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Abstract: Hazy images often suffer from low quality when processed by traditional defogging algorithms, which fail to
effectively remove haze. To address this issue, this article propose a novel single-image dehazing model based on the
AOD-Net architecture. The model leverages depthwise separable convolutions to construct a lightweight deep neural
network. Additionally, this article introduces a new conditional convolution and attention mechanism to enhance feature
extraction, thereby improving the network’s ability to capture global information from hazy images. To optimize model
performance, this article train the proposed model on the NYU dataset and conduct extensive experiments on the same
dataset. The dehazing effectiveness is evaluated using full-reference image quality assessment metrics. Experimental
results demonstrate that the improved model achieves higher accuracy in dehazing quality compared to existing
methods. Furthermore, the incorporation of the new feature extraction module and attention mechanism significantly
enhances performance in haze removal, color restoration, and detail preservation, outperforming the original AOD-Net
and other traditional approaches.The application feasibility of this technique is extensive: In the domain of autonomous
driving, it can enhance the target detection accuracy of on-board cameras in foggy weather; in remote sensing
monitoring, it facilitates satellites and unmanned aerial vehicles to obtain clearer surface information; in the area of
security surveillance, it can strengthen the reliability of video analysis in low-visibility circumstances. Additionally, the
lightweight design of the model can be adapted to edge computing devices, providing technical support for real-time
defogging and possessing significant engineering application value and commercial potential.
Keywords: Deep learning; Image dehazing; Atmospheric scattering model

1 INTRODUCTION

Hazy conditions, caused by air pollution, dust, smoke, and atmospheric particles, introduce a complex form of
non-linear noise that significantly degrades image quality[1]. This degradation results from the scattering and
absorption of light by suspended particles in the atmosphere, leading to reduced contrast, color distortion, and obscured
details. The presence of haze poses considerable challenges for various computer vision tasks, including object
detection, recognition, and segmentation, all of which rely on high-quality input data for accurate and reliable
performance[2-3]. Consequently, the development of effective image dehazing techniques is crucial for enhancing
image clarity and improving the robustness of vision-based applications.
Image dehazing has gained widespread importance in diverse fields such as autonomous driving, medical imaging, and
video surveillance. In autonomous driving, the ability to accurately perceive lane markings, traffic signs, and
pedestrians under adverse weather conditions is essential for ensuring vehicle safety and reliability. Similarly, in video
surveillance systems, dehazing algorithms play a vital role in maintaining the clarity of recorded footage, enabling
better monitoring and security analysis in low-visibility environments.
Advancements in image processing and deep learning have spurred extensive research into robust dehazing methods
capable of addressing the visual distortions introduced by haze. The primary challenges associated with hazy images
include reduced contrast, blurred edges, and a loss of critical textural and color information. These issues arise due to
the unpredictable scattering of light, which mixes reflected object light with atmospheric particles, causing shifts in
perceived color and loss of fine details. Such distortions not only hinder human interpretation of images but also
degrade the performance of automated vision systems.
To mitigate these challenges, numerous image dehazing algorithms have been developed to restore image clarity and
preserve essential details. Traditional model-based approaches, such as atmospheric scattering models, estimate haze
transmission and restore images based on handcrafted priors[4-5]. However, these methods often struggle with complex
real-world scenes and may produce artifacts when the assumed priors do not hold. More recently, deep learning-based
methods have demonstrated superior performance by leveraging large-scale datasets to learn complex mappings
between hazy and haze-free images. Among these approaches, AOD-Net has emerged as a prominent end-to-end deep
learning model that directly estimates a transformation function to reconstruct haze-free images[6]. Despite its
effectiveness, AOD-Net has limitations in terms of generalization across diverse environments and restoration of fine
details.
To address these limitations, this article proposes IAOD-Net, an enhanced deep learning model for single-image
dehazing. Building upon AOD-Net, IAOD-Net incorporates several key improvements aimed at enhancing its dehazing
capability. First, the article replaces standard convolutional layers with conditional convolution layers, allowing the
network to adaptively adjust its filtering behavior based on contextual information. This enables the model to more
effectively capture spatially variant haze distributions. Additionally, IAOD-Net integrates two specialized modules: an
edge enhancement module and an attention excitation module. The edge enhancement module is designed to recover
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sharp boundaries and fine textures that are often lost in hazy images, preserving the structural integrity of restored
images. Meanwhile, the attention excitation module enhances the network’s ability to focus on highly degraded regions,
selectively prioritizing areas most affected by haze. This mechanism improves the overall accuracy of haze removal,
yielding clearer and more visually natural outputs.
Through extensive experiments, this article demonstrates that IAOD-Net achieves superior performance compared to
the original AOD-Net and other state-of-the-art dehazing methods[6]. By integrating adaptive filtering and attention
mechanisms, the article approachs effectively restores image details, enhances contrast, and improves color fidelity,
making it well-suited for practical applications in autonomous driving, surveillance, and remote sensing.

2 RELATED WORK

Traditional algorithms for image dehazing encompass methods rooted in the Dark null hypothesis (e.g.These techniques,
including the Dark Channel Prior and various approaches involving deep learning, frequently encounter challenges in
complex, real-world environments and can generate artifacts if the expected assumptions are violated.g.DCPNet,
DehazeNet jne).At present, there are primarily three types of algorithms for removing haze from images. The initial
group consists of techniques that focus on enhancing the quality of images. This approach overlooks the imaging
mechanisms that lead to the degraded images, reinterpreting the haze issue as one of enhancing contrast, thereby
accentuating image details and improving the overall contrast. Another approach involves image dehazing algorithms
that utilize a physical modeling framework. This method investigates how hazy images are created, constructs a model
of the imaging process, and subsequently performs reverse calculations based on this model to retrieve the original clear
image. Recently, advancements in deep learning methodologies have found extensive applications in various aspects of
image manipulation, including but not limited to image classification, object recognition, and facial recognition. The
third type involves most current algorithms for image dehazing that leverage deep learning; they utilize a neural
network model to assess the transmittance of a hazy image, subsequently determine the atmospheric light value
independently, and finally generate a haze-free image by applying the atmospheric scattering model. Nevertheless, the
accuracy of such assessments can sometimes be questionable.
In the process of DCP, the estimation of atmospheric light relies on established insights derived from the concept of the
dark channel[1]. To start, candidate points are identified by selecting the highest-ranked pixels from the ordered dark
channel map. These candidate points correspond to positions within the original image, from which the brightness
values are extracted. The maximum value from this group of brightness values is then determined to represent the
atmospheric light value. In both DehazeNet and MSCNN, an estimation of the transmission map is conducted via the
convolutional network framework, while the atmospheric light value derives from established knowledge related to the
dark channel. Nonetheless, if an image features objects that closely resemble the atmospheric illumination—such as
numerous white items or other bright light sources—the calculated atmospheric brightness could become skewed,
leading to a dehazed image that appears overly bright. Moreover, the separate estimation of two crucial elements,
namely the transmittance matrix and the atmospheric lighting, might exacerbate the inaccuracies when these
components are utilized together. Li et al. An advanced convolutional neural network (CNN) model specifically aimed
at dehazing, referred to as the Fully Functional Dehazing Network (AOD-Net)[6], has been proposed to enhance
efficiency in this area. The architecture of AOD-Net is founded on a restructured model of atmospheric scattering.
Instead of generating a transmittance map, the model produces a clear image. Results indicate that AOD-Net surpasses
numerous leading techniques in terms of effectiveness.

3 ENHANCED DESIGN OF THE IAOD-NET MODEL

3.1 Equation for Atmospheric Scattering Deformation Model

To elucidate the generation of haze images, the atmospheric scattering model was initially introduced by McCartney[7],
and it received further enhancements from Narasinghan and Nayar[8,9]. The formal representation of the atmospheric
scattering model can be articulated as follows.

I(X) = J(X)t(X) + A(1 − t(X)) (1)
Where I(X) is the observed intensity, J(x) is the light intensity from the scene object before scattering, t(X) is the scene
transmittance, which represents the amount of light that reaches the observer after scattering, and A represents the
global ambient illumination. In addition, t(X) is the intermediate transmission matrix, defined as

t(X) = e−β(γ)d(X) (2)
Where β is the atmospheric scattering coefficient, and the uniform concentration of haze can be approximated as a
constant; c is the wavelength of the reflected light; d(X) is the scene depth, which is the distance between the
corresponding object in the scene and the imaging device.
K(X)To recuperate a clear image from a hazy one, it is essential to determine the light transmission values present in the
hazy image and the associated atmospheric illumination from the perspective of the atmospheric scattering framework.
Li et al. introduced a new variable by deformating the atmospheric scattering model, so that the neural network model
could directly estimate the joint value of transmittance and atmospheric light[10]. Utilizing the atmospheric scattering
framework (1), one can express the clean image produced by the proposed network as follows:

J(X) = 1
t(X)

I(X) − A 1
t(X)

+ A (3)
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J(X) = K(X)I(X) − K(X) + b (4)
K(X) = (1 t(X))(I(X)−A) + (A−b)

I(X)−1
(5)

Estimating atmospheric light and transmittance together helps to mitigate the issue of overestimating atmospheric light
caused by bright regions or sky sections.

3.2 Challenges Associated with the Initial AOD-Net

The AOD-Net architecture struggles with effectively retrieving fine details in images. The network architecture's failure
to adapt to varying lighting conditions results in inconsistent efficacy across different illumination scenarios[11-12].
Estimating the atmospheric illumination and transmittance is fundamental to the process of dehazing rooted in the
atmospheric scattering theory. Nevertheless, determining the values for transmittance and atmospheric illumination with
precision remains a challenging endeavor. In DCP, the atmospheric light level is derived using knowledge from the dark
channel prior methodology. If the image features numerous bright elements or additional light sources, the derived
atmospheric light value may be excessively high, leading to overexposure in the resulting dehazed image[15-17]. This
observation was confirmed through experimentation. It can be observed that utilizing a comprehensive model allows for
the recovery of an image free from haze, eliminating the need to individually assess the values of transmittance and
atmospheric illumination[18]. Moreover, removal of haze from images plays a vital role in sophisticated computer
vision applications including the recognition of obscured objects and the processing of hazy videos. Consequently, there
are increasing expectations for the dehazing model regarding its computational efficiency and overall size.

3.3 Refinement of the improvement section

3.3.1 Network structure optimization
In pursuit of this goal, an additional conditional convolution is integrated into the five-layer convolution, drawing upon
the transformation equation of the atmospheric scattering model. The architecture can be divided into two main
components: an estimation module for K that derives K(x) from the input I(x), and a subsequent module for generating
a clean image that leverages K(x) as an adaptive parameter for estimating J(x).
The core element of the innovative model is the K estimation module, which plays a crucial role in determining both the
depth and the extent of haze present. Figure 1 illustrates how the article incorporated conditional convolution into the
existing five convolution layers, enabling dynamic adjustments of the convolution kernel to cater to various data types.
Additionally, the research introduced a couple of supporting components aimed at enhancing model precision and
overall effectiveness. Subsequent to the K estimation component, the output generated from the initial segment is
integrated into the deformation equation of the atmospheric scattering model, facilitating the computation required to
produce the restored image as outlined in (5). Figure 1 illustrates the design of the updated model.

Figure 1 Network Structure Diagram of the New Model

The following provides an in-depth look at how each component is incorporated within the AOD-Net architecture and
their respective functionalities: The CondConv2D class establishes a conditional convolutional layer that derives from
the _ConvNd base class found in PyTorch. This class employs the _routing helper class to determine the routing
weights for every individual input sample, executing the convolution operation by utilizing the weighted sum derived
from the routing weights and the corresponding expert kernel.This allows the model to adaptively modify the
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convolutional filters in response to the input variations, thereby enhancing its capability to recognize diverse patterns
within the data, capturing both spatial and channel features with greater flexibility, which in turn boosts the overall
efficacy of feature extraction.The Enhanced Squeeze and Excitation Module (ESAM) introduces an edge enhancement
mechanism that processes the feature map via convolutional layers and gradient enhancement techniques, thereby
augmenting the edge details of the image and aiding in the model's accuracy. By incorporating operations like global
average pooling along with convolution, ESAM effectively captures the interrelations among various channels. By
flexibly modifying the significance of different features, the model's ability to adapt to intricate scenarios is
enhanced.SCSE (Spatial and Channel Squeeze and Excitation) integrates the processes of squeezing and excitation for
both channel and spatial aspects, thereby boosting the model's efficiency through the incorporation of attention
mechanisms that operate on the input tensor and select the maximum value from their outputs. By acknowledging the
interdependence of the spatial and channel dimensions simultaneously, SCSE produces a more intricate set of attention
weights. This approach enables the model to recognize intricate interactions among features and enhances its overall
effectiveness.
3.3.2 Enhancements in the training methodology
The optimizations in training are as follows: Initially, there is an implementation of a mechanism for adjusting the
learning rate dynamically; this mechanism reduces the learning rate over time, based on the performance observed in
the validation set. Additionally, the utilization of mixed-precision training through FP16 enhances training efficiency
and minimizes memory usage. Third, the approach to storing and retrieving models is refined: This article enhances the
processes for saving and loading models during training tasks to prevent memory leaks on the GPU.

4 EXPERIMENTS

This part of the study focuses on assessing the performance of the suggested new model through both qualitative and
quantitative methods. The quantitative evaluation takes into account the comprehensive reference image quality
assessment indicators, namely PSNR and SSIM.

4.1 Training Data and Experimental Setup

Obtaining blurred images alongside their clear counterparts in natural settings presents a significant challenge. To tackle
this, the study creates artificial hazy images using several techniques: It leverages real images that include depth
information sourced from the NYU2 indoor depth dataset. Furthermore, the approach involves selecting various
atmospheric light parameters A by evenly sampling each color channel within the interval [0.6, 1.0] and choosing
β∈{0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}. For the NYU2 database, Select Article 27,and 256 images are designated as the
training set while 3,an additional 170 images were designated as the distinct test set. Moreover, the study also conducted
evaluations on images affected by natural haze to assess how well the model generalizes.
The framework was executed utilizing Pytorch version 0.12.1, incorporating five layers of depthwise separable
convolutions, four layers utilizing ReLU activation functions positioned subsequent to the convolutional layers, along
with three layers that concatenate the data. The experiment utilized an NVIDIA GeForce GTX 1660 Ti 14GB GPU
coupled with CUDA version 11.3. During the training phase, the initialization of the weights was performed using
random variables drawn from a Gaussian distribution. The framework incorporates ReLU activation functions.
Momentum and decay coefficients were established at 0.9 and 0.0001, respectively. with a learning rate fixed at 0.0001
and a batch size consisting of 64 images per batch (480×640). The methodology incorporated a straightforward mean
square error (MSE) loss function, which yielded enhancements not only in the Peak Signal-to-Noise Ratio (PSNR), but
also enhanced the index of structural similarity (SSIM) along with the overall visual quality.
The recent model requires approximately 860 cycles of training to achieve a suitable fit, and typically shows satisfactory
performance after this number of iterations, with peak accuracy observed at around 870 cycles. In this study, the model
underwent training for a total of 1000 epochs. Furthermore, it was discovered that constraining the gradient within the
interval of [−0.1, 0.1] proved beneficial in the training process. This approach is commonly utilized to ensure stability
during the training of recurrent networks.

4.2 Generated Outcomes from the Designated Evaluation Dataset

In order to assess the proposed model's efficiency, experiments were performed utilizing the nyu2 dataset, demonstrating
the method’s capabilities in contrast to other leading techniques. The researchers employed synthetic hazy images as
inputs for the new model and assessed its results against those from actual images. The test of the proposed technique
was conducted utilizing the NYU2 indoor dataset. The evaluation metrics utilized for comprehensive analysis include
both PSNR and SSIM. By closely examining the specifics, it becomes evident from figure (b) that the performance of the
new model aligns more closely with human visual perception.
The preceding sections analyze the proposed model against the DCP utilizing no-reference metrics for image quality
assessment on synthetic datasets. This section utilizes full-reference image quality assessment metrics such as PSNR and
SSIM to analyze the performance of the models with respect to the images. Table 1 presents the average values for PSNR
and SSIM. Table 1 illustrates that in the synthetic nyu2 test set, the PSNR and SSIM metrics of the new model
marginally surpass those recorded for DCP[1].
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The study performs tests to evaluate the enhanced model in relation to both the conventional Dark Channel Prior
technique and the currently available deep learning approaches. The findings are presented in the accompanying table 1:

Table 1 Comparison of results
Methods PSNR (dB) SSIM

Dark Channel Prior (DCP) 9.8659 0.5327

IAOD-Net 14.2414 0.6328

By analyzing images, the improved model successfully mitigates haze effects while preserving a greater amount of image
intricacies. The subsequent illustration, Figure 2, demonstrates this process:

（a） (b) (c) (d)
Figure 2 A Comparative Analysis of the Performance between DCP and the Newly Proposed IAOD-Net was

Conducted Using the Synthetic Indoor Dataset NYU2. (a) Original Image; (b) Represents the Output Image Obtained
after Applying the New Approach for Haze Removal; (c) Illustrates the Generated Hazy Picture Derived from (a); (d)

depicts the image that has undergone dehazing using DCP[1]

5 DISCUSSION

The improved model of AOD-Net demonstrates strong effectiveness in tasks related to image dehazing, successfully
addressing the issues of low brightness and unclear details that are often encountered with conventional techniques. The
addition of a multi-scale feature integration module along with an attention generation component greatly enhances the
network's adaptability. The findings from the experiments indicate a marked improvement in performance of the updated
model compared to the conventional DCP model. This study examined the effectiveness of integrating cross-layer
connections within the K-estimation module, allowing for the combination of features across various scales derived from
differently sized filters, which aids in achieving a seamless flow from fundamental to advanced features. To enhance the
model's adaptability to various data conditions, a modification is made to the standard convolution process by
incorporating conditional convolution, which preserves the integration of features across different layers while enabling
the network to dynamically modify the convolution kernels based on the specific input. The introduced attention
framework amplifies the edge details within the image and incorporates both channel-wise and spatial attention modules
into the input tensor, thereby enhancing the model’s accuracy and overall performance.
This study introduces an innovative attention mechanism along with a novel conditional convolutional layer to develop a
comprehensive end-to-end dehazing neural network. When compared to the classic model employing the same neural
network structure, the study achieves a substantially improved objective performance in dehazing on the nyu2 dataset.
The research achieves an outstanding Peak Signal-to-Noise Ratio (PSNR) value of 14.Additionally, it achieves an
optimal Structural Similarity Index (SSIM) of 0 and a relative enhancement of 44%, equating to 24.6328, indicating an
improvement of 18% relative.
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6 CONCLUSIONS

This paper introduces a refined model that builds upon the AOD-Net framework, which is an end-to-end CNN designed
to effectively generate images without haze. This new approach retains the strengths of the AOD-Net architecture while
employing conditional convolution in place of traditional convolution methods. The new model was evaluated against
leading techniques using objective measures such as peak signal-to-noise ratio and SSIM on both synthetic and natural
haze images. Comprehensive experimental findings illustrate the advantages, reliability, and effectiveness of the new
model. The improved model notably achieves better detection capabilities under hazy environments when compared to
DCP. Nonetheless, the effectiveness of dehazing methods is closely tied to the accuracy of depth estimation, indicating
that integrating depth-related insights or enhanced depth estimation techniques could further elevate the performance of
AOD-Net.
Looking ahead, this improved model has the potential to be utilized across various real-world applications, including the
enhancement of nighttime imagery in self-driving vehicles. Investigate the potential integration of additional deep
learning architectures, like Transformers, to enhance the model's efficiency even further. In subsequent research efforts,
the intention is to utilize the complete OTS and ITS datasets to train the proposed system. Next, an in-depth examination
of the Aod-Net framework will be undertaken as part of the study. While the present investigation lacked ample
opportunity to meticulously adjust the system's parameters, the preliminary findings are promising.
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