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Abstract: Image-to-Image Translation is a vital area of computer vision that focuses on transforming images from one
visual domain to another while preserving their core content and structure. However, this field faces two major
challenges: first, the data from the two domains are often unpaired, making it difficult to train generative adversarial
networks effectively; second, existing methods tend to produce artifacts or hallucinations during image generation,
leading to a decline in image quality. To address these issues, this paper proposes an enhanced unsupervised
image-to-image translation method based on the Contrastive Unpaired Translation (CUT) model, incorporating
Histogram of Oriented Gradients (HOG) features. This novel approach ensures the preservation of the semantic
structure of images, even without semantic labels, by minimizing the loss between the HOG features of input and
generated images. The method was tested on translating synthetic game environments from GTA5 dataset to realistic
urban scenes in cityscapes dataset, demonstrating significant improvements in reducing hallucinations and enhancing
image quality.
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1 INTRODUCTION

Image-to-Image Translation has emerged as a pivotal area of research within computer vision and machine learning,
focusing on the intricate task of transforming images from one visual domain to another while preserving their inherent
content and structure. This capability has wide-ranging applications, including but not limited to converting sketches
into lifelike photographs [1], colorizing grayscale images [2], and altering scenes from day to night [3]. The overarching
goal of image-to-image translation is to learn a robust mapping between two distinct visual domains, enabling seamless
transitions that retain the essence of the original imagery.
Generative Adversarial Networks (GANs) have become the cornerstone of this transformation process, offering a
powerful deep learning framework tailored for image generation tasks. Early breakthroughs in this field predominantly
relied on supervised learning with paired datasets, where each image in the source domain has a corresponding
counterpart in the target domain. A seminal work in this domain is pix2pix [4], which employs conditional GANs to
learn a direct mapping from input images to output images by leveraging paired training data. Despite its effectiveness,
this approach is constrained by the necessity of paired datasets, which are often difficult, time-consuming, and costly to
obtain, particularly in complex or large-scale applications.
To circumvent the challenges associated with paired datasets, researchers have developed innovative methods that
facilitate translation between unpaired datasets. CycleGAN [5] stands out as a landmark approach, utilizing dual
generators (G and F) and dual discriminators. Generator G transforms images from style X to style Y, while generator F
performs the reverse operation. The discriminators are tasked with differentiating between real and generated images in
both styles. Given the absence of paired data, adversarial loss alone cannot guarantee accurate translation, prompting
the introduction of a cycle-consistency loss. This loss ensures that an image can be reconstructed after passing through
both generators (i.e., F(G(X)) ≈ X or G(F(Y)) ≈ Y), thereby maintaining the content and structural integrity of the
images. While CycleGAN has proven to be a versatile and effective solution, it is not without its limitations, including
the high computational burden of training two sets of generators and discriminators and the tendency to produce
artifacts in the generated images.
The inherent weakness of cycle-consistency loss, which can lead to image artifacts or hallucinations, has spurred the
development of more refined techniques. StyleGAN [1] , for instance, introduces a mapping network that projects the
input latent vector into a style vector space, allowing for fine-grained control over the generative features and
significantly reducing instability during training. This approach not only enhances the aesthetic quality of the generated
images but also allows for greater manipulation of the image's stylistic elements. Sem-GAN [6] further advances this
concept by integrating semantic labels into the training process, ensuring that the generated images are both visually
convincing and semantically consistent, thus addressing the challenge of maintaining meaningful content across
translations.
Attention mechanisms have also played a crucial role in advancing image-to-image translation by addressing the
challenge of capturing high-level semantic information. Attention GAN [7], for example, uses attention-guided
generators to create attention masks, which are then combined with the input image to generate high-quality target
images. This selective focus on critical image regions helps to preserve important details and improve the overall
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translation quality. Conversely, SPA-GAN [8] enhances the discriminator's ability to discern fine details by
incorporating attention mechanisms, which in turn improves the generator's capacity to produce more realistic images.
In addition to these methods, Unsupervised Image-to-Image Translation (UNIT) [9] leverages a shared latent space
assumption, mapping images from different domains into a common feature space. This approach provides an effective
solution for more complex unsupervised cross-domain image translation tasks, enabling the model to learn shared
features that are domain-invariant. Similarly, CUT [10] employs contrastive learning to maximize the similarity
between source and target domain images in the latent space while preserving their distinct characteristics. This
technique has proven particularly effective in maintaining the unique aspects of each domain while ensuring a coherent
translation.

Figure 1 Generation of Image Hallucinations and Their HOG Feature Maps. The First Row Shows the Original Images
along with their HOG Feature maps, while the Second Row Displays the Images Generated by the CUT Model and

their Corresponding HOG Feature Maps

Despite the significant advancements achieved by these methods, several challenges persist. For instance, while the
translation quality of the main subject in an image is often high, the quality of background translation can be
inconsistent, leading to unwanted artifacts or hallucinations. This issue is particularly problematic in photorealism tasks,
such as translating game screenshots into real-world images, where even minor semantic errors—such as
misinterpreting the sky as a building—can result in glaring inaccuracies. Moreover, the reliance on semantic
supervision poses a practical limitation, as many real-world datasets lack the necessary semantic labels, rendering these
approaches less effective in unsupervised settings.
To address these challenges, we have developed a novel unsupervised image-to-image translation method based on the
CUT model, incorporating a unique loss function grounded in Histogram of Oriented Gradients (HOG) features [11].
HOG features divide an image into small cells and compute histograms of gradient directions within each cell,
providing robustness to variations in lighting and geometric transformations. By calculating the HOG features of both
the input and generated images and computing the L2 loss between them, our method ensures that the semantic
structure of the generated image is preserved, even in the absence of semantic label supervision. This approach not only
mitigates the issue of hallucinations but also enhances the overall quality and fidelity of the translated images.
To validate the effectiveness of our proposed method, we conducted a series of experiments on image translation from
GTA5 [12] to Cityscapes [13], a challenging task that involves translating synthetic game environments into realistic
urban scenes. The experimental results, supported by comprehensive visualizations, demonstrate that our method
effectively reduces hallucinations in image generation, significantly improving the quality and realism of the translated
images. Our approach represents a meaningful step forward in unsupervised image-to-image translation, offering a
robust solution to some of the most persistent challenges in this field.

2 RELATED WORK

2.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [14], introduced by Goodfellow et al. in 2014, have revolutionized the field
of generative modeling by presenting a novel framework where two neural networks, a generator and a discriminator,
engage in a competitive training process. The generator aims to create images that are indistinguishable from real data,
while the discriminator's goal is to differentiate between real and generated images. This adversarial interplay leads to
the generator producing increasingly realistic images, and the discriminator becoming more adept at detecting fakes.
The success of this dynamic has led to the development of numerous GAN variants, each designed to address specific
challenges or enhance the model’s capabilities.
Among the earliest significant improvements was the Deep Convolutional GAN (DCGAN) [15], which introduced a
more stable architecture for GANs by leveraging convolutional layers and replacing deterministic pooling functions
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with strided convolutions. This architectural shift not only stabilized training but also improved the visual quality of the
generated images, making DCGANs a foundational model for many subsequent GAN-based studies.
Conditional GANs (cGANs) [16], another pivotal advancement, extended the GAN framework by incorporating
auxiliary information such as class labels, enabling the generation of images conditioned on specific input data. This
capability has made cGANs highly effective for tasks requiring controlled image synthesis, such as image-to-image
translation, where the generated image must adhere to specific characteristics dictated by the input.
StyleGAN [1], developed by Karras et al., represents a significant leap forward in GAN research. By introducing a new
generator architecture that allows for the control of style at various levels of the synthesis process, StyleGAN enables
the fine-tuning of generated images in ways that were previously impossible. This model has set new standards for
photorealism in image synthesis, and its innovations, such as the mapping network and style mixing regularization, have
been widely adopted in subsequent works.
Research into GANs has also delved deeply into the theoretical underpinnings and optimization strategies to overcome
challenges like mode collapse and unstable training dynamics. Techniques such as Wasserstein GANs (WGANs) [17],
which use the Earth Mover’s Distance (Wasserstein distance) as a loss function, have provided more robust
convergence properties and reduced the risk of mode collapse. Additionally, the incorporation of spectral normalization
has been shown to stabilize the training of GANs by constraining the Lipschitz constant of the discriminator, further
contributing to the reliability of GAN training processes [18].
Furthermore, GANs have found extensive application in the domain of image-to-image translation, significantly
advancing the capabilities of this field. For instance, GAN-based models have been employed in translating
low-resolution images to high-resolution counterparts [19], enhancing the quality and details in tasks like
super-resolution. Additionally, GANs have been pivotal in domain adaptation, where models are trained to translate
images from one domain (e.g., sketches) to another (e.g., photorealistic images) while preserving essential content.
Their flexibility has also been demonstrated in cross-modal translation tasks, such as converting grayscale images to
color [1] or transforming aerial images into map-like representations [20]. The versatility of GANs in handling diverse
image translation tasks underlines their profound impact on both academic research and practical applications, making
them a cornerstone technology in the advancement of computer vision.

2.2 Image-to-Image Translation

Image-to-Image Translation is a critical research area in computer vision, focused on transforming an image from one
domain into another while preserving its core content and structure. The field has been significantly advanced by the
application of Generative Adversarial Networks (GANs), with the pix2pix framework by Isola et al. serving as a
landmark model. Pix2pix demonstrated the power of conditional GANs (cGANs) in supervised image translation tasks,
where paired datasets—each containing an input and a corresponding target image—are used to train the model. This
framework has been particularly successful in tasks such as image inpainting, where missing parts of an image are filled
in, and in style transfer, where an image's artistic style is altered while maintaining its underlying structure.
However, the reliance on paired datasets poses significant limitations, as collecting such data can be challenging in
many scenarios. To address this, Zhu et al. proposed CycleGAN, which introduced cycle consistency as a key concept
to enable translation between two domains without requiring paired data. CycleGAN's ability to learn mappings
between domains using unpaired datasets has made it widely applicable in various tasks, including artistic style transfer
and domain adaptation, where direct correspondences between images are unavailable.
Following CycleGAN, numerous methods have been developed to enhance the performance and applicability of
image-to-image translation models. For example, DiscoGAN [21] and DualGAN [22] introduced additional constraints,
such as identity loss and dual learning mechanisms, to improve the stability and quality of translations in unpaired
settings. These models have contributed to a better understanding of how to maintain content consistency while
achieving the desired stylistic transformation.
Multi-Modal UNsupervised Image-to-Image Translation (MUNIT) [23] and StarGAN [24] represent significant strides
in handling multi-domain and multi-modal translation. MUNIT allows for the separation of content and style, enabling
the generation of diverse outputs from a single input image by recombining different content and style codes. This
flexibility has been particularly useful in applications where multiple plausible outputs exist for a given input, such as in
image editing and creative content generation. StarGAN, on the other hand, unifies the process of image translation
across multiple domains within a single model, providing a scalable solution for tasks requiring multi-domain
transformations.
Recent innovations like the Contrastive Unpaired Translation (CUT) model [10] have introduced contrastive learning
into the image-to-image translation pipeline. CUT maximizes mutual information between the input and output domains,
enabling high-quality translation even when only a single image from each domain is available. This approach has
proven particularly effective in one-sided translation tasks, where traditional methods might struggle due to limited data
availability.
Moreover, Stephan R. Richter et al.'s work on utilizing intermediate representations for adversarial training has
highlighted the importance of perceptual supervision at multiple levels within a neural network [25]. By enforcing
adversarial constraints at different perceptual layers, this method has achieved state-of-the-art results in tasks requiring
fine-grained control over the translation process, such as semantic segmentation and high-resolution image synthesis.
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In addition to these advancements, researchers have also explored ways to improve the interpretability and control of
image-to-image translation models. Approaches like disentanglement learning, where models learn to separate different
factors of variation within the data, have allowed for more precise control over the generated outputs [26]. This has
opened up new possibilities for user-guided image translation, where specific aspects of the image can be altered
according to user-defined parameters, thereby enhancing the practicality and usability of these models in real-world
applications.
These developments illustrate the ongoing progress in image-to-image translation research, driven by the continuous
refinement of GAN-based methods and the exploration of new learning paradigms that address both practical challenges
and theoretical concerns in the field.

3 METHOD

Our overall architecture is based on the structure of CUT. Building upon the CUT model, we further introduce HOG
feature loss to supervise the training of the generator. By leveraging the robustness of HOG features against style
variations, we ensure that the generated realistic images remain consistent with the original simulated images in terms
of content and spatial structure, thereby achieving a better realistic effect for the simulated images. A schematic
diagram of this structure is shown in Figure 2.

Figure 2 The Architecture of our Proposed Method

3.1 CUT Model

CUT is specifically designed to address the challenges of unpaired image translation, especially when paired samples
are unavailable. Traditional unpaired image translation methods often rely on cycle consistency loss, which necessitates
translating images back and forth between the source and target domains. However, this approach has limitations in
preserving image details and content structure and incurs significant computational costs. CUT overcomes these
challenges by introducing contrastive learning and a one-sided translation strategy.
The core idea of CUT is to preserve content consistency by maximizing the mutual information between corresponding
local regions (patches) of the input and output images. Specifically, CUT employs a contrastive loss mechanism, which
pulls positive samples (corresponding patches) closer together while pushing negative samples (non-corresponding
patches) farther apart. This ensures that the generated images retain the local features of the original images. To achieve
this, CUT introduces a patch-based discriminator that evaluates local regions of the image rather than the image as a
whole. This allows the model to learn domain translation at a global scale while maintaining fine-grained details at a
local scale.
In its one-sided translation strategy, CUT focuses solely on translating from the source domain to the target domain,
eliminating the need for reverse mapping. This strategy significantly reduces computational overhead and avoids
potential artifacts introduced by cycle consistency constraints. Additionally, CUT employs a technique known as
"contrastive self-supervision," which enhances model stability and translation quality by introducing self-supervised
mechanisms in the absence of paired data. This allows CUT to generate high-quality translations even with
unidirectional datasets.
The CUT method is particularly suitable for scenarios where paired data is difficult to obtain, such as artistic style
transfer and medical image processing. In artistic style transfer, CUT can preserve the content of the original image
while achieving nuanced style transformations. In medical imaging, it can effectively enhance low-quality images to
high-quality ones, playing a critical role in medical diagnosis.
Overall, the CUT method, by combining contrastive learning, one-sided translation, and self-supervision mechanisms,
significantly enhances the effectiveness of unpaired image translation. Its robust ability to retain local details and
efficient computational performance make it a highly promising tool in the field of image-to-image translation.
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3.2 HOG Loss

As depicted in Figure 1, while the CUT model utilizes a patch-based discriminator to ensure that the images generated
by the generator retain fine details and achieve overall stability, the problem of hallucination—where the generated
images may contain unrealistic or extraneous features—still persists. To address this issue and further tighten the
constraints on the generated images, we have incorporated HOG (Histogram of Oriented Gradients) loss into the
training process of the generator.
The introduction of HOG loss is strategically aimed at harnessing the robustness of HOG features, which are
particularly effective in capturing and preserving structural details and edge orientations despite variations in style. By
aligning the HOG features of the generated images with those of the input images, this loss function promotes structural
invariance between the source and target domains. This alignment helps in mitigating hallucinations, ensuring that the
generated images are not only stylistically transformed but also maintain the structural integrity of the original content.
HOG loss operates by comparing the HOG features extracted from both the generated and reference images. It
encourages consistency in these features, penalizing deviations that could result in visual artifacts or inconsistencies.
This method enhances the generator’s capability to produce more accurate and realistic outputs, thereby reducing the
likelihood of hallucinated elements.
The calculation of HOG loss is as follows:

HOGloss = Ho − Hg
2
# 1

where Ho denotes the HOG features of the original images and Hg  denotes the HOG features of the generated
images.

4 EXPERIMENT AND RESULTS

4.1 Dataset

We conduct our experiments using the following two datasets:
The GTA5 dataset [12] is a synthetic dataset tailored for computer vision tasks. It is derived from the popular video
game Grand Theft Auto V (GTA V), where the in-game urban environment is utilized to simulate real-world street
scenes. This dataset offers high-resolution images with pixel-level annotations that include various urban objects such
as buildings, vehicles, roads, and sidewalks. The Cityscapes dataset [13] is a real-world dataset specifically curated for
visual understanding tasks in urban settings. It is extensively used in autonomous driving research. This dataset
comprises high-resolution images captured from 50 different cities across Germany, with detailed annotations covering
30 classes, 19 of which are commonly employed for evaluation. Both datasets consist of 2,500 images each.

Figure 3 Illustration of the Datasets. The First Row Represents the GTA5 Dataset, while the Second Row Depicts the
Cityscapes Dataset

4.2 Evaluation Metrics

In this paper, we use three evaluation metrics—the Inception Score (IS) [27], Kernel Inception Distance (KID) [28], and
Fréchet Inception Distance (FID) [29]—to assess the realism of generated images. Each of these metrics provides
unique insights into different aspects of image generation performance.
The Inception Score (IS) evaluates both the clarity and diversity of generated images. It measures how well the
generated images can be classified into distinct categories and how diverse these generated samples are. Specifically, IS
uses a pre-trained Inception v3 model [30] to compute the Kullback-Leibler (KL) divergence between the conditional
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label distribution p(y∣x) for each generated image x and the marginal label distribution p(y) across multiple generated
images. A higher IS indicates that the images are not only of high quality but also exhibit a diverse range of classes.

IS = exp
1
N

i=1

N

KL(p(y|xi)||p(y))� # 2

Where KL denotes the Kullback-Leibler divergence and N denotes the number of samples.
The Kernel Inception Distance (KID) measures the similarity between the feature distributions of real and generated
images. Unlike IS, which focuses on classification, KID uses a kernel function to compare the distributions of features
extracted from a pre-trained Inception model. The metric calculates the Maximum Mean Discrepancy (MMD) between
these feature distributions, providing an unbiased estimate of the distance between the real and generated image
distributions. A lower KID score suggests that the generated images closely match the real image distribution in feature
space.

KID =
1

M2
i=1

N

j=1

M

φ xi φ xj�� −
2

MN
i=1

N

j=1

M

φ xi φ yj�� +
1

N2
i=1

N

j=1

M

φ yi φ yj�� # 3

Where φ represents the feature map, and M and N denote the number of real and generated samples, respectively.
The Fréchet Inception Distance (FID) assesses the distance between the feature distributions of real and generated
images. It calculates the Fréchet distance (or Wasserstein distance) between the Gaussian distributions fitted to the
feature vectors of both real and generated images. The metric takes into account both the mean and covariance of these
distributions. A lower FID score indicates that the generated images have feature distributions that are more similar to
those of real images, reflecting higher image quality and better alignment with the real image distribution.

FID = μr − μg
2

2
+ Tr Σr + Σg − 2 ΣrΣg # 4

Where μr and μg are the means, and Σr  and Σg are the covariances of the real and generated image features,
respectively.
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Figure 4 Visual Comparison with Different State-of-the-art Methods in the GTA5-to-Cityscapes Translation
Experiment. From Left to Right, the Sequence Displays the Original Image, Followed by the Results of CycleGAN,

SRC, TSIT, AttentionGAN, CUT, and our Proposed Method

4.3 Implementation Details

In this study, we utilized the PyTorch [31] deep learning framework to train the network on a single Nvidia A100 GPU
(80G). The models were trained with a batch size of 16 and a learning rate of 0.0002. We employed the Adam optimizer,
known for its effective learning rate adaptation, to enhance convergence and stability. The training was conducted over
200 epochs to ensure thorough learning and model refinement. The weight of the proposed HOG loss (λHOG) was set
to 10, balancing the contribution of HOG features in the loss function and improving feature representation by
emphasizing gradient-based features. When computing the HOG features of the image, we set the window size to 256
by 256 pixels, the block size to 6 by 6 pixels, the block stride to 2 by 2 pixels, the cell size to 2 by 2 pixels, and the
number of bins to 9. These settings were chosen to ensure a clear and accurate representation of the HOG features. All
input images were resized to 256 × 256 pixels to ensure consistency across the dataset, standardizing the input
dimensions for uniform training and evaluation. In alignment with the experimental setup for photorealism, we
generated images in the Cityscapes style from GTA5 game images. We divided 2,000 images from each dataset as the
training set and 500 images as the test set.

4.4 Comparison with State-of-the-art Methods

Table 1 Statistical Comparison with State-of-the-art Methods
IS KID FID

GTA5 - 0.1350 153.0678
CycleGAN 2.6099 0.0813 116.2996

SRC 2.7234 0.0646 98.9844
TSIT 2.6935 0.0477 88.7268

Attention GAN 2.7617 0.0411 82.2881
CUT 2.3735 0.0321 69.2619
Ours 2.6870 0.0310 65.7156

To validate the effectiveness of our proposed method, we performed a comparative analysis using several widely
adopted networks for image-to-image translation tasks, including CycleGAN [5], SRC [32], TSIT [33], Attention GAN
[7] and CUT [10]. These methods are open-source and have been extensively validated.
As shown in Table 1, our method demonstrates superior performance in terms of the IS metric, which assesses the
clarity and diversity of the generated images. Additionally, our method achieved results of 0.0310 for the KID metric
and 65.7156 for the FID metric, both of which measure the distance between generated images and the real domain.
These results surpass those of all other methods, demonstrating that our approach excels in the task of photorealism
compared to other image-to-image translation methods.

4.5 The Visualization Results

As shown in Figure 4, GTA5 represents the original image (a game screenshot), while CycleGAN, SRC, TSIT,
Attention GAN, CUT, and Ours represent the images generated by each respective method. It is evident that our method
outperforms the others in terms of detail accuracy and correctness in the generated targets. Our method avoids the
screen tearing or color distortion that appears in images produced by other methods. Notably, in some methods, the
front of the car either disappears or is transformed to blend with the ground, and in the sky, some methods generate
vegetation instead. Our method, however, does not exhibit these critical errors, resulting in significantly higher quality
images.

5 CONCLUSION

In this paper, we propose an image-to-image translation method based on HOG feature loss, achieving state-of-the-art
results in experiments aimed at making GTA5 images appear more realistic within the Cityscapes dataset. Evaluation
metrics and visual results demonstrate that our method not only enhances the quality of generated images but also
significantly reduces the artifacts commonly seen in other approaches. Moreover, our method exhibits robustness across
various challenging scenarios, highlighting its potential for broader applications in image translation tasks. The
reduction in visual artifacts not only improves the aesthetic quality but also ensures greater consistency with real-world
data. Future work could explore extending this method to a wider range of image-to-image translation tasks, while
further enhancing the quality and accuracy of the generated images.
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