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Abstract: This study investigates the spatial association between streetscape greenness (Green View Index, GVI) and
park service evaluations in Zhengzhou, China, integrating multi-source geospatial data, including 131 park POIs and
23,866 street view images with a multi-zoning analytical framework (grid-based, radial-sector, and Voronoi zoning).
Using spatial autocorrelation (Global/Local Moran’s I) and bivariate LISA cluster analyses, key findings include: (1)
Radial-sector zoning outperformed other methods in capturing spatial heterogeneity; (2) High GVI clusters concentrated
in the urban core, while top-rated parks exhibited concentric patterns, with low-value zones coupled at the periphery; (3)
Significant synergy emerged between peak park ratings and mean GVI (I = 0.135-0.196), revealing asymmetric
interactions. A three-tiered planning strategy is proposed: radial-sector green space allocation, targeted upgrades in
mismatch zones, and flagship park-driven green networks. This research advances methodological innovation in green
infrastructure optimization for urbanizing cities.

Keywords: Streetscape; Green view index; Multi-zoning; Park service

1 INTRODUCTION

Urban green spaces, encompassing streetscapes and parks, serve as critical infrastructure for advancing ecological
sustainability, promoting public health outcomes, and addressing urban social equity challenges. Despite their shared
objectives in urban greening, parks and streetscapes exhibit distinct spatial service units that rarely overlap
geographically. This spatial divergence has historically hindered comprehensive investigations into their service
correlations, particularly under technological constraints of spatial multi-source data scarcity in earlier decades [1, 2].
The emergence of geospatial big data and computational advancements now enables precise quantification of public
service facility distributions through innovative metrics such as street view image analytics and Point of Interest (POI)
data mining, revolutionizing urban landscape assessments [3].

The proliferation of web-mapping services (e.g., Google Street View, Baidu Map, Amap, Tencent Map) has
democratized access to streetscape imagery, facilitating large-scale urban analyses at unprecedented granularity [4].
Seminal work by Li et al. pioneered the use of Google Street View (GSV) imagery with fisheye projection algorithms to
quantify pedestrian-scale green exposure [5]. This methodology laid the foundation for the Green View Index (GVI), a
standardized metric quantifying visible vegetation proportions in streetscapes through semantic segmentation of street-
level imagery [6-8]. Concurrently, POI data has emerged as a vital tool for urban analytics, enabling researchers to:Map
facility distribution patterns, Assess urban functional vitality hotspots, and Evaluate service catchment areas of green
spaces through spatial interaction modeling [9-12].

The methodological core of this study lies in addressing the spatial mismatch between streetscape greenness service
radii and park accessibility through a multi-zoning analytical framework. We operationalize this approach by:
Calculating neighborhood-level GVI scores using street view imagery, Quantifying park service performance through
POIl-based visitation patterns and facility quality metrics, and applying spatial regression models to identify zone-
specific associations between streetscape greenness and park service efficacy.This study employs a multi-zoning
analytical framework to test diverse spatial unit delineation methods. The underlying scientific hypothesis posits that
the Green View Index (GVI)—quantifying streetscape greenness—exhibits statistically significant correlations with
public evaluations of park services, with such associations being spatially scale-dependent. Specifically, we postulate
that the strength and direction of GVI-park service relationships vary across different hierarchical spatial units (e.g.,
1000m grids, voronoi area, concentric zone area).

2 DATA AND METHODS
2.1 Study Area
This study focuses on Zhengzhou City, the provincial capital of Henan Province, strategically positioned as a key

socioeconomic and transportation hub in Central China. As a rapidly urbanizing megacity, Zhengzhou has witnessed
over 50% expansion in built-up areas during the past two decades, while persistent disparities in green space
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accessibility and quality remain unresolved. These dynamics position Zhengzhou as a critical case for examining the
challenges of reconciling green infrastructure development with population growth (exceeding 10 million residents) and
spatial intensification.

The study area encompasses the urban core within Zhengzhou's Third Ring Road (Figure 1), comprising four
expressway segments: the North Third Ring Road (N3RR), East Third Ring Road (E3RR), South Third Ring Road
(S3RR), and West Third Ring Road (W3RR). This enclosed 202 km? zone represents the city's primary urbanized
territory, characterized by systematic street networks, multi-tiered park systems, and representative streetscape greenery
configurations.
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Figure 1 Scope Diagram of Study Area
Edited on this map source: https://www.openstreetmap.org/

2.2 Data

2.2.1 POI data and park rating score

The POI data in this study were sourced from AutoNavi Map (Amap), China's leading digital mapping platform, with
all records timestamped for 2023 to ensure temporal consistency with concurrent streetscape imagery. Amap was
prioritized over alternative providers due to its unique integration of crowdsourced facility ratings—a critical feature
enabling quantitative assessment of public perception toward park services. Each park's composite rating, ranging from
0 (lowest) to 5 (highest), was calculated as the arithmetic mean of individual user evaluations, reflecting collective
satisfaction levels.

Through protocol-driven web scraping techniques, we systematically collected georeferenced POI records for 131
municipal parks within Zhengzhou's Third Ring Road boundary. The automated harvesting pipeline included:

(1) Spatial filtering: Restricting queries to parks located within the 202 km? urban core.

(2) Data validation: Eliminating duplicate entries to ensure statistical reliability.

(3) Attribute extraction: Capturing essential metadata (park name, GPS coordinates, rating score).

2.2.2 Street view images and GVI

The streetscape imagery was sourced from Baidu Map, China's leading provider of panoramic street view services. It is
critical to note that while data acquisition occurred between December 2022 and January 2023, the actual capture dates
of Baidu Map images may span multiple years due to the platform's asynchronous update cycles. A systematic sampling
protocol yielded 23,866 georeferenced street view points within the study area, spaced at 50-meter intervals along road
networks. The technical process (Figure 2) is as follows:

Step 1: Programmatic Street View Data Harvesting

Georeferenced 360° panoramic images were systematically retrieved through Baidu Map's API (v4.0) using a spatially
stratified sampling strategy. To comply with platform rate limits, we implemented token-bucket throttling algorithms
(50 requests/second) while ensuring complete coverage across all road segments within Zhengzhou's Third Ring Road.
Each panorama was acquired at 4,096%2,048 resolution (RGB, 8-bit depth).

Step 2: Cubemap Projection via PTGui Professional

The acquired 23,866 street view panoramas underwent systematic geometric processing following established protocols
in urban visual perception studies [13-15]. Using PTGui Pro's batch processing module, each spherical panorama was
decomposed into six perspective-corrected cube faces (front/back/left/right/top/bottom) through equiangular cubemap
projection, which generated 143,196 directional images (23,866%6). Outputs were standardized as 960x960 JPG tiles
per face (8-bit RGB).

Step 3: Human-Centric Visual Field Simulation
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To ensure ecological validity in simulating pedestrian visual experiences, zenith and nadir projections (47,732 images)
were excluded based on empirical evidence that vertical extremes contribute minimally to human horizontal field-of-
view perception [16]. The final dataset comprised 95,464 street view images (23,866 x 4). For pedestrian visual
emulation, the upper 2/3 portion (960%720 pixels) was extracted from front/back/left/right faces. This cropping strategy
aligns with:

(1) Eye-level perspective: 1.2-1.8 m vertical focus matching human height percentiles.

(2) Urban context preservation: Maximizes street-level vegetation visibility.

Step 4: GVI Computation via Deep Learning Pipeline

A pretrained PSPNet-101 model (initialized with ADE20K weights) was fine-tuned on our UrbanGreen-15K dataset
(containing 12 vegetation classes) using transfer learning. The processing pipeline included:

(1) Semantic segmentation: Pixel-wise classification at 512x512 resolution

(2) Vegetation masking: Thresholding greenness (HSV ranges: H = 80-160°, S >20%, V > 15%)

(3) GVI calculation:

= (——) x 100% €))
Ultimately, the GVI of each point is the average of the GVI of the four directions' images.
Step 1:
Programmatic Street View
Data Harvesting.

Through Baidu Map's API

Step 2:
Cubemap Projection
via PTGui Professional.
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Step 4: GVI Computation via Deep Learning Pipeline

Figure 2 Technical Flow chart

2.3 Methods

2.3.1 Spatial multi-zoning

The multi-zoning framework constitutes the methodological nucleus of this investigation. We systematically
implemented and compared three distinct spatial zoning paradigms (Figure 3) to address scale-dependent heterogeneity
in green service associations:

(1) Grid-based Zoning

Adopting a regular square tessellation approach, the study area was partitioned into 1 km x 1 km grid cells (1 km? each),
aligned with the Universal Transverse Mercator (UTM) Zone 50N coordinate system. This isotropic partitioning
facilitates density-based spatial analysis while minimizing shape-induced biases, particularly suitable for examining city
-wide greenness distribution patterns.
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(2) Radial-sector Zoning

Centered on Zhengzhou's urban green heart (Zijinshan Park), we constructed concentric buffer rings at 1 km radial
intervals extending outward. Each annular zone was further subdivided into eight cardinal and intercardinal sectors (N,
NE, E, SE, S, SW, W, NW), creating combined radial-sector units. This dual-axis partitioning enables directional
analysis of green space diffusion patterns and distance-decay modeling of park service effectiveness.

(3) Voronoi Zoning

The Voronoi diagram (also termed Thiessen polygons), named after mathematician Georgy Voronoi , was employed to
delineate park service boundaries through spatial partitioning. Geometrically, Voronoi diagrams are constructed by
generating perpendicular bisectors between adjacent control points, forming continuous polygonal cells where any
location within a cell is closer to its generating point than to others [16]. Operationalizing this theoretical framework,
we generated Voronoi polygons using 131 park POIs from Amap within Zhengzhou's Third Ring Road through ArcGIS'
Voronoi tool . This approach defines the maximum theoretical service extent for each park, assuming users prioritize
nearest-facility access.
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Figure 3 Three Distinct Spatial Zoning Paradigms

2.3.2 Spatial unit attribute assignment

This study incorporated two primary datasets for spatial unit characterization: park ratings derived from POI evaluations,
and streetscape greenness measured through Green View Index (GVI).

(1) GVI Integration:

With dense sampling points (23,866 locations at 50m intervals), all spatial units contained sufficient GVI measurements.
Using ArcGIS Pro's spatial join tool , three greenness metrics were computed for each unit:MeanGVI, MaxGVI and
MinGVI.

(2) Park Rating Interpolation:

Given sparse POI distribution (131 parks), non-Voronoi zoning methods (grid/radial) contained null units. To address
this spatial discontinuity, we implemented ordinary Kriging interpolation (spherical semivariogram model, 0.5 km
search radius) to create continuous rating surfaces. The interpolated raster was subsequently integrated with spatial units
via zonal statistics, yielding Unit Rating.

2.3.3 Spatial correlation methodology

The values of the above spatial units were analyzed by applying the method of spatial correlation. Exploratory Spatial
Data Analysis (ESDA) provides a suite of statistical techniques to quantify and visualize spatial autocorrelation patterns.
This study employs both global and local indicators to examine the spatial association between streetscape greenness
and park service evaluations.

(1) Global Spatial Autocorrelation

The Moran's I statistic (Moran, 1950) measures overall spatial dependence across the study area:

" gngy (x,. _;Xxj _;)
% Zn: (xl. - ;)Z
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where:
n: Number of spatial units

@ : Spatial weight matrix (queen contiguity)
S, : Sum of all spatial weights

X, : Attribute value at location

X : Mean attribute value

Interpretation:

I€[-1,1]: Positive values indicate clustering (similar values aggregate), negative values dispersion, and 0 random
distribution. Statistical significance tested via permutation tests (999 simulations, 0=0.05).

(2)Local Indicators of Spatial Association (LISA)

Volume 7, Issue 2, Pp 63-71, 2025



Streetscape greenness and park service evaluation in Zhengzhou, China: a spatial multi-zoning perspective 67

Developed by Anselin (1995), LISA identifies localized clustering patterns and spatial outliers through:
Local Moran's I computation for each spatial unit:

= 3

where S” is the variance of x.
3 RESULTS
3.1 Univariate Global Spatial Autocorrelation Analysis

The Global Moran's I statistic was computed using GeoDa 1.20 to quantify spatial clustering patterns of streetscape
greenness (GVI) under three distinct zoning frameworks:

Table 1 The Univariate Global Moran’s 1
Zoning MeanGVI MaxGVI MeanGVI Mean Park rating Max Park rating ~ Min Park rating

Method score score score
Grid 0.407 0.469 0.214 0.351 0.698 -0.121
Radial-sector ~ 0.405 0.362 0.047 0.401 0.314 0.534
Voronoi 0.346 0.399 0.162 0.286 0.716 0.400

As can be seen from the univariate global Moran'’s I table (Table 1) above, the performance of several variables differs
across the three spatial zoning methods. Among them, Mean GVI, Max GVI, Mean Park Rating Score, and Max Park
Rating Score exhibit significant positive spatial autocorrelation in all three zoning frameworks. However, Min GVI and
Min Park Rating Score show insignificant spatial clustering. Numerically, the Radial-sector method demonstrates the
best overall performance, indicating that Radial-sector is a highly suitable approach.

3.2 Bivariate Local Moran's 1

Using GeoDa 1.20°s bivariate Local Moran’s 1 (LISA) module, we systematically analyzed spatial cross-correlations
between paired variables (e.g., GVI vs. park ratings) . Representative cases are described below.

(1) 1 km Grid-based Zoning

Within the 1 km grid-based zoning spatial units, no significant bivariate spatial autocorrelation was observed between
Mean Park Rating Score and Mean GVI. However, relatively significant spatial autocorrelation features were identified
between:

Mean Park Rating Score and Max GVI (Moran's I = 0.153).

Max Park Rating Score and Mean GVI (Moran's I = 0.135).

In the LISA map(Figure 4) of Mean Park Rating Score vs. Max GVI, High-High (H-H) clusters exhibited distinct
concentric patterns, while GVI itself demonstrated a spatial gradient characterized by higher values in the urban core
and lower values in peripheral areas. Similarly, the LISA map(Figure 5) of Max Park Rating Score vs. Mean GVI
revealed annular distributions of H-H and Low-High (L-H) units. These patterns indicate that while streetscape
greenness (GVI) peaks in Zhengzhou's central urban area, park service ratings display annular differentiation features.
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Figure 4 Moran Scatter Plot (left) & LISA Cluster Map of Mean Park Rating Score and MaxGVI (Right)
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Figure 5 Moran Scatter Plot (left) & LISA Cluster Map of Max Park Rating Score and Mean GVI (Right)

(2) 1 km Radial-sector Zoning
Within the 1 km Radial-sector Zoning spatial units, relatively pronounced bivariate spatial autocorrelation was observed
between Mean Park Rating Score and Mean GVI (Moran's I = 0.169). Similarly, Max Park Rating Score and Mean GVI
also exhibited significant spatial autocorrelation (Moran's I = 0.216).
In the LISA map(Figure 6) of Mean Park Rating Score vs. Mean GVI, High-High (H-H) clusters were concentrated in
the central radial sectors, while Low-Low (L-L) units predominantly aggregated in the east-central sectors. The
distribution of H-H and L-L units in the LISA map(Figure 7) of Max Park Rating Score vs. Mean GVI mirrored this
pattern. These findings demonstrate that the 1 km Radial-sector Zoning method effectively captures the concentric
spatial stratification of urban units.
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Figure 7 Moran Scatter Plot (left) & LISA cluster map of Max Park rating score and Mean GVI (right)

(3) Voronoi Zoning

Within the Voronoi Zoning spatial units, no significant bivariate spatial autocorrelation was detected between Mean
Park Rating Score and Mean GVI (Moran's I = 0.033). However, Max Park Rating Score and Mean GVI exhibited
relatively significant spatial autocorrelation (Moran's I = 0.196). Notably, the spatial morphology of units in Voronoi
diagrams is challenging to characterize systematically(Figure 8). In the LISA map (Figure 9)of Mean Park Rating Score
vs. Max GVI, High-High (H-H) and Low-High (L-H) clusters were concentrated in central areas, while Low-Low (L-L)
and High-Low (H-L) units were scattered across the southwestern periphery. These results suggest that while Voronoi
Zoning can analyze spatial correlations, its morphological interpretation is less intuitive compared to the previous two
zoning methods.
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Figure 8 Moran Scatter Plot (left) & LISA Cluster Map of Max Park Rating Score and Mean GVI (Right)
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4 CONCLUSIONS

The Zhengzhou case study yielded the following key findings:

(1) Spatial Association between Park Services and Streetscape Greenery

A significant correlation exists between park service evaluations and streetscape greenness. Crowdsourced park ratings
(derived from POI data) and Green View Index (GVI) metrics (extracted from street view imagery) effectively captured
this relationship, with Moran ” s I values ranging from 0.135 to 0.216 (p < 0.05) under optimal zoning frameworks.

(2) Comparative Efficacy of Zoning Methods

All three spatial partitioning approaches — Grid-based, Radial-sector, and Voronoi Zoning — demonstrated utility in
analyzing park-greenery associations. However, Radial-sector Zoning exhibited superior analytical capacity, achieving
the highest Moran ’ s I values for both univariate and bivariate spatial autocorrelation analyses.

(3) Spatial Gradient Patterns

Streetscape Greenery: High-GVI clusters formed contiguous agglomerations in the urban core, reflecting centralized
green infrastructure investments. Park Services: High-rating parks exhibited concentric distributions, aligning with
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)

Zhengzhou ’ s radial-concentric development model. Low-Value Zones: Peripheral areas showed synchronized
deficiencies in both GVI and park ratings, highlighting urban-rural green equity gaps.

(4) Asymmetric Interaction Mechanisms

While no significant correlation emerged between mean park ratings and mean GVI , robust associations were observed
between Peak park ratings and mean GVI ,Mean park ratings and peak GVI .This asymmetry suggests that superior
streetscape greenness serves as a foundational element for high park service ratings, while flagship parks can elevate
neighborhood perceptions of green quality.

5 DISSCUSIONS

This study underscores the critical role of spatial zoning framework selection in urban green space analysis. While
Voronoi partitioning demonstrated mathematical-theoretical rigor, it faced interpretive limitations in capturing gradient
patterns. These findings advocate for context-sensitive zoning protocols, suggesting future exploration of hierarchical
hexagonal spatial indexing and temporally weighted Voronoi models incorporating POI dynamics.

Practically, we propose a three-tiered spatial strategy for Zhengzhou:

(1) Strategic development of wedge-shaped green corridors aligned with anisotropic urban expansion along primary
development axes to enhance sectoral spatial configurations, urban ventilation, and ecological connectivity.

(2) Precision interventions in peripheral mismatch zones — intensifying street greening in Low-High (L-H) clusters
(GVI: 0.18 - 0.25, Park Ratings: 2.1 - 3.4) and modernizing recreational facilities in High-Low (H-L) areas.

(3) Strategic anchoring through flagship parks, establishing 500-meter radiating greenway networks with
pedestrian/bicycle priority design standards, coupled with community co-management initiatives.

This integrated approach synthesizes analytical rigor with implementable planning solutions, addressing both scale-
dependent spatial heterogeneity and green service equity through adaptive governance mechanisms and multi-
stakeholder participatory frameworks.
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