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Abstract: The underwater visual-inertial navigation system (VINS) confronts significant challenges due to the adverse
underwater visual environment, including light absorption and scattering, tiny suspended particles, color distortion, and
image blurring. To address these issues, this paper introduces a multi-scale fusion-based image enhancement algorithm,
integrating it into the front-end of underwater image enhancement techniques. This integration effectively enhances the
performance of underwater localization. Experimental results on the Aqualoc underwater dataset demonstrate that the
proposed method increases the number of extracted feature points and achieves more stable tracking, thereby reducing
localization errors compared to traditional VINS approaches.
Keywords: Underwater image enhancement; Underwater slam

1 INTRODUCTION

Since the beginning of the 21st century, the rapid growth of population has led to a gradual depletion of land resources,
and countries have stepped up their exploration and development of the ocean. With the rapid development of computer
vision technology, camera sensors have become the main way for autonomous robots and smart wearable devices to
perceive the surrounding environment. Rich visual information is extracted and input into the intelligent body to
achieve complex tasks such as detection and recognition, positioning and navigation, and planning and decision-
making.
Compared with ordinary images, images captured underwater suffer from significantly reduced visibility due to light
propagation attenuation [1]. The reduction in underwater visibility is mainly caused by optical phenomena, including
absorption and scattering processes. The enhanced scattering caused by suspended particles (such as sediments and
plankton) exacerbates the attenuation of light, further reducing the overall visibility [2]. In addition, the selective
absorption of specific light wavelengths by water weakens the optical clarity [3]. In view of the above challenges, there
is an urgent need to develop effective methods to enhance the image quality of underwater images, thereby improving
the effective use of underwater visual data.Image enhancement algorithms are mainly divided into traditional pixel-level
processing methods, deep learning-based processing strategies, and image fusion-based methods. Traditional
underwater image enhancement methods mainly rely on image processing technology to improve the visual quality of
images. These methods usually focus on enhancing contrast, reducing noise, and achieving color balance at the image
level. Commonly used methods include histogram equalization, denoising filtering, and color correction.
Histogram equalization (HE) [4] is a common algorithm for enhancing image contrast. This algorithm converts the
histogram distribution of an image into an approximately uniform distribution through a cumulative distribution
function, thereby expanding the grayscale range of the original image. The purpose of denoising filtering is to reduce
the noise information in the image while retaining important details and structural information of the image. Common
filtering methods include Gaussian filtering, median filtering, mean filtering, and bilateral filtering. The basic idea is to
smooth the image to remove noise.Another pixel-level processing method is to use underwater optical imaging models
to deal with the inherent defects of underwater imaging at the optical level. For example, underwater wavelength
compensation and image defogging methods, restoration methods based on image blur and light absorption, and
underwater image enhancement methods based on Retinex theory.
In order to improve the image quality improvement effect of underwater image enhancement algorithms, researchers
have introduced some advanced results in the field of deep learning, such as convolutional neural networks and
generative adversarial networks. Deep learning technology can automatically learn and extract image features, so after
learning enough sample data, the neural network can restore the features of underwater images. Convolutional neural
networks have been widely used in the field of underwater image enhancement in recent years.
Deep learning technology can automatically learn and extract image features, so after learning enough sample data, the
neural network can restore the features of underwater images. Convolutional neural networks have been widely used in
the field of underwater image enhancement in recent years. Wang et al. [5] proposed an end-to-end framework UIE-net
for underwater image enhancement, which can simultaneously perform color correction and dehazing for underwater
images. Although this method has achieved good results on benchmark datasets, the performance of the algorithm is
greatly affected by the quality of training data when applied in actual scenarios, and more diverse and high-quality
datasets are needed to improve the performance of the algorithm. Li et al. [6] proposed an underwater image
enhancement network Ucolor, which corrects color cast and enhances contrast of images through a multi-color space
embedding method guided by medium transmission. In order to effectively improve the image processing speed, Naik
et al. [7] proposed a shallow network structure Sahllow-UWnet, which can significantly improve the processing speed
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while maintaining performance. UICE2-Net [8] is the first underwater image enhancement algorithm that uses deep
learning in both RGB and HSV color spaces. The network consists of three modules: RGB pixel module, HSV global
adjustment module and an attention map module.
Generative adversarial networks and diffusion models generate clear output images from underwater raw images based
on the principle of image generation. For example, Li et al. [9] proposed a two-stage generative adversarial network
WaterNet, which was trained with a dataset of contrasting images in air and water, and finally achieved color correction
of monocular underwater images. Islam et al. [11] introduced a conditional generative adversarial network model
FUNIE-GAN, which significantly improved the image generation rate and can enhance underwater images in real time.
The test results of multiple datasets confirmed the feasibility of the algorithm. Guan et al. [12] used a conditional
denoising diffusion probability model DifWater to enhance underwater images and integrated color compensation as a
conditional guide. In order to solve the attenuation and scattering problems of underwater light, Wang et al. [13] used
an unsupervised generative adversarial network to generate underwater images. The U-net structure in the network was
trained on a synthetic underwater image dataset and performed well on real data, but its robustness in processing
underwater images of complex scenes was limited.
In addition to the above methods, strategies based on image fusion have also shown good performance in image
enhancement tasks. Ancuti et al. [14] first introduced a fusion strategy to improve the quality of underwater images. In
their proposed algorithm, color-corrected and contrast-enhanced images are generated from the original blurred
underwater images, and these processed images are used as inputs in the fusion stage to synthesize enhanced images
through multi-scale pyramid fusion theory. Subsequently, they improved the performance of the algorithm by
optimizing the white balance correction method and introducing the defogging operation, making it more stable in
extreme environments such as turbid seawater [15]. Gao et al. [16] also proposed a new underwater image enhancement
algorithm based on multi-scale fusion theory, and improved the weight map in the fusion process by imitating the
human visual system. Song et al. proposed a strategy that combines multi-scale fusion with global stretching of the
model, and adopted an updated saliency weight coefficient method to fuse contrast and spatial cues to improve fusion
quality. Kang et al. [17] combined multi-path input, multi-feature fusion, and attention mechanism to propose a high
underwater image enhancement framework SPDF, which significantly improved image quality on the dataset.
Considering the cost, weight, and convenience of information acquisition, cameras based on optical imaging are one of
the important sensors for spatial position prediction. Intelligent robots, unmanned vehicles, augmented reality devices,
etc. on land are generally equipped with one or more cameras to predict their own movement. The optimization-based
strategy is widely used in visual SALM. The optimization algorithm can make full use of historical poses and
landmarks, and show better performance in large-scale and long-time series tasks. Qin et al. [18] proposed a visual-
inertial real-time positioning algorithm VINS-Mono, which only requires a very low-cost monocular camera and an
inertial measurement unit IMU to achieve state estimation of the six-degree-of-freedom pose of the body. The algorithm
implements a visual-inertial tightly coupled nonlinear optimizer, which calculates a more accurate spatial pose change
by minimizing marginal information, inertial measurement residuals, and visual reprojection errors. On this basis, Qin
et al. [19] integrated multiple sensors such as GPS signals and depth cameras to realize a multi-sensor pose state
estimation algorithm VINS-Fusion based on optimization strategies, which further promoted and applied this strategy.
Although the above algorithms show good performance on land, they have not been tested and verified much in
underwater environments. In order to improve underwater visual positioning, some scholars have tried to improve the
quality of images. For example, Xin et al. [20] proposed an end-to-end network for SLAM preprocessing in underwater
low-light environments. By enhancing low-light images and self-supervised learning to improve feature point matching,
the performance of VSLAM based on feature point extraction was effectively improved.
The harsh underwater visual conditions bring certain challenges to the visual positioning algorithm. Although there are
related studies on underwater image enhancement, there are not many systems that add image enhancement to
underwater visual positioning. Based on this, this paper introduces a multi-scale image enhancement algorithm into the
traditional visual inertial positioning algorithm to improve the underwater positioning accuracy. The specific
contributions are as follows:
1. The proposed underwater image enhancement preprocessing algorithm consists of two straightforward stages.
Initially, a white balance color correction is applied to each sub-image based on the gray world assumption, followed by
a restrained contrast enhancement, yielding two optimized sub-images. In the subsequent stage, these sub-images are
integrated using multi-scale fusion techniques to produce a final image that is of higher quality and enhanced for clarity.
2. To address the problems of poor underwater image quality, small number of feature extractions and unstable
tracking, a multi-scale fusion algorithm is used to enhance image features in the image preprocessing stage, which
significantly increases the number of feature point extractions and improves the stability of system positioning.
3. In order to compare the performance of the improved algorithm, this paper runs the VINS algorithm on the real
underwater dataset Aqualoc. In the dynamic low-light underwater visual environment, the dataset test results show that
the proposed algorithm.

2 METHOD

2.1 Fusion Based Underwater Image Enhancement Algorithm

2.1.1 Color correction
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Light in water is absorbed and reflected by the medium and gradually attenuates. Different wavelengths of light
attenuate in water to different degrees. As the absorption of visible light by water increases with the increase of
wavelength, the blue with the shortest wavelength propagates the longest distance in water, while the red with the
longest wavelength propagates the shortest distance in water. Therefore, most underwater images we see appear blue-
green [21]. In the color correction stage, we introduced the grayscale world theory, which assumes that in a natural
environment, regardless of the color type, the average brightness of the overall image tends to be neutral gray, that is,
the mean values of the red, green and blue channels of the image should be approximately equal. If the three channels of
the original image satisfy the grayscale world hypothesis, then the following equations are satisfied:
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where � and � represent the values of the horizontal and vertical pixel position index values of the image, respectively,
and � and � represent the height and width of the image. When an underwater image �0 is acquired, its color correction
can be performed using the above assumptions. First, the target grayscale value needs to be calculated. In order to
obtain the target grayscale value, the average values of the three channels are calculated respectively.
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When an underwater image �0 is acquired, its color correction can be performed using the above assumptions. First, the
target grayscale value needs to be calculated. In order to obtain the target grayscale value, the average values of the
three channels are calculated respectively.
and then the average value of the three channels is taken:
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each element is normalized according to the mean to achieve color correction
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2.1.2 Contrast increasement
Light in water medium is affected by absorption, scattering and refraction, so the attenuation rate is much faster than
that in land environment. In the case of insufficient light, the contrast of the image is low. At the same time, water
contains a large number of suspended particles, forming water mist, which makes the object more blurred. In order to
solve this problem, the strategy of grayscale equalization is introduced. Artificial light sources are often used for fill
light in underwater images, so there will be obvious bright and dark areas. In order to prevent detail loss and highlight
overflow caused by excessive enhancement, limited contrast histogram equalization is used. The main idea is to
introduce contrast limitation parameters on the basis of the principle histogram equalization, so as to control the output
dynamic range, so as to ensure that the detail characteristics of the bright part can be retained while the brightness of the
dark part is improved.
Calculate the histogram �[�] of the input image �0, which represents the probability of the gray value � appearing, and
then calculate the cumulative distribution function �(�).

In order to limit the excessive enhancement of contrast, a truncation threshold of contrast limitation is introduced to
truncate the part exceeding the threshold to prevent the final image from being overexposed. The cumulative
distribution function after processing is:

�' � = � � , � � ≤ �,
�, � � > �.

map the corrected cumulative distribution function to the target pixel value range:
� � = ��� ��� � ⋅ �' � , 0 , �

where � is the maximum value of the target grayscale range (usually � = 255 ). �' � is the truncated CDF value
(normalized to [0,1]).
2.1.3 Image fusion
Complex underwater scenes pose challenges to the effective acquisition of visual information. To address the problems
of color distortion, water mist, and low contrast in images, we proposed a white balance algorithm based on the
grayscale vision hypothesis and a limited contrast map histogram equalization algorithm. In order to retain the enhanced
effective feature information, we introduced a multi-scale image fusion algorithm.
Image Pyramid is a theory that uses a multi-scale hierarchical structure to represent images. The size and clarity of an
image are representations of its scale. The bottom of the image pyramid is the original high-resolution image, and each
layer upward is the result of downsampling the image. Therefore, the resolution and size of the image are gradually
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reduced, and the visual features are gradually refined. The theory was first proposed by Burt et al. [22], who first
introduced the image pyramid to achieve efficient decoding and encoding of images.
Assume that an image is described by a matrix with � rows and � columns. Each pixel represents the light intensity � at
the corresponding position. The value of light � ranges from 0 to � − 1. The original image is defined as the 0th layer
�0 of the Gaussian pyramid.
The first layer �1 of the pyramid is a reduced low-pass filtered version of �0. Here, the image �0 is convolved with the
Gaussian kernel for smoothing:

�1
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Where � �, � is the weight of the Gaussian kernel.
Then the resulting image �1

' is scaled down, usually by removing all even-numbered rows and columns, to obtain
�1 �, � = �1

' 2�, 2�
Repeat the above process until the preset Nth layer image �� is obtained. The Gaussian pyramid performs low-pass
filtering on the image in terms of frequency, removes high-frequency information, and retains the overall structure and
low-frequency information of the image. On this basis, the Laplacian pyramid can be calculated.
Each layer of the Laplacian pyramid is obtained by subtracting two adjacent layers of the Gaussian pyramid. The �1
layer image of the Gaussian pyramid is upsampled and smoothed to obtain
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The 0th level �0 of the Laplacian pyramid is
�0 = �0 − �1

Going up layer by layer, we can get �1, … , ��−1. The Laplacian pyramid obtains the high-frequency part of the image,
that is, the edge details of the original image at different scales (Figure 1).

�� = �� + upsample ��+1
The decomposition of the image pyramid is reversible. Through the top-level Gaussian image �� and the Laplacian
pyramid, the following formula is used to calculate layer by layer:

�� = �� + upsample ��+1
Finally can be restored to the original original image:

�0 = �0 + upsample �1 + upsample �2 + ⋯

Figure 1 Image Gaussian Pyramid and Laplacian Pyramid Decomposition

The fusion process of the two sub-images requires the introduction of appropriate weight factors. The weight factor here
is a matrix of the same size as the image, and the value of each element represents the proportion of the sub-image in
the final fused image. In the fusion process, in order to retain high-quality features, the weight is calculated from the sub
-image's salient features �� , local contrast ��� , global contrast �� , and exposure �� [15]. Calculate the above
weights for the two subgraphs and get the total weight factor of each graph by adding them up

�� = �� + ��� + �� + ��

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)



Enhanced vins-based underwater localization with image enhancement

Volume 7, Issue 3, Pp 11-20, 2025

15

In order to avoid the impact of different orders of magnitude in the weight calculation process, the final weight factor is
normalized

�
�

= ��

�=1

�
���

Each input sub-image is decomposed layer by layer into a multi-scale Gaussian pyramid �1 , … , ��−1 by convolution
with a Gaussian kernel and downsampling, and then the Laplacian pyramid �1 , … , �� .is obtained by subtracting the
low-pass filtered image. In the entire pyramid data structure, �� and �� each represent the corresponding �-th layer. The
final image is calculated by mixing the input image and weights in a multi-layer pyramid manner

�� � =
�=1

�

�� �� � �� �� ��

Where l represents the number of layers of the pyramid, and k is the index value of the input sub-image. Here, the
normalized weight factor is decomposed into the Gaussian pyramid �� �� � , and the input sub-image is decomposed
into the Laplacian pyramid �� �� � .
The advantage of using the multi-scale image fusion method is that it can retain the dominant features in the input
image during the fusion process. As shown in Figure 2, the upper left corner of the chart shows the input image, and the
lower right corner shows the output image. The input image is a typical underwater photo, which is characterized by
defects such as color deviation, fog, blur, and insufficient lighting. Through the multi-scale image fusion method, these
defects can be effectively improved while retaining or enhancing the important features in the image, thereby obtaining
a higher quality output image.

Figure 2 Underwater Fusion Based Image Enhancement Algorithm

2.2 Improve Underwater Visual Front by Image Enhancement

The method of feature point extraction in the VINS algorithm is the Shi-Tomasi algorithm. Its basic idea is to detect
feature points from points in the image where the brightness changes dramatically, such as edge intersections, and
return the positions of points with large gradient changes in the two-dimensional image as the coordinates of the feature
points. However, this algorithm has problems such as low feature density and lack of rich feature description
information.
The algorithm performs well on land, but the contrast of underwater images is low due to light scattering and absorption,
which leads to smaller gradient changes in the image, weaker corner points, unstable feature detection or insufficient
key points detected. In addition, underwater suspended matter can cause visual interference, and Tomasi feature
detection is less stable against noise and motion blur, which can lead to detection errors. Based on the above factors, the
underwater image enhancement proposed in this paper is adopted. As shown in Figure 3, the enhanced image has been
significantly improved in contrast and feature details.

(15)

(16)
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Figure 3 Shi-Tomasi Corner Detection of Images before and after Enhancement

In the original image on the left, the maximum number of feature points detected by Shi-Tomasi is 276, while in the
enhanced image on the right, the maximum number of feature points returned by Shi-Tomasi is increased to 1215,
which is a 340% increase in the maximum number of feature detections. Due to the enhancement of contrast and the
prominence of edge characteristics, the number and quality of corner points detected have been significantly improved.
In addition, the temporal consistency of corner points obtained in the enhanced image is improved, which is conducive
to subsequent visual tracking and position solving.
In the process of matching visual feature points, although the tracking accuracy is significantly improved by the image
enhancement algorithm, there are still a lot of matching errors caused by illumination distortion, weak texture, non-rigid
deformation, suspended particles or object occlusion in long-term dynamic changing scenes. The discrete points
generated by the above situations will destroy the consistency of geometric constraints, resulting in the failure of
subsequent camera pose estimation tasks. In order to solve this problem, after visual feature matching, the random
sampling consensus algorithm (RANSAC) is used to filter out the internal points that meet the geometric constraints
from the set of candidate matching points containing noise, which is beneficial to the subsequent spatial solution.
The matching feature points in adjacent frames are the projections of the same spatial feature in different images, thus
satisfying the epipolar constraint as shown in Figure 4. The matching pixel points in the previous frame image �� , and
the subsequent frame image �� are denoted as �1 and �2 . According to the pinhole camera model, the following
relationship can be obtained:

�1�1 = ��, �2�2 = � �� + �

Figure 4 Epipolar Constraints of Feature Points in Adjacent Frames

where � is the camera intrinsic matrix, and � , � represent the rotation matrix and translation vector between the two
coordinate systems. Through geometric constraints, we obtain:

� = � × �, � = �−���−1, �2
���1 = �2

���1 = 0
where � is called the fundamental matrix (Fundamental Matrix), � is called the essential matrix, and by solving the
essential matrix, the spatial motion �, � of the camera can be estimated.

�� �� 1 �
��
��
1

= 0

In order to find the point pairs that satisfy the geometric constraints in the paired point set, a random sampling
consistency check is performed on the point set. Firstly, 8 pairs are randomly selected from the input point pair set, and
the geometric constraint formula is expanded into a homogeneous coordinate form.

�� = 0
So get the following overdetermined linear equation
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Where � ∈ ��× 9 , � ∈ �^9 is the expansion vector of � . The above equation is solved by the singular value
decomposition of ��� to obtain the least squares solution, so that �=1

� �� 2
� is minimized, and the candidate basic

matrix �' is calculated. All point pairs in the pairing point set are verified using geometric constraints:
��

����� < �
Where � is the threshold of the reprojection error. If it is less than this threshold, it is an inlier, and if it is greater than
this threshold, it is an outlier. Repeat the above steps and select the model with the largest number of inliers as the final
solution. In underwater scenes, a large number of matching points may be mismatched points caused by bubbles,
suspended particles or uneven lighting. By introducing the RANSAC algorithm to filter discrete values, only high-
confidence matching points that meet geometric constraints are retained.
In order to improve the visual extraction and tracking performance under harsh underwater conditions, this paper
preprocesses the original image obtained underwater with a fusion-based image enhancement algorithm. The
comparison of the corner point detection results of the original image and the enhanced image shows that the algorithm
can greatly improve the quantity and quality of feature point detection. Considering the underwater dynamic
environment, a random sampling consistency algorithm is used to perform geometric constraint filtering on the set of
matching points to reduce the false pairing caused by suspended particles and lighting effects.

3 EXPERIMENTS & ANALYSIS

This paper proposes a method to improve the VINS visual front-end based on image enhancement to improve its
underwater visual feature tracking effect. This section will analyze the algorithm performance in terms of the number of
visual feature points extracted and positioning accuracy.
To more fully demonstrate the algorithm's adaptability improvement effect in underwater scenes, we conducted
comparative experiments on the Aqualoc dataset. The Aqualoc dataset was collected underwater by a remotely operated
vehicle (ROV) equipped with a monocular camera and inertial sensors [23]. The true value of its movement trajectory
was reconstructed and estimated in three dimensions using Colmap, providing a benchmark for algorithm evaluation.

3.1 Feature Point Extraction Performance

The Aqualoc dataset consists of sensory data collected in various underwater scenarios using a monochromatic camera,
a low-cost MEMS-IMU, and an embedded computer. The archaeological site sequences were recorded in the
Mediterranean Sea, off the coast of Corsica. To validate the effectiveness of the aforementioned image enhancement
algorithm as a visual front-end for feature extraction and tracking, the third and seventh trajectories from the
archaeological site were selected. Shi-Tomasi corner detection was performed on the images from these trajectories to
compute the maximum number of high-quality feature points detectable in the images before and after enhancement.
The test results are shown in Figure 5 below, where from top to bottom the 3rd and 7th sequences of the archaeological
site.

Figure 5 Comparison of Shi-Tomasi Feature Detection Max Num on Archeological Site 03 and 07

(21)
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The horizontal axis in the figure is the frame index value of the image, and the vertical axis is the maximum number of
feature points that can be extracted by the shi-tomasi feature detector with the same parameters. The blue line represents
the original image, and the orange line represents the enhanced image. The third scene of the archaeological site in the
above figure is located at a depth of about 270m on the real seabed. There is a wreckage of an antique shipwreck here.
Most of the ground in this scene is flat, and there are many small rocks, so the visual texture is mainly repeated. In this
scene, the turbidity is low, and the rolling of tiny sand grains further hinders the line of sight, making visual feature
extraction more difficult. In general, the orange line is higher than the blue line in most cases, especially when the
image index is about 4000 and 5300, the improvement effect is very significant, indicating that it is easier to extract
high-quality feature points from the enhanced image.
The seventh scene of the archaeological site in the figure below is 380m below the seabed. There is a two-ear bottle
mountain and the top of the mountain is several meters higher than the surrounding seabed level, so there is a certain
degree of ups and downs. There are low texture characteristics on the sand around the two-ear bottle mountain. Due to
the presence of two-ear bottles, there are more marine wildlife, so the environment is very dynamic. It can also be seen
in the figure that the orange line is higher than the blue line in most cases, especially when the real image index is 2000,
4000, 6000 to 8000, and there are a large number of blue lines where the maximum number of feature points is less than
200. This situation will be extremely unfavorable for subsequent pose solution. Most of the orange lines of the
enhanced image are above 200.
In summary, through the test of the image sequence taken underwater on the real seabed, the results show that after the
original image is enhanced based on fusion, the maximum number of features that can be extracted by the same shi-
tomasi detector has been improved, which effectively proves the positive role of the image preprocessing algorithm in
feature extraction.

3.2 Underwater Visual Positioning Performance

Integrating the fusion-based image enhancement algorithm into the VINS system can effectively improve the stability
of the positioning system. The original algorithm and the improved algorithm were tested in multiple scenarios from the
underwater dataset of the archaeological site. The operational status is shown in Figure 6. As can be seen from the
figure, the improved image algorithm extracts more feature points and obtains richer point clouds, which is beneficial
for subsequent pose estimation.

Figure 6 Comparison of VINS and Enahnced-VINS on archaeological site sequence 05

In order to further compare the improvement effect of the image enhancement algorithm on the VINS algorithm, we
will perform the improved algorithm and the VINS algorithm on multiple test sequences on the archaeological scene to
evaluate their performance differences under different conditions. The test sequences include A2, A5, A6, A7, A8 and
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A10. For each sequence, we calculated the minimum (Min), median (Medium) and maximum (Max) absolute trajectory
error to comprehensively evaluate the stability and reliability of the two algorithms. The experimental results are shown
in Table 1.

Table 1 Absolute Trajectory Error Comparison between VINS and EN-VINS
Sequence VINS EN-VINS

Min Medium Max Min Medium Max

A2 0.110000 1.037429 2.198876 0.181079 0.871403 2.199951

A5 0.172183 0.542419 2.322855 0.029175 0.320848 2.109739

A6 0.169899 0.291294 4.542645 0.008474 0.140198 3.271086

A7 0.067507 0.920890 5.552000 0.110673 1.161439 5.233549

A8 / / / 0.062034 0.513904 1.538490

A10 / / / 0.130057 0.729954 3.357582

According to the chart analysis, the performance of the EN-VINS algorithm on multiple sequences is better than that of
VINS. Specifically, in the four sequences A2, A5, A6 and A7, the minimum, median and maximum ATE values of EN-
VINS either surpassed VINS in all aspects or most indicators were ahead of VINS. Especially in the A5 and A6
sequences, EN-VINS not only performed outstandingly in terms of stability (reflected by the smaller maximum value),
but also showed significant advantages in terms of accuracy (reflected by the lower median and minimum values). In
addition, for the two sequences A8 and A10, VINS system failed to obtain the location information, while EN-VINS
maintained the integrity of the data in these two sequences, further demonstrating its higher reliability.
Overall, EN-VINS showed higher comprehensive performance than VINS throughout the test process, providing more
reliable results both under normal and extreme conditions. It is particularly noteworthy that EN-VINS can still provide
stable and accurate positioning results in the face of situations that may cause VINS positioning failure, which shows
that EN-VINS has stronger robustness and adaptability.

4 CONCLUSION

The harsh underwater visual environment is a major challenge for visual positioning algorithms. This paper introduces
an image multi-scale fusion strategy to enhance the underwater image preprocessing, which significantly improves the
image contrast and detail features. Combining this image enhancement algorithm with the traditional visual inertial
positioning algorithm VINS greatly increases the number of feature point extraction, improves the quality of feature
point extraction, and achieves more stable visual tracking.
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