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Abstract: Solid-state lasers are widely used in various industries due to their high stability, compact structure, and
excellent beam quality. However, thermal effects have long been a significant constraint on improving laser
performance. Thermal effects are primarily caused by the heat deposition resulting from the absorption of pump energy
by the laser medium in solid-state lasers. Studying the heat conduction equation of the laser medium is crucial for
understanding thermal effects. This paper provides a detailed theoretical derivation for calculating the heat conduction
equation of the laser medium in solid-state lasers. A series expansion is used to derive the analytical expression for the
heat conduction equation, and the fourth-order Runge-Kutta method is employed to numerically solve it. The
temperature simulation results of the laser medium end face using both methods are compared to verify the correctness
of the analytical derivation process and to analyze the causes of any errors.
Keywords: Heat conduction equation; Power series; Runge-Kutta; Temperature simulation

1 INTRODUCTION

In recent years, solid-state lasers based on Nd:YAG crystals have gained wide applications due to their excellent beam
quality, high stability, and compact design. These lasers are commonly used in fields such as material processing,
medical treatments, and scientific research. However, one of the key challenges in the performance of these lasers is the
thermal effects caused by the pumping process. A series of effects caused by the change in the end-face temperature
gradient are referred to as the thermal effects of the laser [1-3]. When the laser diode (LD) pumps the Nd:YAG medium,
the energy absorbed from the pump light generates heat, leading to a temperature gradient within the laser medium. This
temperature gradient can severely affect the laser's efficiency, beam quality, and overall performance, causing
phenomena such as thermal lensing, which distorts the laser beam and reduces output power.
Understanding the thermal effects in Nd:YAG laser media is crucial for optimizing laser design and improving its
efficiency. As the heat generated by the absorbed pump light is not evenly distributed, the resulting temperature gradient
plays a critical role in determining the laser's performance. This study focuses on the thermal effects at the end face of
the laser medium under LD pumping, simulating the temperature distribution within the Nd:YAG crystal. The study
provides an in-depth analysis of the temperature distribution at the medium's end face under different pump powers and
pump beam radii.

2 HEAT CONDUCTION EQUATION OF THE LASER MEDIUM

The laser working substance is an important component of solid-state lasers. The Nd:YAG crystal is chosen for its high
mechanical strength, good thermal conductivity, and low laser threshold, making it the subject of this study.

2.1 Establishing the Heat Conduction Equation

The temperature distribution inside the crystal is related to the heat power density generated by the pump light, the
thermal properties of the crystal, the geometry, and external conditions [4-8]. Since the selected crystal has isotropic
thermal properties and the cylindrical rod has axial symmetry, the steady-state equation and heat source equation in
cylindrical coordinates are as follows:
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Where r and z are the radial and axial coordinates of the crystal, respectively, with the origin at the center of the pump
face of the crystal, T(r) is the temperature, q(r,z) is the thermal power density function, PPP represents the pump power,
η is the conversion efficiency (value of 0.3), k is the thermal conductivity of the crystal, which is 14 W/(m·K). and α is
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the absorption coefficient of the crystal (value of 0.3 cm-1).
The heat variation along the direction of the laser rod's length z ultimately becomes exp(−αz). Given this property,
assuming the temperature distribution during the differential process is T(r,z)=T(r)⋅ T(z)=T(r)exp(−αz), we substitute it
into equation (1) and obtain:
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Multiply both sides by exp(αz):
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Set the constant B so that:
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Now expand the right-hand side of (4) using a Taylor series:
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Assume that T(r) is defined and can be analytically expressed within (r,r0):
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Substituting (7) into (4), get:
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From (4), (6), and (8), obtain:
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Expanding both sides of (9) to the sixth term:
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Expanding the right-hand side of (9) to the sixth term:
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By examining equation (9), we find that the power terms of the variables on both sides are integer multiples of 2
starting from zero. Since both sides are equal, we conclude that the coefficients of the same powers of r on both sides
are equal:
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From equation (12), we obtain A1 , A2 , A3 , A4 , A5 , and so on... Let A0 be the first term of the equation,
A1 be the second term, A2 be the third term, and so on. By this analogy, we can derive the inverse expression for
An .
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Simplifying:
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Substituting T(r) back into T(r,z):
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2.2 Boundary Conditions

In this study, the axial variation of the temperature gradient is neglected, and only the radial temperature distribution is
considered. Since the heat transfer by convection from the end face to the air is minimal, the effect of convection on the
temperature distribution at the end face is ignored. Since the crystal mainly dissipates heat through the side cooling
system or cooling water, the side is assumed to be at a constant temperature. The boundary condition is thus determined
as:

0

0

0

( ) 0

( )

|

|

r

r r

dT r
dr

T r T





 







(16)

3 LASER MEDIUM END-FACE TEMPERATURE ANALYTICAL SIMULATION

Based on the analytical expression of the laser medium's heat conduction equation derived above, the temperature
distribution at the laser medium's end face is simulated, while also exploring the impact of pump power and pump beam
radius on the end-face temperature distribution.

3.1 Influence of Pump Power on Medium Temperature Distribution

The variation in pump power significantly affects the heat distribution at the laser medium's end face, leading to thermal
lensing effects. Therefore, when using solid-state laser devices to achieve higher output power, it is important to
minimize the thermal effects to improve the performance of the laser system. This requires studying the temperature
distribution at the end face of the laser medium under different pump powers. Figure 1 shows the three-dimensional
temperature distribution of the end face when the radius and length of the Nd:YAG rod are 0.2 cm and 0.5 cm,
respectively, with a pump beam radius of 0.5 mm and pump powers of 5W, 10W, 15W, and 20W.
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Figure 1 Temperature Distribution at the End-Face of the Laser Medium under Different Pump Powers

From Figure 1, it can be seen that the temperature at the center is the highest, and it increases as the pump power
increases. The higher the pump power, the greater the amount of energy absorbed by the laser, leading to more heat
accumulation at the smaller end face. The temperature distribution along the radial direction is shown in Figure 2.

Figure 2 Radial Temperature Distribution of the Laser Medium under Different Pump Powers

Figure 2 shows the heat distribution at the end face of the laser medium under different pump powers. The temperature
at the center of the laser medium is 339.73K, 350.52K, 361.32K, and 372.10K for pump powers of 5W, 10W, 15W, and
20W, respectively. As the pump power increases, the temperature at the center of the end face shows an increasing trend.
Therefore, in order to ensure the output efficiency and meet the requirements during operation, the pump power should
be appropriately reduced.

3.2 Influence of Pump Beam Radius on Medium Temperature Distribution

The change in pump beam radius has a certain impact on the heat source and the quality of the generated laser at the end
face. Figure 3 shows the three-dimensional temperature distribution at the end face of the Nd:YAG rod with radii and
lengths of 0.2 cm and 0.5 cm, respectively. The pump power is fixed at 10W, and the pump beam radii are 0.05 cm, 0.06
cm, 0.07 cm, and 0.08 cm.

Figure 3 Temperature Distribution at the End-Face of the Laser Medium under Different Pump Beam Radii

From Figure 3, it can be seen that as the pump beam radius increases, the temperature at the center of the laser medium
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starts to decrease. This is mainly because the relationship between the pump beam radius and the heat power density is
inversely proportional, so the heat accumulated at the laser medium's end face decreases. The specific temperature
distribution along the radial direction is shown in Figure 4, which illustrates the heat distribution at the laser medium's
end face under different pump beam radii.

Figure 4 Radial Temperature Distribution of the Laser Medium under Different Pump Beam Radii

When the pump beam radius is 0.05 cm, 0.06 cm, 0.07 cm, and 0.08 cm, the center temperature of the laser medium end
face is 350.52K, 348.63K, 347.03K, and 345.63K, respectively. After the pump beam radius decreases, the temperature
at the end face decreases overall, but the decrease is very slow, with a temperature reduction controlled within 2K.
Therefore, in practical applications, the choice of pump beam radius mainly depends on the requirements of the laser
beam.

4 NUMERICAL SIMULATION OF THE LASER MEDIUM END-FACE TEMPERATURE

This section uses the fourth-order Runge-Kutta [9] method to numerically solve the heat conduction equation, simulate
the temperature distribution at the laser medium's end face, and investigate the impact of pump power and pump beam
radius on the end-face temperature distribution.

4.1 Influence of Pump Power on Medium Temperature Distribution

Figure 5 shows the three-dimensional temperature distribution at the laser medium's end face when the Nd:YAG rod has
a radius and length of 0.2 cm and 0.5 cm, respectively, and the pump power is 5W, 10W, 15W, and 20W, with a pump
beam radius of 0.5 mm.



Thermal effects on the LD end-face pumped Nd:YAG laser medium

Volume 2, Issue 1, Pp 35-43, 2025

41

Figure 5: Temperature Distribution at the End-Face of the Laser Medium under Different Pump Powers

From Figure 5, it can be seen that along the radial direction, the temperature at the center is the highest, and it increases
as the pump power increases. As the pump power increases, the energy absorbed by the laser medium also increases,
leading to more heat accumulation at the smaller end face. The temperature distribution along the radial direction is
shown in the figure 6.

Figure 6 Radial Temperature Distribution of the Laser Medium under Different Pump Powers

Figure 6 shows the heat distribution at the laser medium's end face under different pump powers. The center
temperature of the laser medium's end face is 339.74K, 350.53K, 361.32K, and 372.11K for pump powers of 5W, 10W,
15W, and 20W, respectively.

4.2 Influence of Pump Beam Radius on Medium Temperature Distribution

Figure 7 shows the three-dimensional temperature distribution at the laser medium's end face when the Nd:YAG rod has
a radius and length of 0.2 cm and 0.5 cm, respectively. The pump power is fixed at 10W, and the pump beam radii are
0.05 cm, 0.06 cm, 0.07 cm, and 0.08 cm.
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Figure 7 Temperature Distribution at the End-Face of the Laser Medium under Different Pump Beam Radii

From Figure 7, it can be seen that after the pump beam radius increases, the temperature at the center of the laser
medium starts to decrease. This is mainly because the relationship between the pump beam radius and the heat power
density is inversely proportional, so the heat accumulated at the laser medium's end face decreases. The specific
temperature distribution along the radial direction is shown in Figure 8, which illustrates the heat distribution at the
laser medium's end face under different pump beam radii.

Figure 8 Radial Temperature Distribution of the Laser Medium under Different Pump Beam Radii

When the pump beam radius is 0.05 cm, 0.06 cm, 0.07 cm, and 0.08 cm, the center temperature of the laser medium's
end face is 350.53K, 348.64K, 347.03K, and 345.64K, respectively.

5 COMPARISON BETWEEN NUMERICAL AND ANALYTICAL SIMULATIONS

The fourth-order Runge-Kutta method is used to convert the partial differential equation to an ordinary differential
equation and then perform the calculation. A power series method is used to derive the analytical expression for the
temperature distribution. This section compares the numerical results with the analytical calculations to verify the
correctness of the analytical expression.

Table 1 Comparison of Analytical and Numerical Solutions for End-Face Center Temperature under Different
Parameters

Parameters Analytical calculation (K) Numerical calculation (K) Relative error (%)
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Pump power
(W)

5 339.7300 339.7373 0.0022
10 350.5200 350.5290 0.0026
15 361.3150 361.3207 0.0016
20 372.1050 372.1124 0.0020

Pump beam
radius (cm)

0.05 350.5200 350.5290 0.0026
0.06 348.6300 348.6381 0.0023
0.07 347.0250 347.0334 0.0024
0.08 345.6300 345.6379 0.0023

From Table 1, it can be seen that, under different pump powers and pump beam radii, the analytical solution obtained by
the analytical method is slightly smaller than the numerical solution obtained by the fourth-order Runge-Kutta method.
The average error between the two methods for different pump powers is 0.0021%, and for different pump beam radii,
the average error is 0.0024%. As the relevant parameters change, the error between the analytical solution and the
numerical solution of the temperature distribution obtained by the two methods is small, with precision up to two
decimal places. The simulation results derived from the analytical expression using the series method are very close to
those obtained by the fourth-order Runge-Kutta method, and the two methods show excellent consistency, with relative
errors controlled within 0.01%. This effectively verifies the correctness of the series method used in the calculations.
The analytical method uses series expansion for solving, and in the calculation process, truncation errors and
approximations lead to certain errors. Although the analytical method itself is exact, numerical errors (such as
floating-point errors) may affect the final results. Especially when there are many iterations or large numerical ranges
involved, precision limits can cause computational errors. The main feature of numerical methods is that they discretize
continuous problems, which brings some inherent errors. Since computers can only handle a finite number of digits,
numerical methods also introduce unavoidable errors during the calculation. Particularly, when iterating multiple times
or solving complex equations, rounding errors can accumulate, affecting the final result.
Both the analytical and numerical calculations of the temperature distribution in the laser medium of the solid-state laser
give consistent trends, and this result fully confirms the rationality of using the series method in the derivation. In the
calculation of the heat conduction equation for the laser medium in the solid-state laser, solving the heat model
established in this paper using the power series method is a relatively simple and more easily understood approach.
Ultimately, an analytical expression for the end-face temperature distribution is obtained, which helps in further
studying the relationship between temperature distribution and variables, and is of significant physical importance in
understanding the thermal effects in solid-state lasers.
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