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Abstract: In order to solve the problems of insufficient coordination between global semantics and local syntactic
features and noise interference of dependency parsing in aspect sentiment classification tasks, this paper proposes a
bidirectional semantic enhancement and hierarchical syntactic analysis model based on graph convolutional network
(GCN). The model effectively integrates semantic enhancement GCN and syntactic enhancement GCN for feature
interaction to accurately model the complex hierarchical relationship between aspect words and sentiment words. In
semantic modeling, self-attention and perceptual aspect attention (ASA) are integrated to extract deep semantic
information through the attention fusion mechanism (GAFM). In terms of syntactic feature extraction, the syntactic
distance mask matrix is introduced to measure semantic association, and the syntactic modeling is optimized in
combination with the dependency relationship. In terms of structural optimization, the hierarchical phrase structure is
adopted to fuse the syntactic dependency matrix with the phrase matrix to significantly reduce the noise of dependency
tree parsing. Experimental results show that the model performs well on multiple datasets, with consistently improved
accuracy and stability. Ablation experiments and visualization analysis further verify the effectiveness of each module,
proving that the combination of bidirectional semantic enhancement and hierarchical syntactic analysis helps
substantially improve the performance of aspect sentiment classification.
Keywords: Graph convolutional network; Semantic enhancement; Syntactic enhancement; Feature interaction; Aspect
sentiment classification

1 INTRODUCTION

Aspect-based Sentiment Analysis (ABSA) aims to identify the sentiment tendencies of different aspects in text and is a
key task in sentiment analysis. Traditional methods mainly focus on overall sentiment analysis, which is difficult to
meet the needs of accurate identification. Therefore, ABSA improves the precision of sentiment analysis by modeling
the association between sentiment polarity and specific aspects.
Current research mainly focuses on the self-attention mechanism and the graph convolutional network (GCN) based on
the dependency tree to model the dependency relationship between aspect words and context. However, the
self-attention mechanism may cause semantic feature loss when capturing the association between aspect words and
context, while the dependency tree may introduce noise due to parsing errors or irregular text structure, weakening the
model's discriminative ability.
In response to the above challenges, this chapter proposes a bidirectional semantic and hierarchical syntactic aspect
sentiment classification model (SEAFM-GCN) based on GCN. The model improves the feature representation ability
and enhances the accuracy and robustness of sentiment classification by integrating semantic information and syntactic
information. In terms of semantic enhancement, we first use BiLSTM to extract context representation, and then
combine self-attention and perceptual attention to calculate attention weights, which are then fused with the syntactic
mask matrix to generate the adjacency matrix of GCN input to extract global semantics and local syntactic features. In
terms of syntactic enhancement, we introduce a hierarchical phrase structure to explore the phrase collocation
relationship within the sentence, and optimize the syntactic feature representation by screening out irrelevant
dependency edges. Finally, we interactively fuse the extracted features to improve the classification ability of sentiment
polarity.

2 RELATED WORK

GCN has outstanding performance in text syntactic modeling. Zhou et al[1]. introduced common sense knowledge to
optimize the representation of aspect terms. Qi et al[2]. used weight matrices to enhance syntactic relations. Chen et
al[3]. proposed D-GCN, combining dependency encoding to optimize aspect word extraction. Zhang et al[4]. first
introduced syntactic dependency in GCN to improve the sentiment classification effect. Nguyen et al[5]. strengthened
the connection between aspect words and sentiment words through dependency trees. Gu et al[6]. proposed MFSGC to
optimize the adjacency matrix, remove irrelevant information, and strengthen dependencies.
The current study combines self-attention with GCN, integrates semantic and syntactic features, promotes the
development of aspect sentiment classification, and provides theoretical support for this study.

3 MODLE CONSTRUCTION
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The SEAFM-GCN model framework is shown in Figure 1, which consists of five parts: input module, attention fusion
module, semantic enhanced graph convolution module, syntactic enhanced graph convolution module, feature
interaction module and classification module.

Figure 1 SEAFM-GCN Model Framework

3.1 Input Module

The input module consists of two parts: the embedding layer and the encoding layer.
(1) Embedding layer
Currently, models with relatively good results widely use pre-trained language models as the basis. For the sake of
comparison, this model uses the BERT pre-trained language model as part of the word embedding. Considering that the
task of performing aspect-level sentiment analysis on the course review text is to adjust the sentence format to
[CLS]+sentence+[SEP] +aspect+[SEP] before sending it to BERT.
(2) Encoding layer
In the encoding layer, BiLSTM is used to encode the word vector sequence X to generate a hidden vector that integrates
context information. The word vector sequence generated by the embedding layer is input into the BiLSTM, and is
processed according to the encoding order from front to back and from back to front, so that two different hidden
vectors are generated at the output of the two LSTMs, which can be expressed as and. Finally, the final hidden vector is
obtained by concatenating the vector and the vector. This paper uses the vector and the vector as the output of the
encoding layer, mainly because these two vectors can capture richer feature information. The specific formulas are
shown in Equations 1 to 3.

ℎ�� � = LSTM  ��, ℎ�� �−1 (1)
ℎ��t = LSTM  ��, ℎ���−1 (2)

ℎ� = ℎ�� �, �
←

� (3)
Among them, represents the word vector at time t, represents the output of the LSTM from left to right at time t,
represents the output of the LSTM from right to left at time t, and represents the output from the BiLSTM at time.

3.2 Attention Fusion Module

This chapter proposes a Global-Aware Fusion Mechanism (GAFM) to extract global and aspect-related semantic
features efficiently. GAFM combines a Self-Attention Mechanism (SA) and an Aspect-Sensitive Attention Mechanism
(ASA). Additionally, a syntactic distance mask matrix serves as an adjacency matrix, enhancing the SEAFM-GCN
model's ability to capture semantic and syntactic distance features.
3.2.1 Self-Attention Mechanism (SA)
In this study, the hidden state output of the encoding layer is represented as , and the self-attention mechanism is
employed to extract global semantic feature information. After three linear transformation operations, the Q, K, and V
matrices are obtained. The self-attention score matrix for the text data�Self = ℎ1

� , ℎ2
�, ⋯, ℎ�

� can be computed using
Equation 4, as shown below.
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ASelf = ℎiWq× ℎiWk T

di
ℎiWv (4)

Among them,Wq、WkandWvare parameter matrices that can be adaptively optimized during the training process of the
SEAFM-GCN model to improve prediction accuracy. represents the feature dimension of the input vector, playing a
crucial role in the model's performance.
3.2.2 Aspect-Sensitive Attention Mechanism(ASA)
In the Aspect-Sensitive Attention Mechanism, the output vectors from the encoding layer are multiplied by the aspect
mask matrix to extract the vectors corresponding to the aspect terms,represented by a∈R1×d,where d denotes the
dimension of the hidden layer. The detailed calculation process is shown in Equation 5.

� = ����  ���� × ℎ� (5)
In the formula, the mean function represents average pooling. The final feature representation is generated by
replicating a n times.
The obtained representation is fed into the ASA layer to capture aspect-related semantic features. The aspect-sensitive
attention score matrix is computed using Equation 6.

���� = ���ℎ  ℎ��� × ℎ��� � + �� (6)

���ℎ  represents the activation function,ℎ� denotes the output of the encoding layer,�� and �� are the weight
matrices, and �� is the bias term.
Finally, according to Equation 7, the global semantic information is fused with the aspect-specific semantic information
to generate the final attention score matrix. In the equation, α is the scaling factor.

���� = �������  �Self + ����� (7)
3.2.3 Syntactic Mask Matrix
First, the syntactic mask matrix is applied to mask each fully connected graph. The syntactic dependency tree is treated
as an undirected graph, where nodes represent tokens and the distance between nodes is defined by a function. The
shortest path distance between nodes is denoted as DD, as shown in Equation 8.

�(�, �) = ���� ��, �� (8)

3.3 Semantic Enhanced Graph Convolutional Module

As shown in Equation 9, The model performs graph convolution on the fused attention mask matrix.
ℎ�

� = � ∑�=1
�  �����ℎ�

�−1 + �� (9)
Here, σ is the nonlinear function,Wl is the weight matrix, bl is the bias term.

3.4 Syntactically Enhanced Graph Convolutional Module

As shown in Equation 10.This paper uses the Stanford Dependency Parser developed by Stanford University to
automatically parse syntactic structures. This tool extracts part-of-speech information and their dependency relations,
providing detailed syntactic analysis support for text understanding. In contrast, phrase structure trees focus on
representing the hierarchical structure and phrase-level relationships of the text. Their construction relies on phrase
structure analysis, where each node corresponds to a specific phrase, and the phrases at each level cover all the words in
the sentence, capturing richer syntactic features. The proposed method uses the Stanford Constituency Parser to
generate phrase structure trees, revealing the hierarchical structure and lexical organization within a sentence. By
segmenting the hierarchical nodes in the phrase structure tree, each node corresponds to a phrase, providing detailed
syntactic information that supports subsequent sentiment analysis and enhances the model's understanding of sentence
semantics.

��,�
� = 1 if ��, ��in same phrase of ℎ�

�

0 otherwise
(10)

Here, ℎp
l represents the vector representation of each phrase at layer.L denotes the number of layers in the phrase set,

and p refers to the number of phrases at that layer.
Relying only on syntactic dependency trees may result in incomplete word relationship modeling, affecting sentiment
classification. To address this, we combine phrase structure tree information to improve contextual modeling and
enhance sentiment classification accuracy, as shown in Equation 11.

Di,j = 1 if i=j o rwi, wj dependency tree
0 otherwise

(11)

As shown in Equation 12.By merging the phrase and syntactic dependency matrices, the adjacency matrix captures both
phrase-level and sentence-level syntactic features{PD1，PD2，. . . , PDl},and is used as the input to the GCN.

ℎ��
(�) = � ∑�=1

�  �����(�)ℎ�
(�−1) + �(�) (12)

3.5 Feature Interaction Module and Classification Module

3.5.1 Feature fusion layer
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The feature fusion extraction module performs deep interaction and fusion of the semantic feature matrix and syntactic
feature matrix, fully integrating information to overcome the limitations of a single feature. This reduces the impact of
information redundancy on model performance and improves the accuracy of sentiment polarity classification. After the
interaction, the module concatenates the two types of features to construct the final feature representation, as shown in
equation (13).

HAB = concat(HSem，HSyn) (13)
3.5.2 Sentiment output layer
The final feature vector is obtained through average pooling, and then the input is passed to the sentiment classification
module, which uses a function for sentiment polarity classification. The calculation formulas are shown in equations 14
and 15.

H = Average Pooling(HAB) (14)
Y = softmax(WTH + b) (15)

4 EXPERIMENTS AND RESULTS ANALYSIS

4.1 Experimental data and evaluation indicators

The experiments in this chapter are conducted based on the dataset constructed in Chapter 3. The relevant data and
statistical information have been thoroughly explained in the previous section and will not be repeated here.
For evaluation metrics, this study follows the evaluation methods used in previous related works, employing Precision
(P) and Recall (R) to calculate the F1-score, which measures the model's classification performance (as detailed in
Section 6 of Chapter 2). The F1-score, as the harmonic mean of precision and recall, approaches 1 when the model
achieves better classification performance.

4.2 Experimental parameter settings

The SEAFM-GCN model utilizes the bert-base-chinese version of the BERT model, with a word embedding dimension
of 768 and a part-of-speech (POS) embedding dimension of 100. The specific experimental hyperparameter settings are
shown in Table 1. The loss function employed is the cross-entropy loss function.

Table 1 Experimental Parameter Settings
Parameter Value

BERT Embedding Dimension 768
POS Embedding Dimension 100

Optimizer BertAdam
Batch Size 8

Number of GCN Layers 2
GCN Dropout 0.1
Dropout Rate 0.3
Learning Rate 2×10-5

Number of Attention Heads 5
Epochs 20

4.3 Comparative Experiments on Different Models

To evaluate the performance of the SEAFM-GCN model on aspect-level sentiment analysis of MOOC course reviews,
this study selected the following baseline models for comparative experiments on the constructed aspect-level MOOC
review dataset. The experimental results are shown in Table 2.
AOA: Utilizes multiple attention layers to model the interaction between aspects and sentences, effectively preserving
aspect-specific sentiment features.
MGAN[7]: Introduces multi-granularity attention to better capture word-level interactions between aspects and
sentences.
ASGCN: Combines syntactic dependency trees and graph convolutional networks (GCN), leveraging attention
mechanisms to adjust feature weights for classification.
BERT-SPC[8]: Leverages the BERT pre-trained model to extract contextual information, followed by pooling word
vectors to optimize classification performance.
AEN-BERT[9]: Employs the BERT model and an attention-based encoder to model the relationship between context
and aspect terms.
R-GAT+BERT[10]: Transforms the dependency tree into a star graph with edges defined by minimal distance and
dependency types, incorporating relational GAT with attention-based aggregation.
SSEGCN+BERT[11]: Uses a syntactic mask matrix obtained via a distance-based mask mechanism and incorporates
attention mechanisms with GCN to enhance the representation of nodes related to aspect-specific sentiment features.
SEAFM-GCN: Proposes a model that integrates bidirectional semantics with hierarchical syntax through a graph
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convolutional network.

Table 2 Comparison of Results on MOOCAspect-Level Datasets (%)

Method
MOOC1 MOOC2

Accuracy F1 Accuracy F1
AOA 83.25 69.15 82.62 68.82
MGAN 82.64 74.32 82.45 74.17
ASGCN 83.76 75.48 83.64 75.26
BERT-SPC 92.38 83.05 92.02 82.43
AEN-BERT 94.47 85.73 93.73 84.68
R-CAT+BERT 94.61 85.91 94.24 84.88
SSEGCN+BERT 95.05 86.62 94.65 85.74
SEAFM-GCN 96.47 87.89 95.22 86.48

Table 2 presents the experimental results of the proposed SEAFM-GCN model compared with baseline models,
showing superior performance on both MOOC1 and MOOC2 datasets. The first three models, lacking BERT
embeddings, demonstrated limited performance. However, ASGCN, incorporating GCN with syntactic information,
achieved relatively good results. Models utilizing BERT significantly improved performance due to pre-trained
contextual knowledge. Compared with R-CAT+BERT, the proposed model improved F1 scores by 1.98 and 1.6 points
on MOOC1 and MOOC2, respectively, attributed to the integration of hybrid attention and syntactic information,
enhancing context-aspect interaction. While SSEGCN+BERT considered syntactic distances in attention computation, it
underutilized local context relevant to aspect terms, resulting in lower F1 scores than SEAFM-GCN.
Overall, SEAFM-GCN effectively integrates structural and semantic information from local to global levels,
outperforming other models and validating the fusion of syntax and semantics in aspect-level sentiment classification.

4.4 Feature Ablation Experiment

This section analyzes the impact of key modules within the SEAFM-GCN model by conducting extensive ablation
experiments. The experimental results were recorded by averaging multiple runs, as shown in Table 3. In the table, “w/o”
indicates the removal of a specific module, with the best results highlighted in bold.
Without Phrase Structure Tree (SEAFM-GCN w/o phrase): Retains only the traditional syntactic dependency matrix.
Without Syntactic Distance Mask Matrix (SEAFM-GCN w/o SDMM): Uses only the attention score matrix as the
semantic feature map.
Without Aspect-Sensitive Attention (SEAFM-GCN w/o ASA): Replaces the aspect-sensitive attention matrix with a
self-attention score matrix as the adjacency matrix, combined with the syntactic distance mask matrix.
Without Self-Attention (SEAFM-GCN w/o SA): Uses only the aspect-sensitive attention score matrix as the adjacency
matrix, combined with the syntactic distance mask matrix.

Table 3Ablation Study Results on MOOC Review Datasets (%)

Method
MOOC1 MOOC2

Accuracy F1 Accuracy F1
SEAFM-GCN 96.47 87.89 95.22 86.48
w/o phrase 92.18 86.77 91.23 86.12
w/o SDMM 94.43 86.48 92.46 85.89
w/o ASA 95.45 85.64 94.57 84.53
w/o SA 93.42 84.71 93.18 83.22

Conclusions from Ablation Study Results:
(1) Removing the phrase structure tree module led to performance degradation, highlighting the importance of phrase
adjacency matrix integration for reducing parsing errors.
(2) The ASA layer improves feature extraction by optimizing noise in the self-attention mechanism. Removing the
syntactic distance mask matrix caused a drop in F1 scores by 1.41% and 0.59%, showing its role in enhancing structural
information extraction.
(3) Deleting the ASA layer reduced classification performance, demonstrating its contribution to aspect-specific feature
extraction. Without ASA, self-attention alone loses aspect-related information, especially with multiple aspects of
different sentiments.
(4) Removing the self-attention layer decreased classification accuracy, confirming its importance in extracting global
semantic features. The impact was more significant than removing the ASA module, indicating that self-attention
benefits final sentiment classification.

4.5 Visualization Analysis

This experiment first verifies the impact of the number of GCN layers on model performance to optimize the model
structure and guide subsequent experimental design. Specifically, experiments were conducted with GCN layers ranging
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from 1 to 5, and the performance at each layer count was evaluated. The results are shown in Table 4, presenting the F1
scores of the SEAFM-GCN model for different GCN layer counts. Additionally, Figure 2 further visualizes the trend of
how varying the number of GCN layers affects the model's F1 score on the two datasets. The experiment shows that
increasing the number of GCN layers moderately improves the model's performance, but too many layers may lead to a
plateau or overfitting.

Table 4 F1 Values of SEAFM-GCN Model at Different GCN Layer Numbers
Number of GCN Layers 1 2 3 4 5

MOOC1 86.23 87.89 86.42 87.28 86.16
MOOC2 85.51 86.48 85.79 86.35 85.34

Figure 2 The Impact of GCN Layers on F1 Values

From Figure 2, it can be observed that the number of GCN layers significantly impacts the model's performance on both
the MOOC1 and MOOC2 datasets. On the MOOC1 dataset, the best performance (87.89) was achieved with 2 GCN
layers, while performance slightly declined with other layer configurations, suggesting that 2 layers of GCN are most
effective in balancing information extraction and noise control. The results for the MOOC2 dataset were similar, with 2
GCN layers also yielding the best performance (86.48), although the performance fluctuation was smaller, likely due to
the simpler or more robust nature of the dataset. In both datasets, the model's F1 value reached its maximum with 2
layers, indicating that 2 layers should be considered the optimal choice for the number of GCN layers.

5 CONCLUSION

This chapter presents a bidirectional semantic and hierarchical syntactic aspect sentiment classification model
(SEAFM-GCN) based on Graph Convolutional Networks (GCN). The model first designs a perception-based aspect
attention mechanism to learn aspect-related semantic information, which is then combined with a self-attention
mechanism to form a fused attention mechanism. Next, by integrating phrase structure and syntactic dependency
structures, it enhances syntactic feature representation, addressing the noise issue in traditional syntactic dependency
analysis. Finally, Graph Convolutional Networks are used to further optimize the syntactic features. Experimental
results demonstrate that the model achieves significant performance improvement on the MOOC review dataset,
validating the effectiveness of the attention mechanism and syntactic enhancement strategy.
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