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Abstract: During the process of typhoon forecasting, numerious symmetric positive definite linear systems are needed
to be solved. They are often solved by conjugate gradient method with preconditioning technique. This paper focuses on
the convergence rate analysis of conjugate gradient method. The properties of Chebyshev polynomial and Krylov
subspace are utilized. The effect of the right-hand-side vector are considered. Several convergence rate estimations are
given. Compared with the existing estimation results, the presented results are more exact. This enable us to construct
more efficient preconditioners to forecast typhoon more quickly.
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1 INTRODUCTION

Typhoons often bring inconvenience and even disasters to our daily lives. Thus, typhoon forecasting is crucial,
especially for the coastal areas [1-2]. Typhoon forecasting always involves a large number of symmetric positive
definite (SPD) linear systems. These systems are often solved by the conjugate gradient (CG) method with
preconditioning technique [3-4], which is called preconditioned CG method. The key of preconditioned CG method is
the construction of the preconditioner [5-8]. For constructing efficient preconditioners during the process of typhoon
forecast, the theoretical analysis of CG method is studied in this paper. Consider the following SPD linear system

Ax = b, (1)
and solving equation (1) by preconditioned CG method. The base of preconditioned CG method is CG method. The
main results regarding the convergence rate of the CG method are given in the following [9, 10].
Theorem 1. Assume A ∈ Rn×n is SPD, its eigenvalues are λ1 ≥ λ2 ≥⋅⋅⋅≥ λn > 0. The convergent rate of CG method
for solving problem (1) can be estimated by the following inequality

xk − x∗
A ≤ 2 λ1− λn

λ1+ λn

k
x0 − x∗

A (2)

where x A = Ax，x
1
2 , xk , x0 and x∗ represent the thk approximate solution, the initial guess and the exact

solution, respectively.
By theorem 1, the smaller the spectral condition number cond2 A = λ1 λn of coefficient matrix A is, the more fast
the convergence rate of CG method is.
Theorem 2. Assume A ∈ Rn×n is SPD, the CG method for solving problem (1) converges after n iterations at most.
By theorem 2, when the CG method was initially proposed, it was initially regarded as a direct method for solving SPD
linear algebraic equations. Until 1971, Reid pointed out that viewing the CG method as an iterative approach can
effectively solve large-scale sparse SPD linear systems.
Theorem 3. Assume A ∈ Rn×n is SPD and has l distinct eigenvalues, the CG method for solving problem (1) converges
after l iterations at most.
Theorem 3 shows that even if the condition number of coefficient matrix A is large, if the number of its distinct
eigenvalues is small, the CG method will also converge fast. It can be seen that, the above three theorem does not
consider the influence of the right hand side vector b on the convergence rate of the CG method. This paper study the
effect of the right hand side vector b on the convergence rate of the CG method.

2 MAIN RESULTS

Theorem 4. Assume A ∈ Rn×n is SPD, its eigenvalues are λ1 ≥ λ2 ≥⋅⋅⋅≥ λn > 0 . The corresponding orthonormal
eigenvectors are u1, u2, ⋅⋅⋅ , un , the right hand side vector b ∈ span ui1 , ui2 , ⋅⋅⋅ , uis . Let the initial guess x0 = 0 ,
then the convergent rate of CG method for solving problem (1) can be estimated by the following inequality

xk − x∗
A ≤ 2

λi1− λis

λi1+ λis

k

x0 − x∗
A. (3)

where x A = Ax，x
1
2, xk and x∗ represent the thk approximate solution and the exact solution, respectively.
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Note that
λi1− λis

λi1+ λis

≤ λ1− λn
λ1+ λn

due to
λi1
λis

≤ λ1
λn
. Thus, theorem 4 is an efficient improvement on theorem 1.

Theorem 5. Assume A ∈ Rn×n is SPD, its eigenvalues are λ1 ≥ λ2 ≥⋅⋅⋅≥ λn > 0 . The corresponding orthonormal
eigenvectors are u1, u2, ⋅⋅⋅ , un , the right hand side vector b ∈ span ui1 , ui2 , ⋅⋅⋅ , uis . Let the initial guess x0 = 0 ,
then the CG method for solving problem (1) converges after s iterations at most.
Note that s ≤ n. Thus, the result of theorem 5 is more precisely than that of theorem 2.
Theorem 6. Assume A ∈ Rn×n is SPD, its eigenvalues are λ1 ≥ λ2 ≥⋅⋅⋅≥ λn > 0 . The corresponding orthonormal
eigenvectors are u1, u2, ⋅⋅⋅ , un , the right hand side vector b ∈ span ui1 , ui2, ⋅⋅⋅ , uis . If λi1 , λi2 , ⋯, λis are t distinct
eigenvalues of A (t ≤ s). Let the initial guess x0 = 0 , then the CG method for solving problem (1) converges after t
iterations at most.
Note that {λi1 , λi2 , ⋯, λis} is a subset of the set that includes all eigenvalues of A , thus t in theorem 6 is less than l in
theorem 3. Theorem 6 is an efficient improvement on theorem 3.

3 PRELIMINARIES

The CG method can be implemented as follows [9, 10]
Algorithm 1 (CG method）
x0 is the initial guess, usually selected as zero vector. ε is a specified error tolerance

r0 = b − Ax0；k = 0
While

∥ rk∥2 ≥ ε∥ b ∥2
k = k + 1
if k = 1
p0 = r0

else
βk−2 = rk−1

T rk−1/rk−2
T rk−2

pk−1 = rk−1 + βk−2pk−2
end

αk−1 = rk−1
T rk−1/pk−1

T Apk−1
xk = xk−1 + αk−1pk−1
rk = rk−1 − αk−1Apk−1

end
x = xk.
It can be seen from the above algorithm, the main computational cost of CG method in one iteration is a matrix- vector
multiplication. Thus, the sparsity of the coefficient matrix can be made full use of in order to reduce the computational
cost. If the coefficient matrix is dense but have special structure, the computational cost may also be reduced.
Lemma 1. [10] The thk approximate solution xk produced by CG method satisfies

xk − x∗
A = min x − x∗

A；x ∈ x0 + � A，r0，k ， (8)
where � A，r0，k = span r0，Ar0, ⋯, Ak−1r0 ，it is called Krylov subspace.
Lemma 2. [10] Let �k denote all real coefficient polynomial with degree not exceeding k, and Pk 0 = 1. b > a > 0，
then the following optimization problem

min
Pk∈�k

max
a≤λ≤b

Pk λ , (9)

has a unqiue solution

Pk� λ =
Tk

b+a−2λ
b−a

Tk
b+a
b−a

, (10)

where Tk λ is Chebyshev polynomial of degree k, and

min
Pk∈�k

max
a≤λ≤b

Pk λ = max
a≤λ≤b

Pk� λ = 1

Tk
b+a
b−a

≤ 2 b− a
b+ a

k
. (11)

Lemma 3. [10] The vectors ri, pi 0 ≤ i ≤ k produced by CG method satisfy
span r0，⋯，rk = span p0，⋯，pk = � A，r0，k + 1 . (12)

Lemma 4. Assume A ∈ Rn×n is SPD, its eigenvalues are λ1 ≥ λ2 ≥⋅⋅⋅≥ λn > 0 . The corresponding orthonormal
eigenvectors are u1, u2, ⋅⋅⋅ , un . y ∈ Rn，the vector y ∈ span ui1，ui2， ⋅⋅⋅ ，uis . Pk λ is a polynomial of λ with
degree not exceeding k. Then,

Pk A y A ≤ max
1≤j≤s

Pk λij y A. (13)

Proof: By the known condition, there exist c1, c2, ⋯, cs ∈ R such that y = c1ui1 + c2ui2 +⋅⋅⋅+ csuis. Thus,
Pk A y A

2 = APk A y，Pk A y

(4)

(5)

(6)

(7)
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= APk A c1ui1 + c2ui2 +⋅⋅⋅+ csuis ，Pk A c1ui1 + c2ui2 +⋅⋅⋅+ csuis

= λi1Pk λi1 c1ui1 + ⋯ + λisPk λis csuis，Pk λi1 c1ui1 +⋅⋅⋅+ Pk λis csuis
= Pk

2 λi1 λi1c1ui1 , c1ui1 + ⋯ + Pk
2 λis λiscsuis, csuis

≤ max
1≤j≤s

Pk λij

2
λi1c1ui1 , c1ui1 + ⋯ + λiscsuis , csuis

= max
1≤j≤s

Pk λij

2
λi1c1ui1 + ⋯ + λiscsuis , c1ui1 + ⋯ + csuis

= max
1≤j≤s

Pk λij

2
A c1ui1 +⋅⋅⋅+ csuis , c1ui1 +⋅⋅⋅+ csuis

= max
1≤j≤s

Pk λij

2
Ay, y

= max
1≤j≤s

Pk λij

2
y A

2 .

4 THE PROOF OF THE MAIN RESULTS

Proof of theorem 4: Note that the initial guess x0 = 0，we have
r0 = b − Ax0 = b = Ax∗.

Thus, x∗ = A−1r0. By lemma 3，for any x ∈ x0 + � A，r0，k , the following relationship holds true
x∗ − x = x∗ + dk0r0 + dk1Ar0 + ⋯ + dk k−1Ak−1r0 =

A−1 r0 + dk0Ar0 + dk1A2r0 + ⋯ + dk k−1Akr0 = A−1Pk A r0,
where Pk λ = 1 + j=1

k dk j−1λj� . Note that r0 = b ∈ span ui1，ui2， ⋅⋅⋅ ，uis ，thus

A−1r0 ∈ span ui1，ui2， ⋅⋅⋅ ，uis .
Lemmas 2 and 3 indicate that

xk − x∗
A = min x − x∗

A；x ∈ x0 + � A，r0，k
= min

Pk∈�k
A−1Pk A r0 A

= min
Pk∈�k

Pk A A−1r0 A

≤ min
Pk∈�k

max
a≤λ≤b

Pk λij A−1r0 A

≤ 2
λi1− λis

λi1+ λis

k

xk − x∗
A.

Similar to the above proof, the following result can be easily obtained
Corollary 1. Assume A ∈ Rn×n is SPD, its eigenvalues are λ1 ≥ λ2 ≥⋅⋅⋅≥ λn > 0 , the corresponding orthonormal
eigenvectors are u1, u2, ⋅⋅⋅ , un . If the initial guess x0 satisfies b − Ax0 ∈ span ui1，ui2， ⋅⋅⋅ ，uis ，then the thk
approximate solution xk produced by CG method for solving problem (1) satisfies

xk − x∗
A ≤ 2

λi1− λis

λi1+ λis

k

x0 − x∗
A.

Proof of theorem 5: Note that b ∈ span ui1，ui2， ⋅⋅⋅ ，uis . Thus, there exist c1, c2, ⋯, cs ∈ R such that
b = c1ui1 + c2ui2 +⋅⋅⋅+ csuis.

We just need to proof that for any positive integer k , the dimension of Krylov subspace � A，r0，k = span r0

，Ar0, ⋯, Ak−1r0 is not exceeding s. Note that the initial guess x0 = 0，thus
r0 = b − Ax0 = b = c1ui1 + c2ui2 +⋅⋅⋅+ csuis,

Ar0 = c1Aui1 + c2Aui2 +⋅⋅⋅+ csAuis = c1λi1ui1 + c2λi2ui2 + ⋯ + csλisuis.
It can be calculated that for any positive integer k, the following relationship holds true

Ak−1r0 = c1λi1
k−1ui1 + c2λi2

k−1ui2 + ⋯ + csλis
k−1uis.

This shows that the vector group r0, Ar0, ⋯, Ak−1r0 can be linearly represented by the vector group ui1, ui2 , ⋅⋅⋅ , uis
and its rank is not exceeding s. Thus,

dim � A，r0，k = dim span r0，Ar0, ⋯, Ak−1r0 ≤ s.
By Lemma 1,

xk − x∗
A = min

x∈x0+� A，r0，k
x − x∗

A.

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
(22)

(23)

(24)
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The above equation indicates that the CG method can achieve the exact solution of the linear system Ax = b after s
iterations at most.
Simply modify the above proof, the following corollary can be obtained.
Corollary 2. Assume A ∈ Rn×n is SPD, its eigenvalues are λ1 ≥ λ2 ≥⋅⋅⋅≥ λn > 0 , the corresponding orthonormal
eigenvectors are u1, u2, ⋅⋅⋅ , un . If the initial guess x0 satisfies b − Ax0 ∈ span ui1，ui2， ⋅⋅⋅ ，uis ， then the CG
method for solving problem (1) can achieve the exact solution after s iterations at most.
Proof of theorem 6: Let’s assume λi1 = λ1，λi2 = λ2，⋯，λis = λs， i.e, λi1 , λi2 , ⋯, λis is the first s eigenvalues of
matrix A. At the same time, they are t distinct eigenvalues of A. Thus, we can assume

λ1 = ⋯ = λs1� � ���� ���
s1

, λs1+1 = ⋯ = λs1+s2� � ����� ����
s2

, ⋯, λs1+⋯+st−1+1 = ⋯ = λs1+⋯+st−1+st� � ��������� ��������
st

where s1 + s2 + ⋯ + st = s. The corresponding orthonormal eigenvectors are
u1, ⋯, us1 , us1+1, ⋯, us1+s2 , ⋯, us1+⋯+st−1+1, ⋯, us1+⋯+st−1+st.

Note that the initial guess x0 = 0, thus r0 = b − Ax0 = b. By the known condition, we can assume
r0 = c1u1 + ⋯ + cs1us1 + cs1+1us1+1 + ⋯ + cs1+s2 us1+s2 + ⋯ +

cs1+⋯+st−1+1us1+⋯+st−1+1 + ⋯ + cs1+⋯+st−1+st us1+⋯+st−1+st.
Let

z1 = c1u1 + ⋯ + cs1us1，

z2 = cs1+1us1+1 + ⋯ + cs1+s2 us1+s2，

⋯
zt = cs1+⋯+st−1+1us1+⋯+st−1+1 + ⋯ + cs1+⋯+st−1+st us1+⋯+st−1+st.

Then,
r0 = z1 + z2 + ⋯ + zt，

Ar0 = λ1z1 + λs1+1z2 + ⋯ + λs1+⋯+st−1+1zt.
It can be calculated that for any positive integer k, the following relationship holds true

Ak−1r0 = λ1
k−1z1 + λs1+1

k−1 z2 + ⋯ + λs1+⋯+st−1+1
k−1 zt，

The above equation shows that the vector group r0, Ar0, ⋯, Ak−1r0 can be linearly represented by the vector group
z1, z2, ⋯, zt and its rank is not exceeding t. Thus,

dim � A，r0，k = dim span r0，Ar0, ⋯, Ak−1r0 ≤ t.
By lemma 1, the CG method can achieve the exact solution of the linear system Ax = b after t iterations at most.
Simply modify the above proof, the following corollary can be obtained.
Corollary 3. Assume A ∈ Rn×n is SPD, its eigenvalues are λ1 ≥ λ2 ≥⋅⋅⋅≥ λn > 0 , the corresponding orthonormal
eigenvectors are u1, u2, ⋅⋅⋅ , un . If the initial guess x0 satisfies b − Ax0 ∈ span ui1，ui2， ⋅⋅⋅ ，uis ， and
λi1 , λi2 , ⋯, λis are t distinct eigenvalues of A . Then, the CG method for solving problem (1) can achieve the exact
solution after t iterations at most.

5 CONCLUSIONS

Three efficient improvements on the convergence rate of CG method are presented in this paper. These improvements
consider the effect of the right hand side vector on the convergence rate of the CG method. They can provide directions
for constructing preconditioners during the process of typhoon forecasting and accelerate the process of typhoon
forecasting.
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