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Abstract: This paper solves the optimal dynamic portfolio choice problem for an ambiguity-averse investor. It introduces a
new preference that allows for the separation of risk aversion and ambiguity aversion. The novel representation is based on
generalized divergence measures that capture richer forms of model uncertainty than traditional the relative entropy measure.
The novel preferences are shown to have a homothetic stochastic differential utility representation. Based on this
representation, optimal portfolio policies are derived using numerical algorithms with forward-backward stochastic
differential equations. The optimal portfolio policy is shown to contain new hedging motives induced by the investor’s
attitude toward model uncertainty. Ambiguity concerns introduce additional horizon effects, increase effective risk aversion,
and overall reduce optimal investment in risky assets. These findings have important implications for the design of optimal
portfolios in the presence of model uncertainty.
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1 INTRODUCTION

In paper, we study the optimal-portfolio problem of a long-term investor who faces model uncertainty and is ambiguity
averse. We propose a robust-control criterion with a new utility formulation. We derive an equivalent stochastic differential
utility (SDU) representation of the new robust preferences. For an investor with the constant relative risk aversion (CRRA)
utility function, tractable optimal solutions are available from Schroder and Skiadas[1]. We present an alternative
representation of the optimal solution in the setting of Ocone-Karatzas formula[2-3]. This representation decomposes the
optimal portfolio into three parts: the mean-variance component, the dynamic hedging component for fluctuations in the
stochastic investment opportunity set, and the hedging demand arising from robustness concerns. The mean-variance
portfolio requires less investment in the stock market, compared with that in a setting without robustness concerns.

We provide the numerical implementations of the optimal solutions by solving a system of FBSDEs with the regression-
based Monte Carlo approach[4]. We find that robustness concerns affect the pattern of the optimal portfolio. For the
investor with CRRA utility and relative risk aversion greater (smaller) than one, ambiguity aversion increases (decreases)
the inter-temporal hedging demand. The investor with logarithmic utility and robustness concerns is no longer myopic.

The question of dynamic optimal-portfolio allocation is of long-standing academic interest and practical importance. The
mean-variance analysis proposed by Markowitz (1952) is the building block of the modern portfolio theory[5]. The seminal
work of Samuelson (1969) and Merton (1971) suggests that the investor dynamically manages the optimal portfolio during
the investment horizon[6-7]. Pliska (1986), Karatzas et al. (1987), and Cox and Huang (1989) propose a martingale
approach that in a complete market setting, it allows to solve for the optimal consumption-investment plan as the solution to
a static optimization problem by establishing the equivalence between the dynamic and static budget constraints[8-10].
Ocone and Karatzas (1991) derive explicit expressions for the hedging terms as conditional expectations of random
variables related to the state dynamics[2]. Detemple et al. (2003) propose a simulation approach to calculate the dynamic
hedging terms efficiently[3]. In these papers, the investor is modeled to live inside the world where the subjective and
objective probability distributions coincide, that is, he/she knows the process that describes the state variables dynamics.
However, the Ellsberg (1961) experiments show that people’s preferences are incompatible with the subjective expected
utility in an environment with ambiguity, where the objective probability distribution does not agree with the subjective
distributions. Ambiguity is sometimes referred to as “Knightian uncertainty”, or in Hansen and Sargent (2001)’s
terminology as “model uncertainty”. In the financial market, one example of model uncertainty is the dynamics of the stock
return process[11]. While the second moment of the return process can be estimated with reliable precision, the first
moment (the expected return) is notoriously hard to estimate[12]. This difficulty to accurately infer the state dynamics
induces ambiguity, and the possibility of model misspecification impacts how the investor designs the optimal portfolio.
Several models are stimulated to address the Ellsberg-based critiques: the multiple-priors model, the smooth ambiguity
model and the multiplier utility model with the robust-control criterion introduced by Anderson et al. (2003) and Hansen
and Sargent (2001), with later developments by Skiadas (2003), Maccheroni et al. (2006) and Skiadas (2013)[14-22]. These
three sets of models have their respective merits. The first two models can rationalize the choice in the Ellsberg’s
experiments. The multiple-priors model can further exploit the qualitative differences from subjective expected utility, and
the smooth ambiguity model has the advantage of separating “ambiguity” and “the attitude toward ambiguity”. In the last
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model, optimal choices are observationally equivalent to those obtained with subjective expected utility. It also helps to
solve the quantitatively puzzling price implications considering the subjective expected utility model. We cast our analysis
in the robust-control setting, where the investor seeks a robust optimal strategy that performs best in the worst-case scenario
of the model misspecification.

In this paper, we propose a robust-control problem, in which the investor trades off utility derived from consumption and
the loss induced by ambiguity. Specifically, we introduce a new utility formulation that combines the consumption utility
and ambiguity loss in a multiplicative way. The latter is quantified by a convex power function on the Radon-Nikodym
derivative process, which is interpreted as a penalty for the discrepancy between the objective and subjective probability
measures. Being concerned about the model uncertainty of the optimal plan, the investor decomposes the portfolio
optimization procedure into two steps: 1) solving for the probability measure that generates the minimal expected utility,
according to the degree of ambiguity aversion; 2) designing the optimal consumption-investment plan that maximizes the
minimal utility, according to the degree of risk aversion.

There are three main contributions in this paper. First, we establish the equivalence between the robust-control problem with
the new utility formulation and the SDU maximization problem. The equivalence between the Bellman equation for the
robust-control criterion and that for the SDU specification has been noted by Hansen and Sargent (2001) and Maenhout
(2004) in a different formulation of the utility function and state dynamics[11, 23]. With general state dynamics and
consumption utility, we establish the same equivalence result. Skiadas (2003) establishes the equivalence when the
discrepancy between the objective and subjective measures is quantified by the relative entropy[24]. The discrepancy
measure we use here generalizes the relative entropy measure. In the case of CRRA consumption utility, our equivalence
result can be viewed as a generalization of his result.

Second, we obtain closed-form optimal solutions for the robust-control problem for the investor with CRRA consumption
utility. One set of such solutions is expressed by a system of FBSDEs as shown by Schroder and Skiadas (1999)[1]. We
provide an alternative representation of the solution based on the refinement of the Ocone and Karatzas formula[1-2]. This
representation helps us to decompose the optimal portfolio into three parts: the mean-variance component; the dynamic
hedging component against fluctuations in the investment opportunity set; and the dynamic hedging demand from model
uncertainty concerns.

The main impact of model uncertainty concerns is that it induces lower allocation to the risky asset in the mean-variance
portfolio. Specifically, for the investor with CRRA utility, this impact is persistent along the investment horizon. For the
investor with logarithmic utility, this impact vanishes with time, that is, the mean-variance portfolio gradually approaches
the one without robustness concerns.

This impact helps us to understand the discrepancy between the degree of relative risk aversion implied by equilibrium asset
prices and the value obtained from behavioral studies. Within the subjective expected utility models, the actual prices for
macroeconomic risks are too high, as manifested by equity premium puzzles. This implies a high relative risk aversion. On
the other hand, as concluded in Meyer and Meyer (2006) based on several studies on investors’ behaviors, the relative risk
aversion measure is typically small, in a range of one to four[25]. The investor’s concerns for the model misspecification
raise the prices for market risks and leads to a reinterpretation of the high prices as compensations for bearing model
uncertainty. For the investor with CRRA utility, the impact of ambiguity averse is significant. For a moderate relative risk-
aversion degree of 4, a penalty coefficient of —2 can adjust the relative risk aversion to 10. Conversely, this can be used to
calibrate the fear for the model misspecification, as measured by the penalty coefficient of the ambiguity-averse investor. In
a model with a constant investment opportunity set, Maenhout (2004) calibrates the penalty coefficient to be 14 with
relative risk aversion as 7 to match the risk-free rate and equity premiums for 1981-1994, with an implied relative risk
aversion of 21 without considering ambiguity aversion[23]. Such a difference suggests that the investors in the market
indeed worry about model uncertainty and includes such concerns in the pricing of macroeconomic risks.

Finally, we provide numerical implementations for the dynamic optimal investment plan of the robust-control problem by
solving systems of FBSDEs through the regression-based Monte Carlo method[4]. As calibrated by Campbell et al. (2003)
in a model with a vector autoregressive return process, the dynamic hedging demand for an investor with recursive utility is
substantial[26]. The numerical implementation helps us to gain insights into the inter-temporal hedging demand for
fluctuations in the stochastic investment opportunity set and for ambiguity concerns. This also makes our work different
from that of Maenhout (2004) who studies the optimal portfolio rule with a constant investment opportunity set, and the
dynamic optimal portfolio implementation with subjective expected utility[2, 23].

We implement the optimal portfolio with the interest rate following an Ornstein-Uhlenbeck process, with the negative
correlation with the stock market. The inter-temporal hedging demand boosts investment in the stock, which reflects the
negative correlation between the two. The inter-temporal hedging demand decreases with time, representing the vanishing
hedging need against fluctuations in the investment opportunity set and ambiguity averse. For the investor with constant
relative risk aversion greater than or equal to one, the hedging demand increases (decreases) with ambiguity aversion.

In the setting where the interest rate follows an Ornstein-Uhlenbeck process, numerical results show that robustness
concerns change the dynamic portfolio patterns for investors with different risk aversion. It is well known that in a setting
without ambiguity, the investor with logarithmic utility does not have an inter-temporal hedging demand, even in the
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stochastic investment environment. The model uncertainty concerns increase risk aversion, and thus introduces an inter-
temporal hedging demand. With robustness concerns, the investor with logarithmic utility is no longer myopic.

In the setting with model uncertainty or ambiguity, comparative studies show that the optimal stock demand for an investor
with constant relative risk aversion greater than one is larger for younger investors. This is consistent with the behavior that
that younger investors invest more aggressively than older people.

Our work follows Skiadas (2003) which establishes the equivalence between the robust-control problem with the relative
entropy formulation and the SDU maximization problem[24]. In the case of CRRA, our results can be viewed as an
extension of his work. However, closed-form solutions are available in our setting for CRRA utility, whereas in his work,
such solutions are only available for logarithmic utility. As we have discussed, optimal portfolios for these two utility
functions have quite different dynamic patterns.

Maccheroni et al. (2006) propose and axiomatize an entropy-variational utility that unifies the multiple-prior utility and
multiplier utility[27]. As shown in Skiadas (2013), the certainty equivalence based on this smooth divergence preference
can be approximated by the expected-utility certainty equivalence, with the resulting recursive utility taking the form of an
SDU[22]. Whereas these authors focus on the additive structure of the consumption utility and divergence loss, we look at
the multiplicative structure and aim for closed-form optimal consumption-investment solutions.

Our work is related to Maenhout (2004) where he proposes a state-dependent penalty for the value function in the Bellman
equation, in a setting of constant investment opportunities for an investor with CRRA utility[23]. Due to the specification of
CRRA utility, the homothetic nature of the preference is maintained, and hence closed-form optimal solutions are available.
Our work is different from his, in that the equivalence between our robust-control problem and the SDU maximization
problem is established for the general form of consumption utility and dynamics of state variables. In addition, the optimal
solution in our setting with the stochastic investment opportunity set includes inter-temporal hedging demands.

Chen et al. (2011) derives the dynamic portfolio choice solution in which the investor faces a model selection problem
between an i.i.d return model and a vector autoregression model, with the recursive ambiguity utility[19, 28]. Maenhout
(2006) extends Maenhout (2004) to a dynamic setting where the market price of risk is a mean-reversion process and
derives the optimal portfolio through the dynamic programming approach[23,29]. Compared with their works, our work
allows for general state-variable dynamics and inter-temporal consumption. Furthermore, the martingale-based approach we
use in this paper allows us to obtain optimal solutions without having to use numerical schemes based on partial differential
equations.

This paper is organized as follows. In Section 2, we introduce the robust control problem. In Section 3, we establish the
equivalence between the robust-control problem and the SDU maximization problem. In Section 4, we provide an
alternative optimal consumption-investment plan representation through the Ocone- Karazats formula. Section 5 provides
numerical illustrations of the optimal portfolio. Section 6 concludes.

2 THE ROBUST-CONTROL PEROBLEM
2.1 The Background

We cast the analysis in a continuous-time model in which the underlying source of uncertainty is a d-dimensional Brownian
motion By, t [0, T]. The probability space is (Q, F, P), where P is the objective measure and the flow of information F, t
[0, T] is the filtration generated by the Brownian motion B;. With limited knowledge about the objective probability
measure, the investor’s belief about the market can be modelled by a set of probability measures P* equivalent to P.

Denote by E(EX) the expectation under P(P¥), and E; (E}) the conditional expectation opxerator given F;. Define the

S

. . dP ] . . .
conditional density process df as E; [E] , with the associated relative density defined as dfs = =
t

By the martingale representation theorem, there exists an adapted process X L, such that:

t t (1)
X =exp < XsdBg — 0 x'sxsds> , t [0,T]
0

0
By the Girsanov theorem, the process Bf defined as Bf = B; — Ot Xsds is a Brownian motion under P*. Consider a constant
N € (-, 1), define:
N t n2 t
di = exp|—— xdB———

' p(n—l o o 2—1)?

Set the random variable d = dy. Define the probability measure P as:
P(A) = d(w)dP(w), A F.

A

. n ! 2
XSXSdS), Bt = Bt - r]—_l . XSdS. @

3)

Denote by E(E;) the (conditional) expectation operator under P.
We consider a complete market with a d-dimensional state variable Y; and d risky securities. The state variable follows the
vector-diffusion process dY; = p¥(t, Y)dt + a"(t, Y)dB,.
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The investor allocates the wealth between the d risky securities and the money market account with the instantaneous risk-
free rate ry = r(t,Yy). The security prices S;,i = 1, -+, d follow the dynamics:

dS;, = S (i (t, Ypdt + 0;(t, Y)dBy), 1 <i<d, 4)
where ;j is the expected return process and 0; is the vector of volatility coefficients of the i-th security. Denote by M the d-
dimensional vector of the expected returns, whose i-th entry is Y. Let o denote the d % d-dimensional volatility matrix
whose rows are g;, i = 1,--,d. Assume that ¢ is invertible. Also assume that p and o are progressively measurable and
satisfy the standard integrability conditions. The market price of risk is defined as:

et = e(tr Yt) = 0(t| Yt)_l(“(tr Yt) - r(tr Yt)l)l
where 1 is the d-dimensional unit vector. We assume that the market price of risk 6; is continuously differentiable and
satisfies the Novikov condition.

The state price density is defined as & = exp (— Ot ryds —

ta 1ty . . N
0 65 dBs ~30 GSGSdS) and the relative state price density is

defined as & s = %
t
2.2 The Robust-Control Problem

In this section, we provide the definition of the robust-control problem and the utility formulation. The robust-control
criterion is

V; = ess inf,{V}, (2.1) (5)
where the utility process V; is defined as:

T S n_ T S 1 (6)
exp (— Bvdv> u(cs) (dés)”‘lds] = E} [ exp (— Bvdv> u(cs) (d{s)”‘lds] . (22
t t t t

The subjective discount factor B; can be stochastic. The function u(-) is the real-valued Von Neumann-Morgenstern utility
function. The penalty coefficient N represents the investor’s averse attitude toward ambiguity. This attitude affects the utility
function through the relative density process dfs. We assume:
0<n<l,ifu() >0, )
—co<n=<0,ifu() <0.
The parameter ranges of N insure that it can model the investor’s different degree of ambiguity aversion. In the limiting case

V{‘ZEI[

of 1 = —oo, the utility becomes Ef[ tT exp (— ts Bydv)u(cs)ds]. The penalty is so large that one cannot optimize the utility
except for when the data-generating measure corresponds to P*. In the case of n = 0, the utility is E; [ tT exp (—

ts Bvdv)u(cs)ds]. The investor does not care about ambiguity. In between the two extremes is that the investor is averse to
the divergence between P and P, and tries to design a consumption-investment plan that performs best under the worst
situation of the model misspecification.
The investor with ambiguity concerns is presented with a max-min problem. The first step in the optimization procedure is
to find the probability measure under which the weighted expected utility is minimized. Next, we solve for the optimal
consumption-investment plan that maximizes the minimized utility, subject to the dynamic budget constraint.
We interpret this two-step optimization problem as following. The investor trades off the gain from investment and the loss
from ambiguity. The investment plan supports the contemporary consumption Cy, which induces utility. The conditional
density df determines the loss induces by model uncertainty, i.e., the discrepancy between measures P and P, . The
coefficient N controls how severe the penalty the investor imposes for not knowing the true model. If the penalty is too high,
the investor can have a very conservative plan. If the penalty is too low, the investor is exposed to model uncertainty and the
optimal plan may perform worse than what the control theory has promised.

Borrowing the idea of a generalized loss function form Berger (1985), we specify the (integrated) loss function L(cy, df)
as[30]:

w1 ®)
L(c, di) = u(e) (d)n.
The multiplicative formulation captures the fact that the impact of ambiguity concern is dependent on the contemporary
consumption utility. For an investor with low-consumption utility, even though he/she is aware of and imposes a high
penalty for ambiguity, such concerns do not affect the total utility as much as compared with an otherwise identical investor
with high-consumption utility.
1-y

As we shall see, this utility formulation with the CRRA utility u(c,) = CltTy helps to model ambiguity aversion as a penalty
component on the utility process. In contrast to the relative entropy formulation, this proportion is state dependent. It also
allows us to convert the robust-control problem to a class of homothetic SDU where closed-form solutions for the optimal
consumption-investment plan are available[1]. Besides this desirable tractability property, insights gained from the optimal-
portfolio solution reveal that ambiguity aversion can help reconciling the high-risk aversion implied by asset prices and the

moderate degree obtained from behavioral studies.
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This utility formulation also allows for dynamic optimal-portfolios solutions with inter-temporal hedging components
against fluctuations in the investment opportunity set and ambiguity aversion. Tractable solutions are also available for the
relative-entropy formulation, but only when the investor has logarithmic utility, which is clearly a limitation.

3 MAIN RESULTS

Our main result establishes the connection between the robust-control problem (2.1) and a form of the SDU problem.
Theorem 3.1. There exists a unique progressively measurable pair (V, 6°), such that:

vy =~ (e = BV, =2 (@) dt + (o), (31) ®

with the boundary condition V1 = 0.
Fort [0,T) and any adapted process X, the utility process V§ can be expressed as:

X — T n
VE=V, = Et[ . EXp (Z(n 7 t xvxvdv ( Xs ’n 1)2 \/\Z /n 1)2 Gs\/\,t )ds] (10)

The utility process V§ is minimized at:
p[N—1
Vi

(11)

X :_Ot

and
VX =V, (12)
The existence result of (Vy, 0;) in Equation (3.1) can be found in Schroder and Skiadas (1999)[1].
Proof. See Appendix A.
With the optimizing value of X , we approach the robust-control problem (2.1) by solving (V;, 0;) described by the
backward stochastic differential equation (BSDE) in Equation (3.1). We can see from this equation that ambiguity concerns
introduce a state-dependent penalizing component on the utility process.
The next result shows that the BSDE in Equation (3.1) can be expressed in the form of the SDU. We define an ordinally
equivalent utility process of Vi, which allows us to express the preference in terms of a homothetic SDU:
_ { Vi " for V, >0,

= (= vprtfor v <o, (13)
with the boundary condition vy = 0.
Proposition 3.2. The transformed utility process V; can be expressed as:

T N
=& [ @-m (v -pw)ds|. 62) 14
Proof. See Appendix A.
Given the special case of the CRRA utility function, Equation (3.2) corresponds to the homothetic SDU specification in
Schroder and Skiadas (1999) with a =—n, and y # 1. In that context, the coefficient a is interpreted as a measure of the

preference for the timing of uncertainty resolution.
Skiadas (2003) obtains similar results in the relative-entropy formulation, which is a special case of ours[24]:

T 1 T

VX = E?[ . exp(— ts B,dv) log (c,) ds] +EE¥[ . exp (- ts Bydv) xgds] . (33) (15)
The second term is the relative entropy distance considered in Hansen and Sargent (2001) and Skiadas (2003), with
% being the penalizing coefficient[11, 24]. Skiadas (2003) shows that the robust-control problem can be solved by a BSDE

for (Vt,O't)Z
dv; =— (log (c) — BV, - ﬂcrt)dt+ 0,08, (16)

Vr =0.
We can express the solution to this BSDE as a form of the homothetic SDU. To do this, we define an ordinally equivalent
utility process V; of V; as:

Vt = %(exp (_nvt) - 1)v (17)

with the boundary condition vy = 0.
Proposition 3.3. The transformed utility process V; can be expressed as:

T B
v = E [ (1 = nve) (log (c5) +Flog (1 = v ds] . (34
t n

To conclude, the utility form (3.2) corresponds to the homothetic SDU specification in Schroder and Skiadas (1999), with
oa=—n and y=1. In this case, closed-form solutions for the optimal consumption-investment plan are available[1].
Comparing our formulation with that of Skiadas (2003), closed-form solutions for the optimal plan are not available in their
formulation for CRRA utility[24]. Our robust-control problem has closed-form solutions for CRRA utility and for
logarithmic utility as a special case.

(18)
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4 THE OPTIMAL CONSUMPTION-INVESTMENT PLAN

In this section, we provide an alternative representation of the optimal solution of the robust problem (2.1) for an investor
with CRRA utility based on the generalized Clark-Ocone formula of the hedging terms using Malliavin calculus[2-3]. We
also provide the optimal-portfolio solution for the problem (3.3) as a special case.

Detemple et al. (2003) express the hedging terms by conditional expectations with respect to the Malliavin derivatives and
propose a simulation-based approach for the subjective expected utility optimization problem with a stochastic investment
opportunity set[2]. Here we adopt their methodology to solve for the optimal portfolio in the SDU maximization problem
setup.

From this new representation, we can separate the forward-hedging component against fluctuations in the market price of
risk and interest rate, and the backward-hedging component for ambiguity concerns.

4.1 The Optimal Solution: the CRRA Utility Case

For the investor with ambiguity concerns, after finding the probability measure under which the expected utility has the
minimal value, he/she seeks to maximize the expected utility by selecting the optimal consumption-investment plan subject
to a dynamic budget constraint:

o[-0 - ) ] e ®

=C - + (C = ) + ) o= (20)
=0, [0, 1.
Here  is the investor’s wealth process at time and  is the initial wealth. The term  is the proportion invested in the
risky assets at time . The nonnegativity constraint is the typical no-bankruptcy condition. The zero lower boundary can be
replaced by a finite negative value. The utility function (-) satisfies the assumption of strictly increasing and concave, with
-

s.t

limits lim () =0and lim “( ) < oo. For the problem (4.1) with the CRRA utility function ( )= . Schroder and

Skiadas (1999) derive explicit solutions for the optimal consumption, the utility process and the optimal portfolio. Before
going to our results, we present the main results of Schroder and Skiadas (1999) to introduce definitions and notations[1].

4.2 Schroder and Skiadas (1999): the CRRA Utility Case[1]

(1)The optimal consumption:
Denote 0 =— 1, the optimal consumption is

1 ak X¢ 1 (21
0= (L aVIvfraexp (=) = 1+ @)Y exp (ko) il
with
K = 1 . (22)
1-1-y)y@+oa)
(2)The optimal portfolio is:
Z
Ot = k8 + (1+ak) 7. (23)
t
(3)The pair (J, Zy) and Xy:
The backward component (J;, Z;) and the forward component X; together solve the FBSDE system:
d = (2 T Y — B KOO L KZZY L i+ (1 — kB
t— \1 - y vy tT 1= y 2 tT S I t\UBg tdl),
‘]T = O,
a 1y 0:0 , 24)
dX, =— (1——y (L+0a) V1= (@ +o)B+r + %) dt — ,dB,,
Xo=log ().
The value of A is obtained by imposing the static budget constraint:
T
Eo[ Escsds] = W. (25)
0

The forward state-variable dynamics (ry, 6;) and the backward process (J;, Z;) solve an FBSDE system. The process X; is the
logarithm of the state price density, adjusted for ambiguity concern by including the backward component J;.
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The next theorem compiles the forward dynamics (the state variables and their Malliavin derivatives) with the backward
dynamics (the process J; and its Malliavin derivatives) into an FBSDE system. Numerical methods to solve this system are
available. We provide the numerical illustration in the next section. The theoretic foundation of Malliavin calculus can be
found in Nualart (1995), with the application to finance found in Karatzas et al. (1987), Karoui et al. (1997), and Detemple
et al. (2003)[2-3, 31-32].

Theorem 4.1. The dynamics of J; in the CRRA utility case is given by Schroder and Skiadas (1999)[1]. The processes J; and
Dglt, 0 <s <t < T can be solved via the (decoupled) FBSDE system[33-34]:

Forward dynamics:

dx; = b(xpdt + a(x)dB;, (26)
where
(Yt _ ML YY) _ a(t,Yy)
Xy = D.Y by = ,O(Xp) = )
st azp(t, Yt) DSYI azc(t, YS)DSYt (27)
and the initial conditions are: (28)
Xo = Yo, DSYS = G(S, YS)
Backward dynamics:
_dyt = f(S, t, th ytl Zt)dt - thBtl (29)
with
_(Jt)z_(zt) (30)
" loa) T oz
and
1-y — .
v+ (rt ) “kztzt ~Z,(1 - 108,
f(S, t, Xtvytvzt) = 1— ke 9 y (31)
y ((D rt + ketD et)Jt < _L + ! t) D Jt)
Y 2
ak (27, Z.Z, . .
+— 2 X ——DsZ; — J_zDth -@1- k)(etDsZt + ZtDses)
t

with the following definitions of Dgr; and Dg6;:

Dr; = 0,1 (t, YD Yy, DBy = 8,8(t, YD, Y. (32)

The boundary conditions are:
Jt=0,DJr =0x1"

Proof. See Appendix A. (33)
Proposition 4.2. With the solution of (J;, DsJp), the pair (X¢, DsX;) can be solved by the system:

a 1y 0:6, .

dX, =— [1—_y(1 +o) VIt —(A+0)B+r, +T] dt — 6,dB;,
Xo =log(\), (34)

a Ly .
dDSXt = [Dsrt - 1—_y(1 + G) Y \]t_ZDth:| dt - (dBt + etdt) Dset.

Proof. See Appendix A.
Theorem 4.3. We provide an alternative representation of the optimal-portfolio solution by the Clark-Ocone formula.
Denote by Hy ¢ the inter-temporal hedging demand against fluctuations in the investment opportunity set with the expression:
u u
Hy= Dgrdv+ (dB,+6,dv)Ds8, 33
t t
Denote X, as X, — X¢. The optimal portfolio is
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. T K T . T
WOy = Et( ¢ &tuCu (_thXt,u + ?_th']u) dU) + kOw, — Et( t Et,uCth,udu) = kw6 + (k — 1)Et( ¢ Et,uCth,udu) +

1~y
T K Ka(l+a) Y uDy
Et( ¢ SuCu (j_u Dily ko) ¥ ¢ %dv) du). (36)

1-y v
Proof. See Appendix A.
The optimal portfolio is decomposed into three parts. The first component is the mean-variance portfolio. The second
component is the hedging demand against fluctuations in the investment opportunity set. The third hedging comes from
robustness concerns[35].
Theorem 4.4. The backward component J; and its Malliavin derivative DgJ;, 0 < s <t can be solved via the (decoupled)
FBSDE system:
Forward dynamics:

dx; = b(xydt + o(x;)dB;. (37
The forward system is the same as that in Theorem (4.1).
Backward dynamics:
—dy; = f(s, t, X, ¥y, Z)dt — z,dB, (38)
with
) Z, 39)
o= (DSJI) 2= (Dszt)’
and

k0,0 - 1_.
Q-k)B—r— t2t L —7:8,) + ke(a — B +§tht

(s, t, X, Yo, 20) = . . . . (40)
( v Yu) (1 — k) (— Dsry — ki8Ds8; — Z;DsB; — 8;DsZ;) + ki(a — B)DgJ; + Z;DsZ,
The boundary conditions are: al
};=0DJy =0x1. “1)
Proof. See Appendix A.
Proposition 4.5. With the solution of (J, D¢J;), the pair (X, DsX;) can be solved by:
t ' t
Xe== ems(Conp <<a —B — BT eszes> ds— e s P g, + e 0BV log (1), (4,
0 0
t t . t .
DX = — e~ v(®=0k=B)d! ((q — B)DyJ, + Dr, )dv + (8,dv + dB,) Ds8,) — e~ s (B-k—R)dig,

S
Proof. See Appendix A.
With Proposition 4.5, we can decompose the hedging demand for X;into the hedging demand against fluctuations in the
investment opportunity set and that related to the backward term J;. This enables us to express the optimal portfolio as three
components: the mean-variance portfolio, the forward-hedging term related to DsX; and the backward-hedging term related
to Dgls.
Theorem 4.6. The optimal portfolio can be expressed as:
T T T
W, T Oy = Et[ t (Dt']u - kthXt,u)CuEt,udu] - Et[ . CuEt,th,udu] + e'tEt[ t CuEt,ukudu]
T T
==k [ CuEt,th,udu] + BiE; [ )
T u .
—E [ ( e v(B-k=B)d (D r dv + (dB, + evdv)'DtG\,)dv) kucuat,udu]
t\ t

CUEI,UkUdu]

t

T u
+E [ (DtJu + Ky ( e v ((B-k=)d! ((q— B)DtJv)dv>> cuzt,udul :
t t
Proof. See Appendix A.

5 NUMERICAL RESULTS

In the numerical experiments, we assume that the short rate follows an Ornstein-Uhlenbeck process as in the Vasicek model:
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dr, = (o, — Byrodt + o.dw. 5.1
Parameters used for the numerical illustration are summarized in Table 1. Before presenting the numerical results for
optimal solutions, we first illustrate the performance of the regression-based Monte Carlo method in Gobet et al. (2005)
applied to solve the FBSDE systems[36].

Table 1 Parameters Specifications

0
25 1/12 10000 20 0.07 0.2 4 -0.12 0.09 0.33 0.01 4

*Note: This table reports parameter values for numerical implementations. T: the investment horizon; : the discretization
step; M: the number of trajectories for the Monte Carlo simulation; W: the initial wealth; rg, O, B,,0,: parameters in the
Vasicek dynamics of the short rate process; 0: the market price of risk; [3: the subjective discount factor; Og: the stock

volatility; y: the coefficient of relative risk aversion.

5.1 The Performance of the Regression-Based Method

In this section, we use the regression-based method proposed by Gobet et al. (2005) to solve the FBSDE systems of
(Xt DsXp) and (Yy, DgYy, Ji, DgJ;) for CRRA and logarithmic utility[4]. We introduce the following notations:

T . T .
Higr=— , (1 —k)((1—k)?6,D6,)dv — (1 —k,)dB,Dsb,,
T
HZr=— (@ —k)(Dsry +k,6,Ds8y)dv, (44)
t

1-y T .
H3 r = —~ (Dsry + k8,D48,,)du.
t

In the case of logarithmic utility, with parameters constraints & = 0 or a = [3, the processes J; and DgJ; (s < t) can be solved
explicitly:

T Ky .
exp (']t) = Et [Et,T exp ( (1 - kv) <B — = ?evev) dV)] )
t
T ' T(1—k,)%6.
&t =exp (— (1 -k,)6,dB, — de) , (45)
t t

= [irow (-0 (B r - 008, av) i + )|

J

The first two equations are from Schroder and Skiadas (1999)[1]. The last equation is obtained by applying the chain rule of
Malliavin calculus. In the case of a = 0, the values of J; and Dgl; are both zero.

We apply the Monte Carlo simulation method to compute the conditional expectations, which are used as a benchmark to
evaluate the performance of the regression-based method. As shown in Figure 1, the regression-based method generates
numerical solutions that are very close to those calculated from Monte Carlo simulations.

Dsde =

Figure 1 In the Case of o = [3, the Processes J; and DgJ; for Logarithmic Utility have Closed-Form Solutions as Conditional
Expectations
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d Doy
0.6 T T 0.025
Close form
———— Regression
0.5 :
0.02
0.4} 1
0.015
0.3}
0.01
0.2t 1
0.005
0.1}
0 ‘ ; 0 t
0 10 20 30 0 10 20 30

“Note: This figure reports the numerical solutions for J; and DgJ; obtained using the regression-based approach and the
Monte Carlo simulation approach.

5.2 The Optimal Portfolio

In this section, we study the impacts of ambiguity aversion on the dynamic optimal portfolio in a setting with stochastic
investment opportunities. Specifically, we assume a stochastic interest rate process with the dynamics in the Equation (5.1)
and keep the market price of risk 8 as constant. The latter can also be specified as stochastic.

We see from the Figure 2 that the optimal-portfolio pattern shares some common features with those obtained in an
environment without ambiguity. The hedging component changes sign as relative risk aversion is in excess or falls short of
one. This illustrates the knife-edge behavior of logarithmic utility. For the investor with relative risk aversion greater than
one, the hedging demand for interest rate fluctuations boosts demand fors risky assets, due to the negative correlation
between the interest rate and the stock price.

Figure 2 Each Portfolio is the Proportion of Wealth Invested in the Risky Asset

Optimal Portfolio
0.2 T T T T
015} J
04 w e XY : %»k\ .:’
0.05
0 E
-0.051 i
oo — iy =12 ——-12mv ¢ 128 ——n=-26:mv
-0.1
5 10 15 20 25
Investment Horizon
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“Note: This figure plots the portfolios for the investor with CRRA utility of y = 4 and different ambiguity penalty
coefficients.

More interestingly, we see significant impacts on the dynamic optimal portfolio from ambiguity aversion. Figure 2 illustrate
that ambiguity aversion equivalently increases risk aversion, in a sense that it lowers the constant mean-variance portfolio.
The adjusted relative risk aversion is Yy + (y — 1) % (—n). To reconcile the high relative risk aversion implied by asset
prices (for instance, 10) with the moderate degree implied by behavioral studies (for instance, 4), we need an ambiguity
penalty coefficient of —2.

In addition to the mean-variance portfolio, ambiguity concerns decrease the total proportion of wealth invested in the stock
market. The higher the penalty the investor imposes, the less aggressively he/she invests in the stock market.

In a setting with no ambiguity, the investor with logarithmic utility only invests in the mean-variance portfolio even with a
stochastic investment opportunity set. The pattern of the optimal portfolio changes when this investor is ambiguity averse.
First, the mean-variance portfolio is time-dependent, even with a constant market price of risk. It is lower at the initiation of
investment, as ambiguity aversion increases risk aversion. It grows and approaches the mean-variance portfolio obtained in
a setting with no ambiguity at the end of the investment horizon. Second, the investor is no longer myopic and requests an
inter-temporal hedging demand. The hedging demand is positive, as it contains the component to hedge for fluctuations in
the interest rate, which is negatively correlated with the stock market.

Figure 3 displays the behavior of the optimal portfolio and its mean-variance component relative to the ambiguity aversion
and investment horizon, for an investor with CRRA utility and relative risk aversion of 4. The investment horizon is from
0.5 to 7.5 years and the ambiguity penalty is from —1 to 0. The higher the absolute value of the penalty, the more ambiguity
averse the investor is. As expected, ambiguity inversion shifts the mean-variance portfolio toward a lower level. The mean-
variance portfolio is constant over the investment horizon. The total portfolio, as a fraction of wealth invested in the stock
market, is a decreasing (increasing) function of ambiguity aversion (the investment horizon).

Figure 3 The Optimal Portfolio is the Proportion of Wealth Invested in the Risky Asset

Mean-Variance Portfolio Optimal Portfolio

0.024

0.022

0.02

0.018

0.016

0.014

0.012

“Note: This figure plots the optimal portfolios for the investor with CRRA utility of = 4, with different ambiguity penalty
and investment horizons.

Figure 4 shows the effects of ambiguity aversion and risk aversion on the inter-temporal hedging demand. For an investor
with relative risk aversion greater than one, the hedging demand increases with risk aversion and/or ambiguity aversion. On
the contrary, when the investor has relative risk aversion smaller than one, this hedging demand is decreasing with risk
aversion and/or ambiguity aversion. When the ambiguity aversion and/or risk aversion approach one, the hedging term
vanishes. These facts suggest that from the perspective of the hedging demand, to include ambiguity aversion is also
observationally equivalent to increasing risk aversion.

Figure 4 The Optimal Portfolio is the Proportion of Wealth Invested in the Risky Asset
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Inter-temporal Hedging Demand, gamma>1 Inter-temporal Hedging Demand, O<gamma<1

0.03
0.025
0.02
0.015

0.01

0.005

“Note: This figure plots the inter-temporal hedging demands for the investor with CRRA utility of the investment length
T = 15, with different ambiguity penalty coefficients and risk version coefficients.

5.3 The Optimal Consumption

As illustrated in Figure 5, robustness concerns have a significant effect on the investor’s consumption process. The
consumption level grows with age as wealth accumulates with time. When the investor ignores ambiguity (i.e., | = o), the
optimal consumption level increases as risk aversion increases. The reason is that the more risk averse the investor is, the
smoother the consumption plan he/she prefers. As a result, he/she invests less and consumes more. Ambiguity aversion
increases risk aversion, and thus induces a higher and more smoothed consumption path.

Figure 5 Optimal Consumption Expenditures are Normalized by the Initial Wealth

Optimal Consumption
0.085 T T T T

0.08

0.075

0.07

0.065

—n=0 “1=-12 —— n=-26

5 10 15 20 25
Investment Horizon

“Note: This figure plots the optimal consumption plans for the investor with CRRA utility of y = 4 and different ambiguity
penalty coefficients.

6 CONCLUSIONS
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In this paper, we propose a robust-control problem with a new utility formulation, in which the investor trades off the
multiplicative structure of utility derived from consumption and the loss from ambiguity.

We establish the equivalence between this robust-control problem and the SDU maximization problem. Insights obtained
from this equivalence result show that the investor with robustness concerns prefers early resolution of uncertainty. We
obtain closed-form optimal solutions when the investor has CRRA utility. We provide an alternative representation of the
optimal solution based on the Ocone and Karatzas formula[2-3]. This representation decomposes the optimal portfolio into
three parts: the mean-variance component, the dynamics hedging component against fluctuations in the investment
opportunity set, and the dynamic hedging component for ambiguity concerns.

Numerical implementations for the dynamic optimal solution are provided for the robust-control problem (equivalently, the
SDU maximization problem) through the regression-based method for solving the FBSDE systems. This helps us to gain
insights into the inter-temporal hedging demand. For the investor with the relative risk aversion greater (smaller) than one,
the hedging demand increases (decreases) with ambiguity aversion. With robustness concerns, the investor with logarithmic
utility is no longer myopic and has an inter-temporal hedging demand. For the ambiguity-averse investor with constant
relative risk aversion greater than one, the younger the investor is, the more aggressively he/she invests in the stock market.
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APPENDIX A

Before the proof of the main result, Theorem 3.1, we present the following results.
Lemma 1. The process V§ defined in Equation (2.2) can be expressed as:

T S
w=e| on( e (7l
t

x'vxvdv> ds] . (AD) (46)

t
Proof of Lemma 1.

T S T
V¥ = E, [ exp (— Bvdv> u(cs) (d{S)de] =E, [ exp (—
t t t

The last equation gives:

2 s

Bvdv> uCesexp (‘%

s . K S,
XyXydv — > xvxvdv> ds](.‘”)

t t t

t 2(f1 - 1)2 t
There exists an adapted process Of such that the expression of V§ in Equation (A.1)

T S n S
V¥ = E, [ exp (— Bvdv> u(cs)exp (— x{,x\,dv> ds] : (48)
t

Lemma 2. Define Ny as K> —K = T

has the dynamics:
av; = (BVE = u — Xxpy) dt + () dB,,  (A.2)

2 (49)
with the boundary condition V} = 0.
Proof of Lemma 2. According to the PDE (A.2), we can express V¥ as:
t t
VX = exp ( Bsds> exp (— % x'sxsds> f(t,cp), (50)
0 0

with the boundary condition f(T,ct) = 0, for some function f(-, -). By taking derivation on both sides of the equation above
and equalizing it with the PDE (A.2), we have: 1)

av; = (BoVE = ue = ZxpVy) dt + (0)'dB,

2
As a result, we have df(t, c,) as:
t t
df(t,c,) = exp (— Bsds> exp (% x'sxsds> (— udt + (0Y)'dBy). (52)
0 0
Integrating from t to T and applying the boundary condition, we have:
T s N S . . (53)
Vi = exp (— Bvdv> exp (; xvxvdv> (usds — (%) dBy).
t t t

By taking expectation under P on both sides, we have:

T S S
Vi =E [ exp (— Bvdv> exp (% x(,x\,dv> u(cs)ds] :
t t t
The existence of the adapted process Of is given by the martingale representation theorem.

(54
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From lemma 1, we can express Vf as:

T s x St
V= Et[ . exp (= . Bydv))u(cs) exp (”? . xvxvdv) ds]. 55)
Proof of Theorem 3.1. Denote the discounted version for a process V; as:
t (56)
Vi = exp (— Bsds> Vi.
0

The dynamics of V¥ are:

dV =— Bexp (— t[3So|s> VXdt + exp (— t Bsds) AV =— (U + %x;xtw) dt+ (61)'dB,. GD
The dynamics of V; under the P meaosure is: i
Ve == (u = BV = 55 (08) of ) dt + (oPy'dB. (A3) 58
Convert the dynamics of V; into the P measure:
Ve == (u = BV = g5 (08) o — (@) ;) -+ (o) o, (59)
The dynamics of dV, is:
dv, =— ( U — %tt (o?)'o? - K(G{))'Xt> dt+ ((0{’)'dBt. (60)

Combining the dynamics of dVf and dV, we have:

, ' 1
d(V¥ =V =— %XtXt(V%( —Vdt+ (o —aoP ) dB, — > Xy NV + 0P /Vi Xey/ Ny Vg + 0P /Vﬂ dt. (61)
t t

Note that in the dynamics of V; in Equation (A.3), if u> O(u < 0), then we have V > 0(V <0) by Theorem A2 in
Schroder and Skiadas (1999)[1]. The relationship holds under the P measure, as P is equivalent to P. As we specify
N < 0(0 =< n < 1) for the utility process U < O(u > 0), we havevitz 0.

Denote the process K; as:

t (62)

Ki = (V¥ — Vyexp <% x'sxsds) .

0
The dynamics of K; are given by:

. 1 n n -
szsd5> B Ry NkVe + OF \/;t Xy NeVy + 0F \/;t dt+ (o} —op ) dB, |. (63)
Integrate on both sides from t to T and take expectation under P:

T S
n - 1 n n
Ki—Ki=E/| exp (;X . xVdev> -5 X/ N Vs + Gg\/V:s Xsy/ N Vs + Gg\/V:s ds |]. 64)

t

t

dK; = exp (%
0

Replace K, with (Vi — Vexp (% OtX'sXSdS) and apply boundary conditions on V; and V:

T S

n . 1 ’ n — n

Vi-Vi=E exp (?X vavdv) 2 Xt/ NxVs + 02 VA X5y NxVs + 02 V. ds || (65)
t 0 S S

Convert the discount back, we get :

T

V¥ =V, =E; exp (&
¢ 2

S

N|

n n
Xt/ Nk Vs + 02 \/V:s Xsy/NxVs + 02 \/V:s ds || (66)

The term on the right-hand side is greater or equal to zero, with the zero-value obtained by imposing below:

x;,x\,dv)
0

1-n
— _gb 67
Xt ; A (67)
Proof of Proposition 3.2. First consider the case V; > 0. The ordinally equivalent transformation of V; is
=V
By the Ito’s lemma, we have: (68)
dve = (1 =)V, "(= (ur = BVdt + (t) dBy). (69)
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Integrate and take expectations on both sides:
T

_ (70)
vy —Vy = E¢ [ A —-nV, (- Us + sts)ds] .
N t
Replace V; with th_”, we have: 1
T %l
vy = Ey [ 1-n) (Vg Us — BsVs) dS] :
t
The similar analysis can be applied to V; < O gives: (72)
T N
Ve = By [ 1-n ((_ Vs)”_lus - BsVs) dS] .
t
By taking two cases together, we have:
T N 73)
v =E, [ (@ =) (IvefEu = Bevs ) ds] .
t
Proof of Theorem 4.1. The state variable Y; has the dynamics: (78)

dy; = p(t, Ypdt + o(t, Y,)dB..
The Maliavin derivative DgY; follow the dynamics: (75)
d(DsYy) = 92u(t, YO (DsYodt + 0,0(t, Y) (DY) dBy,
with initial condition DsYs = o(Ys).
For the case of the CRRA utility, Schroder and Skiadas (1999) show that the pair (J, Z) follows the process[1]:

_th = F(t, et, th Ytl Zt) - thdBt, (76)
where
1 v 1-vy B k6,06 ok Z,Z .
F(t, 8, 0p, Yo Z) :1—_y(1 +a) v + (rt vt 2t t> e+ jtt—zt(l — k)8, a7

In this BSDE associated with a forward equation, for 0 < s <t < T, the dynamics of Malliavin derivative DY, are: (78)
— DyJ; = G(s,t,6;, 0y, Yy, Z)dt — (dB;) DsZy,
with
G(s,t,0, 0y, Yy, Zp)

. . 1- . k6.0
= (1 - k) (etDSZt + ZtDSet) + Ty((DSrt + ketDset)Jt + <rt - L + ! t) DS']t>

1-vy 2 (79)
ak (2Z; Z.Z,
+ ? TDSZt - ?DS‘]t )
and the initial condition is:
DJr=0x1. (80)
The calculation rule and smoothing conditions can be found in Karoui et al. (1997)[32].
Proof of Proposition 4.2. The dynamics of X; is given by Schroder and Skiadas (1999)[1]:
a 1y 8.0 .
dX, =— [1__y(1+a) VIl—(1+a)p+ rﬁ%] dt — 6,dB,. (81)
For 0 < s <t < T, the Malliavin derivative DgX; has the dynamics:
a Iy .
dD X; =— [Dsrt - 1—_y(1 +a) Vv Jt_ZDth] dt — (dB; + 6,dt) D6;, (82)
with initial condition: (83)
D Xs =— 6.
Proof of Theorem 4.3. The optimal wealth W, at time t is
T
&We = Eq [ Eucudu] : (84)
t
By the Ito’s lemma, the diffusion process on the left-hand side of the equation above is:
— &WB; + w0y
By the Clark-Ocone formula, the diffusion process on the right-hand side of the equation above is: (85)
T
Et [ Dt(EsCu)du] . (86)
t
The chain rule of Malliavin calculus gives:
Dt(EuCu) = Eth(Cu) - CuEu(et + Ht,u)- (87)

Then we have:

Volume 2, Issue 1, Pp 47-64, 2024



Dynamic optimal portfolio choices for robust preferences 63
T T .
B[, DeCEucw)du] = B[ | (&Di(cw) — cuuHyn)du] — wig8; (88)
Equate both sides gives:
T
E W0, TT, = Et[ (Eth(Cu) - CuEth,u)dU] .
t (89)
That is
' T
WOTle = Ey [ (Et,th(Cu) = Cuétu Ht,u)du] : (90)
t
Denote X as X, — X¢. Applying the chain rule of Malliavin calculus, we have:
ak . ©on
Di(cw) = ¢y (_thXt,u + J_Dt']u) + kBicCr.
i
Rearrange the terms and we have:
T T 92)

. ok .
W0 = E; [ &tuCu (_thXt,u + T Dt']u) ds] — E; [ Cuétu Ht,uds] + k8w
u

t t

Proof of Theorem 4.4. The dynamics of (Y;, DgY;) are the same as in Theorem 4.1. For the case of the logarithmic utility,

Schroder and Skiadas (1999) show that the process (J, Z) follows the process[1]:
—dJ; = F(t,6;, 0y, Yy, Z;) — Z,dBy,
with
kiB:6:
2

. 1.,
F(t,0,0¢ Yi. Zo) = (L —kp) (B — - - Ztet) +ki(a— B+ Eztzt-

In this BSDE associated with a forward equation, for 0 <s < t < T, the dynamics of the Malliavin derivative DsY; are

- DS‘]I = G(S, t, et, O‘tv th Zt)dt - (dBt)'DSZtl
with

G(s,t, 8, Oy, Yy, Zy) = ke(o — B)DgJ; + ZDsZ; + (1 — k) (— Dgry — k(8;DsB; — Z;D6; — 8;DsZy),

and the initial condition is:
DJr=0x1.

Proof of Proposition 4.5. Express X; as:
t
X; = exp <— (B, — )k, — B)dv) Kt.
0
The Ito’s lemma and the dynamics of X; gives:

t
dX, =— Xt((B — a)k; — B)dt + exp (— . (([3 — o)k, — B)dv) dK;

= - (((B — ok — B)Xt +@—B)i—B+r +%) dt — 6,dB,.

As aresult, we have:

dK; = — ((a B —B+r +?> dt + 6,dB, exp( t((B — )k, — B)dV).
0

with
Ko =log(A).

Integrate on Ky, and plug it back into the expression of X, we have:

t

) :
X¢ == exp (— ((B— ok, — B)dv) ((G BB+ 65265> ds + 8,dB;

0

t
+exp (— (B =k, — B)dv) log (\).
0

The chain rule of Malliavin calculus gives:

dDyX, == (((B — @)k, — B)DsX; + (o — B)DgJ; + Dyt + 6,D;8, ) dt — (dB,) D56y,
with the initial condition:

DX =— 6.

By the similar analysis for X;, the process DgX; can be expressed as:
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DX, == Jexp (— yexp (= . (B~ ki —B)dl) (((@—BID, +Dur, +6,DB, )dv + (@BIDB, )+ (105)

t .
exp (— L ((B— ok — B)dl) o..
Proof of Theorem 4.6. The expression of «t is the same as in Theorem 4.3:

T
w0y = Ey [ (Et,th(Cu) - CuEt,th,u)du] .
t

By applying the chain rule of Malliavin calculus, we have:
De(cu) = cy(Ddy — kyDeXy) = cu(Dedy — kyDiXeu + Ky 8y).
Then the optimal portfolio can be expressed as:

T
W0y = E; [ (DtJu - kthXt,u)CuEt,udu] — E [ CuEt,th,udu] + B(E; [
t t

Replacing the expression of D¢X;, of Proposition (4.5), we can express T as:

T u oy,
(DtJu +ky ( g ¢ (B=0k=B)dl (o — B)DtJ\,)dv>> cu&,du
t

T T

Cy Et,u kudu] :

t

w,T0; = E; [

t

T u
—E, [ ( exp v (B-ok-p)d (Dyr dv + (dB, + evdv)'Dtev)dv) kucuzt,udu] .

t t

Volume 2, Issue 1, Pp 47-64, 2024

(106)

(107)

(108)

(109)



