and yield data � . To sample the total
parameter set, we further break �(��|��, �, �) down to the full conditional decomposition of each parameter. Here we
abbreviate �(�|·) as the full conditional decomposition for the parameter � . Only few parameters, �0 , ��

0 and � , have
conjugate posterior distributions that can use conventional sampling algorithms. The two distributions, �(�0|·) and �(��

0|·),
are sampled from the normal distributions. The distribution �(�|·) is sampled from the Wishart distribution. Further
information about the choice of conjugate distributions can be found in Bishop (2007)[13]. As there are no standard
posterior distributions for the rest of the parameters, they are sampled from the random walk MH algorithms.
In the first simulation exercise, we set state variables � as known and only sample parameters. We refer the models where
the state variables are known as models with explicit states. The inferred parameters can be used to reconstruct the yield
data. We compare the (simulated) true yield data and the yield data reconstructed with the inferred parameters. In Table 3,
the “Exp” column reports the in-sample pricing errors for the two models measured by RMSE in bps. As we can see, the in-
sample errors are indeed small, which indicates that our algorithm can generate parameter samplers that closely reconstruct
the yield data. This table also reports the simulated and true log-likelihood values, which approach the true maximal value.

Table 3 In-Sample Fitting Performances with Simulated Data
�(0,3) �(1,3)

Exp Latent Exp Latent
RMSE (bps)

1-Year 0.72 29.45 0.27 36.38
2-Year 1.67 20.67 0.39 24.42
4-Year 1.94 13.89 0.64 5.97
6-Year 1.54 11.30 0.75 6.21
7-Year 1.04 10.50 0.87 7.43
8-Year 1.13 9.86 1.40 8.85
10-Year 3.02 8.89 2.00 10.71

Log Likelihood
True 23267.4 23265.5 23262.2 23298.1

Simulated 21822.0 20900.0 23254.0 22599.0
*Note: This table reports the in-sample pricing errors and log-likelihood values of the inference output from the simulated data. Monthly
observations of zero-coupon bond yield data for 43 years are simulated with the true parameter values and maturities reported in Table 1-

2.

3.3 Sampling � in �(�, �)

In this section, we describe the sampling scheme for latent states in the �(0, �) model. Specifically, the state variables have
the dynamics:

��� = ������ + ���
� = (����� + ��

0)�� + ���
�.

Denote the time interval between the time indices � and � + 1 as ∆. In the �(0, �) model, conditioning on ��−1 , �� has a
Gaussian transition density:

�� ∼ � (����Δ��−1 +
�−1

�
���� �−� ��

0��� ,
�−1

�
����(�−�)� ����

' (�−�)�� .

As the state variables follow a linear Gaussian dynamic and enter observation equation linearly, the FFBS algorithm can be
applied to simulate �(�|�, ��)[22,23,29].
Closely related to the FFBS algorithm is the Kalman filter. The Kalman filter gives a mechanism to recursively evaluate the
Gaussian predictive, filtering and smoothing distributions when the parameters are known. In particular, the Kalman
smoother provides a backward recursion mechanism to compute the conditional distribution of �(��|�, ��) for � = �, · · · 1.
Instead of recursively sampling � �� �, �� , � = � · · · 1 backwards, the FFBS algorithm simulates � from � � �,�� in
one block.
In the simulation exercise, we apply the MCMC algorithms described for the inference of parameters and latent states for
the �(0, 3) model. Table 3 reports RMSEs and log-likelihood values. Based on the results, we can see that the algorithm
produces inferred parameters and latent states that replicate the in-sample data closely and
log-likelihood value that approaches the true maximal value.

(28)

(27)
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3.4 Sampling � in �(�, �)

In the �(1, �) model, the state variables in the first dimension are restricted to be positive. This state variables drive
conditional volatilities and thus compensate for the counterfactual assumption of constant conditional variances in the
�(0, �) model. Denote the restricted state variables as �0 ≡ ��0 �=1

� and the unrestricted state variables as �1 ≡ Xt1 �=1
� .

The dynamics of the restricted state variables are
���0 = ��� ��0 + �0 �� + ��0��0,�

� .
For � = 3, the unrestricted state variables are two-dimensional with the dynamics:

���1 = ��� ��0 + �����1 + ��
0 �� +

�1��0 + 1 0
0 �2��0 + 1

��1,�
� .

The posterior distribution we want to sample is �(��, ��, �0, �1|�).
In the Gibbs sampling process, we iterate through the cycle of the full conditional decomposition of the posterior
distribution:

p(ΦQ|X0, X1, ΦP, Y), p(ΦP|X0, X1, ΦQ, Y), p(X0|X1, ΦQ, ΦP, Y), p(X1|X0, ΦQ, ΦP, Y).
As we have discussed about sampling parameters ΦP and ΦQ, we focus on sampling of the latent states in this section.
3.4.1 Sampling ��

The restricted state variables ��0 �=1
� enter the pricing formula linearly but have a non-linear dynamic. We can apply the

Gibbs samplers to further decompose the vector �0 into the cycle:
� ��0 ��−10 , ��+10 , ��, ��−11 , ��1, ��+11 , �� , � = 1, ···�

Even with this decomposition, we still cannot draw the univariate state variable ��0 directly. However, we can propose an
efficient candidate density in the independent MH algorithm by exploiting the linearity of ��0 in the observation equation
and its dynamics. For the independent MH algorithm, an efficient candidate density needs to closely resemble the shape and
location of the target density in equation (3) for each � . In the following analysis, the parameter set �� is omitted for
notational clarity. The target posterior density in (3) can be further decomposed:

� ��0 ��−10 , ��+10 , ��, ��1, ��+11 , ��+11 ∝ �(��|��0, ��1) × �(��−10 , ��0, ��+10 , ��−11 , ��1, ��+11 ).
The component � ��−10 , ��0, ��+10 , ��−11 , ��1, ��+11 can be decomposed as:

� ��−10 , ��0, ��+10 , ��−11 , ��1, ��+11 ∝ P(Xt+10 |Xt0) × p(Xt0|Xt−10 ) × P(Xt+11 |Xt0, Xt+10 , Xt1) × P Xt1 Xt−10 , Xt0, X�−11

With the decomposition above, the posterior distribution in equation (3) has the expression:

� �t0 �t−10 , �t+10 , ��, ��1, �t−11 , �t+11 ∝ e−0.5 Yt+�0−��0��−��1��
'
Σ−1 Yt+�0−��0��−��1�� × �� Δ, ��+10 ��0, ���, ��

0 ×

�� Δ, ��0 ��−10 , ���, ��
0 × �

−
��
1−����Δ��

1−�1
2

2 �1
2

�1
2

× �
−

��
1−����Δ��−1

1 −�0
2

2 �01
2

�0
2

.

Here ��(∆, �|�0, ���, ��
0) denotes the transition density of the restricted state variable:

�� Δ, � �0, ���, ��
0 = � × �−�−� �

�

�
2�� 2 � × � 0.5 ,

with � = 2��
0 − 1, � = −2Ο��

1−����Δ
, � = ��0����Δ and � = ��. �� is the modified Bessel function of the first kind of order �. The

terms (�0, �02) and (�1, �12) have the following expressions:

�0 = �����0 + �0
� + ����Δ(�����−10 + �0

�)
Δ
2
,

�02 = �����0 + �0
� + �2×���Δ(�����−10 + �0

�) Δ
2
,

�1 = �����+10 + �0
� + ����Δ(�����0 + �0

�)
Δ
2
,

�12 = �����+10 + �0
� + �2×���Δ(�����0 + �0

�)
Δ
2
.

Now we are ready to choose the candidate density to sample the posterior distribution of equation (3). First, conditioning on
��, ��0 follows the distribution:

��0|�� ∝ ��, �� ,
with
�� = ��−1 ��' Σ−1 �� + �0 − ��0�� − ��1�� , ��−1 = ��' Σ−1��.
Conditioning on ��−10 , the distribution �(��0|��−10 ) is approximately normally distributed as � ��

1, ��1 with:
��
1 = ��−10 + �����−10 + ��

0 Δ, ��1 = ��−10 Δ.
Conditioning on ��+10 , the ��0 can be approximated to be normal � ��

2, ��2 , with
(41)
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��
2 =

��+10 − ��
0Δ

1 + ���Δ
, ��2 =

��+10 Δ
1 + ���Δ 2 .

Combining the three normal distributions, we can propose the candidate density that approximates the target density in
equation (3) closely. Denote �1(·) and �2(·) as the candidate densities with the following definitions:

��~� ��1��2��+����2�1+����1�2
����1+����2+��1��2

, ����1��2

����1+����2+��1��2
.

In the experiment where we set the parameters and the unrestricted state variables as known, and sample only the restricted
states, the acceptance rate for the independent MH algorithm is around 99%, which indicates that the candidate density �� ·
is indeed efficient.
3.4.2 Sampling ��

The last step in the Gibbs cycle is to sample:
� �1 �0, Φ�, Φ�, � .

Without loss of generality, we consider the �(1, 2) model. For �(1, 3), the algorithm applies, and we only need to adjust
the matrix calculations accordingly. Conditioning on �1, the state variable �1 can be solved by:

��1 = ����Δ��−11 +
�−1

�
����(�−�)� �����0 + ��

0 �� + �1��0 + 1���
� .

Conditioning on �0, the integrals can be approximated as:

�−1
� ���� �−� �����0 + ��

0 �� = �����0 + ��
0 + ����Δ(�����−10 + ��

0) Δ
2

� ,

�−1

�
���� �−� �����0 + 1� ���

�~ 0, �����0 + 1 + ����Δ �1��−10 + 1 ����
' Δ Δ

2
.

Based on this approximation, ��1 resumes the linear Gaussian structure:
��1 = ��1�� +� 0, Σ ,

��1 = ����Δ��−11 + �� + � 0, �� ,
with

��1 = �� − ��0�� + �0,
�� = �����0 + ��

0 + ����Δ(�����−10 + ��
0) Δ

2
,

�� = �1��0 + 1 + ����Δ �1��−10 + 1 ����
' Δ Δ

2
.

The FFBS algorithm can be applied to sample �1 in a block.
Table 3 reports the performance of the algorithm for �(1,3) based on simulated data. The pricing errors, being bigger than
the models with explicit states, are within good precision ranges. The log-likelihood value approaches the true maximal
value. The increase in pricing errors comes from the fact that, in addition to the parameters, we have 1548 state variables for
�(1, 3) to sample. To access the efficiency of the candidate density for the restricted state variables, the acceptance rate is
60%-70% for all restricted states. This indicates that the candidate density we propose is efficient.

4 THE EMPIRICAL ANALYSIS

In this section, we apply the MCMC algorithms on two market data sets of different economic episodes and show that it can
replicate the yield data and forecast future yield levels. Then we perform a model comparison analysis for each of the two
data sets.

4.1 The Data

We use two sets of zero-coupon bond yield data. Data I consists of weekly observations of zero-coupon bond yield with a
sample period 1989.03.31-2007.03.02. The data are like that used in Collin-Dufresne et al. (2008)[10]. The zero-coupon
bond prices are constructed by bootstrapping the LIBOR rates with maturities 1, 3, 6, 9 and 12 months and the swap rates
with maturities 2, 3, 5, 7 and 10 years. The 9-month LIBOR rates are not available for the period of 1989.03.31-1991.05.31.
The linear interpolation method is applied to obtain the missing data.
Data II consists of zero-coupon bond yield data with maturities 1, 2, 3, 4, and 5 years from the CRSP monthly treasury file.
The sample period is 1972.01.31-2010.12.31. We trace the data sets used in Ait-Sahalia and Kimmel (2010) and Cheridito
et al. (2007) as closely as possible[3-4]. We can only obtain data with five maturities from CRSP. To have similar sample
size, we use a longer sample period of 39 years.
The two yield data sets cover different economic episodes and exhibit different empirical features. During the sample period
of Data I, Piazzesi (2008) suggests that there is evidence of “a return to normality” and constant conditional second
moments seem to be enough to describe the state dynamics[6]. Data II covers the two regimes of extreme volatility
movements: the oil price shock in 1974 and monetary experiment in 1979-1982. The conditional second moments of yields
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exhibit peaks corresponding to these two regimes. We exam these two empirical facts from a Bayesian perspective. For
Data I, �(1, 3) dominates the other model. For Data II, �(0,3) model outperforms better.

4.2 The In-Sample Fitting Performance

We study the in-sample fitting and forecasting performances of the MCMC algorithms applied on Data I. Parameters and
latent states inferred from the MCMC algorithms can be used to replicate the in-sample yield data closely. Table 4 reports
the in-sample fitting performance for Data I with �(0, 3) and �(1,3) models.

Table 4 In-Sample Fitting Performances-Data I
�(0,3) �(1,3)

Mean RMSE Mean RMSE
1-Month 0.42 5.83 -0.10 5.99
3-Month 1.13 4.98 0.69 4.52
6-Month -0.08 4.54 0.18 4.40
9-Month -1.28 4.86 -0.36 4.60
12-Month -2.19 6.01 -0.88 4.92
2-Year 1.29 7.32 2.33 6.01
3-Year 1.64 6.64 1.62 6.03
4-Year 0.18 6.06 -0.44 5.56
5-Year 0.69 5.95 0.04 5.78
7-Year -0.50 6.68 0.26 6.01
10-Year -0.56 8.29 0.86 6.92

*Note: This table reports the in-sample fitting performances of the �(0,3) and �(1,3) models for Data I: weekly observations of zero-
coupon bond yield data of maturities 1, 3, 6, 9 and 12 months, 2, 3, 4, 5, 7, and 10 years from 1989.03.31 – 2007.03.02.

The in-sample fitting performance is evaluated by two measures: the average pricing errors and RMSEs for each maturity.
To compare the RMSEs, we use the results reported in Table III and V in Collin-Dufresne et al. (2008) as a benchmark[10].
Data I is similar to the data used in their paper. It turns out that for both �(0, 3) and �(1, 3) models, our in-sample pricing
errors are smaller than those from their model-free estimation method for all maturities.
For the in-sample fitting performance, the PCA is a benchmark hard to beat. We provide a comparison between MCMC
with the PCA decomposition. As suggested by the fitting performance of the models in Data I, we choose �(1, 3) model for
this comparison. We also assume that the measurement error is uncorrelated across maturities. We could gain more
precision in in-sample fitting. As shown in Table 5, the in-sample errors are marginally bigger than but comparable to that
implied by the PCA.

Table 5 In-Sample Pricing Errors, � 1,3 − Data I
PCA �(1,3)

In-sample fit In-sample fit Out-sample forecast In-sample forecast
RMSE

1-Month 2.96 8.71 2.07 7.32
3-Month 2.96 4.61 3.34 6.19
6-Month 2.01 0.63 5.10 5.28
9-Month 2.12 2.53 5.53 4.96
1-Year 2.00 3.93 5.11 5.18
2-Year 1.83 1.92 6.62 6.77
3-Year 2.01 1.49 6.63 6.50
4-Year 1.44 1.06 8.00 5.78
5-Year 1.31 1.22 7.71 5.73
7-Year 1.11 1.25 6.88 5.82
10-Year 1.28 3.94 4.99 8.25

*Note: This table reports the in-sample fitting and forecast performances of the �(1,3) model for Data I.

We also conduct an in-sample forecast analysis. We apply the MCMC algorithms on yield data with nine maturities from
Data I, while leaving out yields of maturities 2 and 10 years. With the inferred parameters and latent states, we reconstruct
the yield data. In addition, we “interpolate” the yield of 2 years, and “extrapolate” the yield of 10 years. Results are reported
in Table 4. As we use 9 maturities compared with the previously 11 maturities, the smaller sample size results in bigger
pricing errors. The pricing errors for yields of 2 and 10 years are marginally larger compared with the RMSEs of other
maturities. Other yield construction methods, such as the Cubic spline and the Nelson-Siegel families, are often used in the
industry. These methods, together with PCA, fit the yield data in the cross-section but fail to consistently provide fitting in
the time-series. Furthermore, these methods do not rule out arbitrage opportunities. By contrast, the MCMC method
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consistently fits yield data in both time-series and cross-section and satisfies the no-arbitrage condition. In addition, the
probabilistic characterization of parameters and latent states in MCMC allows us to make a Bayesian forecast about future
yield levels.
At last, we show that our algorithm can construct the short rates closely. The �(0, �) and �(1, �) models have the problem
that the implied short rates can be negative. Furthermore, the fitting errors for short-end yields from ATSMs are usually big
for the reasons of seasonality and microstructure noises [10]. As reported in Collin-Dufresne et al. (2008), the RMSEs for 1-
month yield are around 14 basis points for both �(0, 3) and �(1, 3) models, even though the 3-month yield data are used
for inversion[10]. We use the inferred parameters and latent states to construct the short rates, and compare it with the 1-
month yield, which is often used as a proxy for short rates. The inferred short rates are positive and closely resemble the 1-
month yield data with a correlation of 99.75% and the in-sample RMSE of 5.99 basis points.
In conclusion, the MCMC algorithms deliver good in-sample fitting and in-sample forecast performances. They also
construct the short rates that closely resemble the short-end yield data. In this next section, we explore the out-of-sample
forecast performance of the MCMC algorithms.

4.3 The Out-of-Sample Forecast Performance

In this section, we exam the forecast performance of each model for Data I. Denote �� as the yield data observations up to
time t. As current yield data reflect the market’s expectation of future, we want to forecast the future yield level given
current information of �� . We accomplish this task by characterizing the conditional expectation of �(��|��) with
marginalization of parameters and latent states:

� ��|�� = ��� Φ�, � �� ���Φ��� .

We sample {��, �} from the posterior distribution �(Φ�, �|��), simulate ��, and apply to Monte Carlo integration to obtain
� ��|�� . Here we see the power of the MCMC algorithms. They allow us to sample the high-dimensional posterior density
� Φ�, � �� efficiently.
Table 6 reports the forecast performances of �(0, 3) and �(1, 3) models for Data I for a prediction period of 12 weeks. The
�(1, 3) model has the best forecast performance. The maximal mean error is 4.28 basis points and the maximal RMSE is
4.98 basis points.

Table 6 Forecast Performances and the Model Evidence for Data I
�(0,3) �(1,3)

Forecast (bps)
Mean RMSE Mean RMSE

1-Month 0.67 0.72 -2.27 2.61
3-Month -0.21 0.75 -4.18 4.42
6-Month -0.26 1.97 -4.28 4.75
9-Month -0.02 3.05 -3.04 4.12
1-Year 0.45 3.82 -1.04 3.47
2-Year -4.82 6.65 0.27 4.09
3-Year -6.98 8.33 1.51 4.57
4-Year -8.68 9.69 -1.02 4.29
5-Year -7.16 8.29 -0.10 4.30
7-Year -3.52 5.28 -1.56 4.45
10-Year 1.01 3.86 -2.92 4.98

Model Comparison
Model Evidence 68177.4 68922.0

AIC 117698.0 132501.0
BIC 93173.0 111580.0

*Note: The first panel reports the out-of-sample forecast performances of the �(0, 3) and �(1, 3) models for Data I. The second panel
reports the logarithm of the Bayesian model evidence and information criteria: AIC and BIC.

We also compare the Bayesian forecast performance with three alternative methods: the RW method, the OLS method, and
the frequentist method. The first two methods are often used as benchmarks in evaluating the forecast performances[2,30].
The RW method uses last observations of in-sample data as the forecast. The OLS uses the linear regression to forecast. The
dependent variable is the difference between the future and current yield data, and the regressor is the difference between
the 5-year and 3-month yield data. Note the choice of the 5-year and 3-month is merely for being the same with Duffee
(2002)[2]. Yield forecasts are computed with the simulated future states and parameters.
Table 7 compares the forecast performances of these methods. The random walk method has the best performance for yields
with short-term maturities (� < 1 ), whereas the Bayesian forecast with �(1, 3) renders the best performance for longer
maturities (� ≥ 1). The gain of the Bayesian forecast with �(1, 3) is substantial. The RMSEs is around 60% to those of the
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random walk approach, which is the second-best method. This improvement is larger compared with the improvement of
the arbitrage-free Nelson-Siegel forecast over the random walk method (Table 5 in Christensen et al. (2011))[30]. It is also
larger compared with that of the “essentially affine” model forecast over the random walk method (Table VIII in Duffee
(2002))[2]. The reason that the random walk performs best in the short end is that the short-end yields are extremely flat in
the prediction period.

Table 7 Forecast Performances-Data I
Forecast (bps)

RW OLS Freq. �(0,3) Freq. �(1,3) Bay. �(0,3) Bay. �(1,3)
1-Month 0.00 4.53 4.81 8.80 7.17 2.61
3-Month 0.40 5.59 3.09 5.90 7.52 4.42
6-Month 1.56 6.86 5.62 4.61 1.97 4.75
9-Month 2.84 7.78 7.80 5.02 3.05 4.12
1-Year 3.49 7.98 9.74 6.25 3.82 3.47
2-Year 7.06 9.16 21.68 6.42 6.65 4.09
3-Year 7.35 8.18 29.78 7.29 8.34 4.57
4-Year 7.91 8.16 36.49 6.17 9.70 4.29
5-Year 7.80 7.41 40.02 6.29 8.29 4.30
7-Year 8.00 7.31 43.66 5.92 5.28 4.45
10-Year 8.39 7.48 44.50 5.67 3.86 4.98

*Note: This table reports the out-of-sample forecast performances of several methods for Data I.

The comparison between the frequentist and Bayesian forecast methods reveals the advantage of the latter. As reported in
Table 7, the frequentist forecast with �(0, 3) performs worst, whereas the frequentist forecast with �(1, 3) dominates the
Bayesian forecast with �(0,3) for some maturities. However, this pattern is not persistent. With different simulated
trajectories of future states, the forecast performance by the frequentist forecast method changes. The Bayesian forecast
method is advantageous in that it averages the future yield level over simulated state paths and parameters. We find that
�(1, 3) model has a better out-of-sample forecast performance compared with the �(0, 3) model. This is in contrast with
Duffee (2002) who finds that �(0, 3) is better[2]. A question arises as how to choose the best model that delivers good in-
sample fitting and out-of-sample forecast performances. In the next section, we exam the model comparison from a
Bayesian perspective.

4.4 The Model Comparison

A full treatment of Bayesian inference includes a model-comparison analysis. We evaluate the relative performance of each
model using the measure of the model evidence � = �(�|�). This quantity is approximated by the harmonic mean of
likelihood values[25]:

� ≈ 1
�
Σ�=1N 1

� � ��, Φ�
�

−1

,

where � is the number of simulations and the pair {��, Φ�
�} is the i-th simulated parameters and latent states from the

posterior distribution. The efficient MCMC algorithms for posterior densities make this feasible.
Table 6 reports the logarithm of the model evidence for each of the two models examined for Data I. The ranking is
coherent with both the in- sample fitting and out-of-sample forecast performances of each model.
For Data I, there is a dominance of �(1, �) over �(0, �). The restricted state variables introduce stochastic volatilities and
induce fat tails to the yield distribution. For Data II, model ranking is different from that of Data I[31-32]. As shown in
Table 8, the model evidence suggests a ranking of � 0, 3 , � 1, 3 in descending order.

Table 8 Fitting & Forecast Performances and the Model Evidence for Data II
�(0,3) �(1,3)

Fit Forecast (3m) Fit Forecast (3m)
RMSE (bps)

1-Year 20.75 12.46 20.80 21.27
2-Year 16.23 7.62 19.11 20.44
3-Year 15.90 13.92 17.44 9.52
4-Year 16.29 21.57 17.70 22.25
5-Year 15.49 26.04 19.50 45.75

Model Comparison
Model Evidence 13837.0 13688.0

AIC 11225.1 10966.0
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BIC 3002.8 2701.0
*Note: The first panel reports the in-sample fitting and out-of-sample forecast performances or Data II. The second panel reports the

logarithm of the Bayesian model evidence and information criteria: AIC and BIC.

The reason could be, for the �(1, 3) model, the two unrestricted state variables can support large negative correlations and
the unrestricted state variables can support the non-normality property. However, � 0, 3 cannot support the non-normality
property.

5 THE CONLUSION

We develop MCMC algorithms to conduct a Bayesian inference analysis for multi- factor term structure models. We apply
the algorithms on two market data sets with different regimes. The in-sample pricing errors are smaller than those in the
literature with the similar sample. We also conduct a Bayesian forecast analysis on future yield levels. With the �(1, 3)
model, the Bayesian forecast performance dominates the OLS forecast and frequentist forecast approaches for all maturities.
It also dominates the random walk forecast for maturities greater or equal to one year. We study the Bayesian model
comparison for the two market data sets. The model evidence delivers a ranking consistent with the in-sample fitting and
out-of-sample forecast performances for each model. Data I supports the non-normality of the yield change distribution and
a humped shape of yield volatility. The model evidence ranks the models as �(1, 3), �(0, 3) in descending order. Data II
supports the non-normality feature but demands a strong correlation between state variables. As a result, the model ranking
is � 0, 3 and � 1, 3 in descending order.
Future research can explore the MCMC algorithms of the �(�, �) model for � ≥ 2. Also, it is interesting to analyze the
model comparison across different market price of risk specifications.
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