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Abstract: Under conventional game theory models, a deeper analysis of players' mixed strategies through probabilistic
methods has become a mainstream analytical approach. By infinitely approaching a fixed probabilistic expected value
point, traditional equilibrium algorithms in game theory can calculate equilibrium points. However, in most cases, it is
not possible to directly make relevant final predictions in games through probabilistic means. As a result, the practical
application of game theory is very limited, making it difficult to be widely applied as a module of applied mathematics.
This paper provides an overview of the model architecture for the application of game theory through computational
mathematical methods based on matrix model calculations. Although it considers fundamentals similar to Nash
equilibrium, there are still essential differences.
Keywords: Data model specific matrix; Computational mathematics; Game theory; Gray number model; Dimension
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1 INTRODUCTION

The theories related to game theory focus on how to achieve effects similar to the optimal equilibrium through
probability theory[1]. In fact, there is still some controversy regarding mixed strategies. This article mainly aims to
elaborate on the relevant applications of computational mathematics. When dealing with a large number of nested
models, detailed mathematical reasoning is still required to verify the winning probabilities of special matrices in the
data model and the optimal solutions.

2 DATA MODEL AND MATRIX ARCHITECTURE PROCESS

2.1 Data Model Background Establishment

First, let's take a look at the traditional game theory model. In the example of a competition, both A and B have two
levels of teams, with equal strength. a1、a2、b1、b2 represent A's upper-level team, A's lower-level team, B's upper-
level team, and B's lower-level team, respectively. Thus, the box represents the payoff matrix. If we directly represent
the results of the single-team confrontations in a cross-competitive manner, it is as follows (Table 1):

Table 1 Single Team Adversarial Benefit Matrix
b1 b2

a1 (0,0) (1,0)
a2 (0,1) (0,0)

In a real gaming environment, both Team A and Team B need to compete against each other, but they often cannot
appear on the field at the same time; in fact, competitions typically take place separately. Therefore, we assume that two
teams compete simultaneously at the same point in time, which means that only the outcomes represented in the green
squares below are the possible simultaneous results of the game. Even with multiple matrices, this event cannot be
effectively resolved. Thus, a completely new matrix model is needed to simulate such scenarios. For example, the
possible options might be as follows: after a1 competes against b1, the remaining matchup must be a2 against b2. Besides
this, the only other possibility is that a1 competes against b2, which means that the remaining matchup must be a2
against b1 (Table 2-3).

Table 2 The First Possibility of the Single Team Confrontation Payoff Matrix's Mutual Exclusivity
b1 b2

a1 P（a1，b1） P（a1，b2）
a2 P（a2，b1） P（a2，b2）

Table 3 The Second Possibility of the Mutual Exclusivity of the Single Team Confrontation Payoff Matrix
b1 b2

a1 P（a1，b1） P（a1，b2）
a2 P（a2，b1） P（a2，b2）
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The construction of this matrix will be carried out in 2.2 through the "mutually exclusive probability matrix," which
effectively eliminates the matrix parts where simultaneous participation occurs. At the same time, we incorporate the
differences in game sessions to describe and include time series factors. In this way, there is a certain time series order,
resulting in a very complex representation of the game matrix profit matrix (Table 4).

Table 4 Dual Team Competitive Payoff Matrix
b1+b2 b2+b1

a1+a2 P（a1b1,a2b2） P（a1b2,a2b1）
a2+a1 P（a2b1,a1b2） P（a2b2,a1b1）

Due to considerations based on time series, it is assumed that P(a1b1, a2b2) = P(a2b2|a1b1), where the correlation
equilibrium of a2b2 is influenced by a1b1, which is the probability of the first match. The results of the second match
need to take this condition into account when constructing the model. Finally, we need an evaluation hypothesis to
determine whether a match is won, and we use the number of matches won as the result, which is also the mainstream
strategy in competitions.

2.2 Spatial Architecture of the Game Model

Based on the assumptions of the above game model, the first step is to construct a payoff matrix to express the related
benefits. In this paper, we refer to it as the "spatial architecture of the game model," which is used to elucidate a series
of decision-making processes that follow.
2.2.1 Spatial Expansion Matrix
For Team A, we represent the aforementioned strength quantitatively, essentially as a one-dimensional spatial vector
va(1, 0.5), which respectively represents the quantitative strength of Team A's upper and lower teams. Similarly, the
spatial vector vb(0.8, 0.4) represents the quantitative strengths of Team B's two teams. Let XA and XB be two vector
spaces, and by organizing them according to the number of matches, we fill the spatial expansion matrix based on team
strengths:
By copying teams A and B into a matrix with the same number of rows, two matches represent a 2*2 matrix. By setting
the "spatial expansion matrix" row number for 2, we can obtain:
The spatial expansion matrix for A's competition team strength is XA 1 0.5

1 0.5 , and for B's competition team strength is

XB 0.8 0.4
0.8 0.4 .

2.2.2 Sorting Matrix
It is called a sorting matrix because this matrix is used to sort the resource elements of the aforementioned spatial
expansion matrix according to different rules. For example, in the above case, the intersection of events A and B is
empty; A and B are mutually exclusive events, meaning they cannot happen simultaneously. Assuming A∩B is an
impossible event, then A∩B = Φ, indicating that events A and B are mutually exclusive, and they will not occur at the
same time in any single trial. For the mutual exclusivity representation, it corresponds to n linearly independent
characteristic vectors, based on which a diagonal matrix can be constructed[2], forming an abstracted "mutually
exclusive probability matrix" as the sorting matrix. If we use rows as matches, the sorting matrix can be constructed as
1 0
0 1 , 0 1

1 0 , representing that Team A and Team B's selections cannot repeat their own team. For instance, in the
same match, two teams cannot participate simultaneously. In the case of multiple teams, we can construct a more
complex "mutually exclusive probability matrix." After transforming the original spatial expansion matrix through
Hadamard product matrix operations, we can obtain new sorting results:
Sorting Matrix:

X1
1 0
0 1 、X2

0 1
1 0

By conducting Hadamard product matrix transformations, the results of XA⭕ X1 and XB ⭕ X2 yield the actual
operational matrices:

XA1
1 0
0 0.5 、XB1

0.8 0
0 0.4

XA2
0 0.5
1 0 、XB2

0 0.4
0.8 0

2.2.3 Dimensionality Reduction Operation
Since we believe that the results of matches are not matrix operations, actual calculations will also consume a lot of
resources (Figure 1).

(1)

(2)
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Figure 1 Dimensionality Reduction Operation

By projecting the vector space through eigenvalue decomposition and vectorizing the non-zero elements[3], we can
express it as:

E1=vec(XA1) -vec(XB1)=(1,0.5)-(0.8,0.4)=(0.2,0.1)
E2=vec(XA1) -vec(XB2)=(1,0.5)-(0.4,0.8)=(0.6,-0.3)
E3=vec(XA2) -vec(XB1)=(0.5,1)-(0.8,0.4)=(-0.3,0.6)
E4=vec(XA2) -vec(XB2)=(0.5,1)-(0.4,0.8)=(0.1,0.2)

This way, using the logical judgment formula, we can calculate that the results of E1 and E4 indicate victory, while the
other two are draws, leading to a scenario where one team ultimately wins 100%.
2.2.4 Example: Discovery of a Special Relative Winning Matrix
Under the assumptions of the game's outcomes and determinations, if we operate according to the Nash equilibrium
method[4], we can find that even after calculating the expected equilibrium point under mixed strategies to determine
the most favorable returns for both parties, in real life, there is no necessity for opponents to engage in the game
because there is no probability of winning at all. This matrix is essentially referred to as a permanently relative winning
matrix for teams with significant strength. Through the matrix simulation described above, there will always be a
quantifiable interval of strength differences that has both an upper and a lower limit, inevitably including gray factors[5],
known as the gray number interval. At the same time, it needs to be recognized that there might be exceptional cases
where the relative winning matrix is reversed, such as in the cases of E2 and E3. In situations of stark strength disparity,
gains can be achieved through advantageous positioning. In three-player game scenarios, results can be reversed even
with a comprehensive disadvantage, as long as certain fixed combinations appear on the sorting matrix, it is possible to
obtain a relative winning matrix of strength disadvantage but always winning. Furthermore, there exists a relative
winning matrix that can never achieve victory. Since this paper primarily elaborates on the matrix simulation of game
theory architecture, we will not delve into proofs here. This differentiates it from traditional game theory, where Nash
equilibrium is based on probabilistic expectations of payoff results, while the purpose of the relative winning matrix
here is to construct a range of game arrays to obtain the absolute relative winning difference interval in the game. The
reason for using matrix simulation to express victory in game theory is that multi-dimensional game operations in
practical situations are very complex; appropriate matrix algorithms must be adjusted to save considerable time[6].
Meanwhile, it also includes the impact of time series on the outcomes of the next game, so we still need to discuss the
overview of the game matrix under time series considerations.

2.3 The Impact of Time Series, Logic Matrix, and Compensation Matrix

In real life, there are various situations such as match sorting, substitute players, and morale effects, while particularly
in project planning, there may be cases where a team, after winning, is completely supplemented to other teams. This
implies that a single traditional enumerative matrix cannot meet the requirements of the game theory model and that it is
necessary to additionally incorporate a compensation matrix based on time series as a foundation, with prior result
probabilities serving as judgment criteria. For example, after winning, the coach of the upper-ranked team may
subconsciously request outstanding players to substitute in the next match and boost morale, which means that the order
of participation may affect the matrix state of the next game, inevitably changing with the occurrence of the previous
outcome to adjust the capabilities of the team for the next match. Thus, a corresponding compensation matrix arises,
which belongs to a concept of "logic matrix" that generates compensation matrix results through logical judgment
formulas[7]. For example, directly judging the first column of the matrix formed by E1-E4 can yield the matrix result for
whether compensations will be made. However, this primarily relates to the field of computational mathematics, so
more complex issues regarding logical matrices will not be discussed here. In fact, through this logical judgment, we
can calculate that the compensation matrices for E1-E4 are special matrices with the first row (representing the first
match) being 0:
Vbe1= 0 0

0 0.7 , compensating on the XA1 judgment in the second match,

(3)
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Vbe2= 0 0
0 0.7 , compensating on the XA1 judgment in the second match,

Vbe3= 0 0
0 0.7 , compensating on the XB1 judgment in the second match,

Vbe4= 0 0
0.7 0 , compensating on the XA1 judgment in the second match,

Thus, the final calculation results become:
E1=vec(XA1) -vec(XB1)=(1,1.2)-(0.8,0.4)=(0.2,0.8)
E2=vec(XA1) -vec(XB2)=(1,1.2)-(0.4,0.8)=(0.6,0.4)
E3=vec(XA2) -vec(XB1)=(0.5,1)-(0.8,1.1)=(-0.3,-0.1)
E4=vec(XA2) -vec(XB2)=(0.5,1.7)-(0.4,0.8)=(0.1,0.9)

Thus, it can be observed that the outcome has changed. In a reasonable configuration that wins the first game, Team B,
which is at a strength disadvantage, can achieve a two-game winning streak after obtaining the first victory. Compared
to the first outcome, a winner-takes-all situation can also be seen, primarily stemming from the strong impact of
substitutions after victories on the game model. This phenomenon can explain many scenarios of comebacks and
winner-takes-all situations without merely attributing them to the original strength of the teams. Therefore, this is a very
important model, and the verification of how to conduct compensation matrix validation can be implemented through
historical data level comparative tests and other verification methods[8]. Here, based on time series considerations for
the logical matrix judgment of the next matrix, a certain degree of model evolution explanation is provided.
Nature's games and evolution are complex, but regardless, it is still possible to restore evolutionary logic through
mathematical model architecture. Here, some special matrix architectures are proposed for computer simulations of
game-related models, such as "mutually exclusive probability matrices" and "logic matrices." Although these matrix
architectures do not exist in traditional mathematics, it is necessary to develop innovative underlying matrix
computation models to address large-scale data calculations in response to the complexities of reality.

3 CONCLUSION

Matrix simulation holds a significant position for quantification in complex game theory. The patterns of special
matrices in data models can adjust parameters and perform complex function transformations. Through computer
enumeration of time series operations, more diversified matrix combinations and analyses can be derived, presenting
enormous potential and applications across engineering projects, physical numerical simulations, and economic
management analysis.
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