
World Journal of Information Technology
ISSN: 2959-9911
DOI: https://doi.org/10.61784/wjit3033

© By the Author(s) 2025, under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

NASDAQ INDEX PREDICTION BASED ONARIMA-GARCH
MODELAND DYNAMIC REGRESSION

YiLin Peng
South China Normal University, School of Mathematical Sciences, Guangzhou 510631, Guangdong, China.
Corresponding Email: 20212831009@m.scnu.edu.cn

Abstract: As the global market becomes more and more open and volatile, it is of great significance to grasp the
financial temporal volatility and correlation and accurately predict stock price behavior. This paper takes the Nasdaq
Composite Index in 2020-2023 as the research object, constructs the ARIMA(1,1,(1,5)) model with GARCH(1,1)
conforming to t distribution disturbance term to fit the trend of the index in 2020-2022, and predicts the trend in the first
half of 2023. The results show that the model with GARCH effect gives a wider forecast confidence interval and can
indicate the potential risk, but can not accurately reflect the real trend of the index. To improve the prediction accuracy,
this paper takes Nasdaq index as the response variable, introduces S&P 500 index as the input variable, constructs an
effective dynamic regression model through Granger causality test and EG cointegration test, and improves the model
through cross-correlation function analysis. The results show that the forecast trend of the model is closer to the actual
series of fluctuations, indicating that the S&P 500 index plays a promoting role in predicting the Nasdaq index, which
provides a more reliable reference for investors when weighing the benefits and risks.
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1 INTRODUCTION

Since 2020, the U.S. stock market has experienced sharp fluctuations under the impact of the COVID-19 pandemic. In
response, the Federal Reserve implemented a zero interest rate and quantitative easing (QE) policies, alongside fiscal
stimulus measures, leading to a rapid market rebound. Indices such as the Nasdaq and the S&P 500 recovered strongly.
As a representative of technology stocks and innovative enterprises, the Nasdaq Index has significant spillover effects
on global markets. Therefore, accurately forecasting its volatility not only helps investors grasp market trends but also
enhances global risk warning capabilities and improves asset allocation efficiency.
Volatility and correlation are two core features of financial time series. How to effectively capture these characteristics,
accurately describe stock price behaviors, and predict market movements has long been a central concern for both
investors and the academic community.
In terms of volatility, market fluctuations are driven by multiple factors, including investor behavior, macroeconomic
policies, and market structure, often exhibiting volatility clustering [1]. Engle and Bollerslev respectively proposed the
ARCH and GARCH models [2], followed by variants such as EARCH, IGARCH, and GARCH-M [3], which enhance
the models’ ability to capture asymmetries and risk premiums. Marisetty N found that the GARCH(1,1) model
performed well in balancing forecasting ability and simplicity across five major international indices [4]. Raza S,
focusing on the Indian Green Finance Index, found that the APARCH(1,1) model best characterized the volatility of
firms associated with carbon performance [5]. Roszyk N combined GARCH with deep learning models like LSTM and
incorporated VIX information to construct a hybrid model [6], significantly improving the forecasting accuracy for the
S&P 500.
In terms of correlation, after Granger introduced the concept of causality in time series [7], models such as ARIMAX
and cointegration models have been widely used to quantify dynamic relationships among time series. Wang P C et al.
combined XGBoost and ARIMAX to predict closing prices in the Vietnamese stock market [8], outperforming LSTM
and other models. Akusta A introduced CEEMDAN decomposition in combination with ARIMAX, effectively
improving the prediction accuracy for the Dow Jones Index [9].
In summary, although existing studies have made substantial progress in modeling volatility and correlation, most focus
on forecasting within a single stock market, lacking dynamic characterization of inter-market linkages. Therefore, this
paper takes the Nasdaq Index as the primary research object, incorporates related variables such as the S&P 500, and
employs the ARIMA-GARCH model along with the ARIMAX dynamic regression model to capture volatility
information in time series and quantify these complex interdependencies, while also comparing the predictive
performance of different models.

2 RESEARCH METHODSAND THEORETICALANALYSIS

This section mainly introduces several commonly used models in financial time series analysis: ARIMA, GARCH,
Granger causality test, cointegration modeling, and dynamic regression.

2.1 ARIMA-GARCH Model
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2.1.1 ARIMA(p, d, q) model
The ARIMA model is a commonly used approach for fitting non-stationary time series with trends. The main steps
include:
(1) Removing trend components through differencing
The differencing method extracts deterministic components of a time series, such as trends and cycles. For a series with
a significant linear trend, first-order differencing can often achieve stationarity; for curved trends, second- or third-order
differencing may be required. Although multiple rounds of differencing can help extract deterministic information from
a non-stationary series, over-differencing can lead to the loss of valuable information, increased variance, and reduced
fitting accuracy, and should therefore be avoided whenever possible.
(2) Stationarity Test and White Noise Test
 ADF Test and PP Test: The null hypothesis of the Augmented Dickey-Fuller (ADF) test is that the time series is

non-stationary. If the test statistic (with being the significance level), the null hypothesis is rejected,
indicating that the series is stationary [10]. When heteroscedasticity is present in the series, the Phillips-Perron (PP)
test is used instead, as its adjusted test statistic provides a more accurate assessment of stationarity.

 White Noise Test (Ljung–Box Q Test)
Under the assumption that the series is stationary, the Ljung–Box Q test evaluates whether the autocorrelation
function is significantly different from zero in order to determine whether the series is white noise. The null
hypothesis of this test is that the series is white noise. If the test statistic , the null hypothesis is
rejected, indicating that the series is not white noise [11].
If the differenced series is stationary and not white noise, it is necessary to proceed with fitting an ARMA(p, q)
model.

(3) Model Order Selection
The key to ARMA(p, q) modeling lies in determining the appropriate values for parameters p and q, which can be
judged based on the patterns of the autocorrelation function (ACF) and partial autocorrelation function (PACF):
 AR(p) model: PACF cuts off at lag p, ACF tails off.
 MA(q) model: ACF cuts off at lag q, PACF tails off.
 ARMA(p, q) model: Both ACF and PACF tail off.
(4) Parameter Estimation and Model Diagnostics
In this study, the conditional least squares method is used to estimate the parameters of the ARIMA model. This method
has the advantage of not requiring a prior assumption about the distribution of the series, and it makes full use of sample
information, resulting in high estimation accuracy.
Model diagnostics primarily include the significance test of the parameters (t-test) and the white noise test of the
residuals (Ljung–Box Q test). If the residuals are not white noise, it indicates that the model has not fully captured the
time series information and needs to be revised. If the residuals are white noise, it suggests that the model fits the time
series well.
2.1.2 ARIMA(p, d, q) model with GARCH(p, q) disturbance terms
(1) Conditional Heteroscedasticity Test
The parameter estimation and testing of the ARIMA model require the assumption of homoscedasticity in the
disturbance terms ; otherwise, it will affect the accuracy of the model's estimates. Therefore, after testing for zero
mean and pure randomness of , it is also necessary to check whether has homogeneity of variance. Economists
believe that this heteroscedasticity is caused by some autocorrelation relationship, which is usually modeled by an
autoregressive model of the squared residual series . Common methods for testing heteroscedasticity include the
following two:
 Graphical Test: If the time series plot shows a volatility clustering effect (alternating small and large fluctuations),

conditional heteroscedasticity may be present.
 ARCH Test: The heteroscedasticity is examined by checking the autocorrelation of , mainly through the

Ljung–Box Q test and LM test. The Q test examines the autocorrelation of through the autocorrelation
function coefficients, while the LM test establishes an autoregressive model for to assess its autocorrelation.
The null hypothesis for both tests is that the residual squared series has no autocorrelation, which is equivalent to
stating that the residual series has no heteroscedasticity.

If the conditional variance of is not homogeneous, it is referred to as having ARCH effects, and further modeling of
using ARCH or GARCH should be performed.

(2) GARCH(p, q) Model
A commonly used model for fitting time series with conditional heteroscedasticity is the GARCH family of models. The
ARCH(q) model is suitable for short-term autocorrelation in , while the more broadly applicable GARCH(p, q)
model is suitable for long-term autocorrelation in . When extracting higher-order autocorrelation information from

, the GARCH(p, q) model, which has a relatively low order, is more effective in capturing the information than the



Nasdaq index prediction based on ARIMA-GARCH model and dynamic regression

Volume 3, Issue 2, Pp 45-53, 2025

47

ARCH(q) model with a very high order.
When the conditional volatility of is not homogeneous, heteroscedasticity is introduced with a sequence , and
the expression for fitting using the GARCH(p, q) model is as follows:

(1)

(2)

(3)

It can be proven that , meaning that is the conditional heteroscedasticity of . Therefore, it
can be seen that the GARCH(p, q) model essentially fits the ARMA(p, q) model to the conditional heteroscedasticity

of .
For the order selection of GARCH, similar to ARMA, the order p and q of the GARCH model can be determined by
examining the ACF and PACF plots of .
(3) Standardized Residual Test and Final Model
After fitting using the GARCH(p, q) model, the focus should be on in Equation (1), which represents the
standardized residuals of the GARCH(p, q) model. This paper will sequentially test the conditional heteroscedasticity of

and the distribution assumption, in order to determine whether the volatility information of has been fully
extracted and whether the coefficient significance tests are valid.

First, to assess the conditional heteroscedasticity of , the autocorrelation of can be tested using the

Ljung-Box Q test or LM test. Second, the GARCH(p, q) model generally assumes because parameter
estimation and tests are conducted under the normality assumption. However, considering that financial time series
often exhibit leptokurtosis (fat tails), it is frequently assumed that . This paper uses the Jarque-Bera (JB)

test( ， ) and the Kolmogorov-Smirnov (K-S) test( ，

) to determine the distribution of .

When both the conditional homoscedasticity and distribution tests of are passed, it is considered that the volatility
information of has been fully extracted. The final expression for the ARIMA(p, d, q) model with GARCH(p', q')
disturbance terms is:

(4)

(5)

(6)

where is the time series to be fitted, B is the lag operator, is the error term, is the conditional

heteroscedasticity, is the standardized error term, are the ARIMA model parameters, and are the
GARCH model parameters.
2.1.3 ARIMA+GARCH forecasting
The introduction of the GARCH model is aimed at better extracting volatility information from financial time series in
order to more accurately assess future risks. Therefore, the introduction of the GARCH disturbance term will alter the
standard error of the forecasted value , thus changing the width of the confidence interval for the forecasted value.

Let the variance of be , then:

Under the assumption of homoscedasticity (using only ARIMA for forecasting):

(7)

Under the assumption of heteroscedasticity (using ARIMA+GARCH disturbance term for forecasting):

(8)

where is the Green's function, and under the normality assumption, the 95% confidence interval for the forecast is
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.

A large number of empirical studies have shown that when the volatility of a series is high (low), the confidence interval
provided by the GARCH model is also wider (narrower). Therefore, using the ARIMAmodel with GARCH disturbance
terms to predict stock index trends will yield results that are closer to reality.

2.2 Dynamic Regression Model

2.2.1 Granger Causality Test
The Granger Causality Test is commonly used to determine the causal relationship between time series and is the
foundation of multivariate time series cointegration modeling. The idea is that, given two time series , if
has a significant impact on , then is considered the cause and is considered the effect, meaning the cause
precedes the effect. The null hypothesis of the test is (with the
requirement that both x and y are stationary series). The problem is transformed into testing the significance of the
linear model between y and x (see equation (9)), with the null hypothesis being equivalent to .

(9)

2.2.2 Cointegration modeling (ARIMAX dynamic regression)
The concept of cointegration provides a theoretical basis for modeling multivariate non-stationary time series. Suppose
the linear model of two time series is . If are non-stationary, the stationarity of
cannot be guaranteed, leading to issues like spurious regression, which makes parameter significance tests ineffective.
Cointegration testing examines the stationarity of . If is stationary, then are cointegrated, which also
means that the linear model between is valid. The hypothesis for the EG cointegration test is: do not
have a cointegration relationship, which is equivalent to being non-stationary. : have a cointegration
relationship, which is equivalent to being stationary.
After the cointegration test, a dynamic regression model between can be established. The lag variables to be
introduced are determined by examining the cross-correlation function between y and x, and the specific form of the
dynamic regression model is then determined for forecasting purposes.

3 EMPIRICALANALYSIS AND RESULTS

3.1 Data Source

This study selects weekly data of the NASDAQ Composite Index from January 5, 2020, to June 25, 2023, obtained
from the official Statista website. This period covers several major global events, including the outbreak of the
COVID-19 pandemic, large-scale fiscal and monetary stimulus policies by various governments, and the onset of the
Federal Reserve's interest rate hikes. These events caused significant fluctuations in the capital markets, making the data
highly representative. As a key benchmark for the global technology stock market, the NASDAQ Composite Index
includes nearly all common stocks listed on the NASDAQ exchange. Its performance reflects not only the development
of U.S. technology firms but also global tech sector trends, which highlights the practical significance of modeling and
forecasting this index.

3.2 ARIMA-GARCH Empirical Analysis and Results

To explore the dynamic characteristics of the index and evaluate its future volatility trend, the ARIMA-GARCH model
is first used to fit the weekly data from 2020 to 2022 (a total of 156 periods), and predict the trend of the index for the
first half of 2023. The model's effectiveness is tested by comparing the predicted values with the actual values.
3.2.1 ARIMA fitting of the nasdaq time series
Since the Nasdaq time series from 2020 to 2022 exhibits a linear trend of first increasing and then decreasing
(Figure 1), a first-order difference is applied. The result (Figure 2) shows that the differenced series has no
obvious trend, but the volatility increases in the later periods, suggesting the possibility of conditional heteroscedasticity.
The PP test (p < 0.0001) and the Ljung-Box Q test for lags 18-30 (p < 0.05) indicate that is stationary and not
white noise, so the ARMAmodel fitting should continue.
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Figure 1 Time Series Plot of the NASDAQ Index

Figure 2 Differenced NASDAQ Time Series Plot

Since the ACF and PACF of (Figure 3) decay to zero after the 5th lag without clear cutoff, an ARMA(5,5) model
is considered to fit . After removing the insignificant coefficients, the sparse coefficient model ARMA(1, (1,5)) is
obtained. Model parameters are significant, and the disturbance terms can be considered as white noise (Tables 1 and 2),
indicating that the model has fully extracted the deterministic components of .

Figure 3 The ACF and PACF of

Table 1 Parameter Estimation of the ARIMA(1,1,(1,5)) Model( , SBC=2316.116)

parameter estimate std t p
MA1,1 -0.53864 0.23327 -2.31 0.0223
MA1,5 0.18164 0.0804 2.26 0.0253
AR1,1 -0.61029 0.22813 -2.68 0.0083
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Table 2White Noise Test of ARIMA Residuals
lag Q df p
6 0.61 3 0.8939
12 8.23 9 0.5115
18 17.06 15 0.3152

3.2.2 GARCH fitting of nasdaq index residuals
Since the Nasdaq index still exhibits volatility clustering effects after differencing (Figure 2), and the Q test and LM test
of the squared residual sequence from the ARIMA model (Table 3) indicate long-term autocorrelation, considering
that a low-order GARCH model can effectively capture this long-term autocorrelation, we directly use the GARCH(1,1)
model to fit . The model expression is as follows:

(10)

(11)

Table 3 Conditional Heteroskedasticity Test of

ARCH lag Q Pr>Q LM Pr>LM
6 8.6607 0.1936 8.4581 0.2064
12 44.7741 <. 0001 28.7565 0.0043

Since the JB test indicates that the standardized residuals significantly deviate from a normal distribution (JB =
9.2894, p = 0.0096), the GARCH(1,1) model with a t-distribution assumption is used to fit . The results show that
passed the KS test (KS Statistic = 0.1025, p = 0.07168). Therefore, parameter estimation and model testing can be
effectively conducted (Table 4). The Q test and LM test(Table 5) both show that has no autocorrelation, suggesting
that the conditional volatility information of has been adequately extracted.

Table 4 Parameter Estimation of GARCH(1,1) Model
Parameter coef std err t P>|t| 95.0% Conf. Int.

3285.2352 2994.1250 1.0970 0.2730 [-2.583e+03,9.154e+03]

0.1051 0.0623 1.6860 0.0919 [-1.710e-02, 0.227]

0.8812 0.0444 19.8310 0.0000 [ 0.794, 0.968]

Table 5 Conditional Heteroskedasticity Test of

Lag LM Statistic p-value (LM) Q Statistic p-value (Q)
6 3.9167596 0.6879401 4.573374 0.599572
12 9.8372461 0.6302365 12.25077 0.425756

3.2.3 ARIMA-GARCH forecasting performance
In summary, this paper first uses ARIMA(1,1,(1,5)) to extract the deterministic information from the time series, and
then employs GARCH(1,1) to capture the conditional volatility information of the residuals. The final model expression
for fitting is:

(12)

(13)

(14)
The model prediction results (Figure 4) show that the ARIMA model with GARCH effects has a wider confidence
interval for the predicted values, indicating that the GARCH model is better at capturing the volatility in financial time
series. The wider confidence interval suggests that investors need to be more cautious when weighing the returns and
risks of Nasdaq stocks, especially in the context of the Federal Reserve's frequent interest rate hikes to curb high
inflation. This policy shift has directly impacted the liquidity and valuation in the capital markets.
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Figure 4 Comparison Chart of Forecasting Performance with and without GARCH Effects

3.3 Empirical Analysis and Results of the Dynamic Regression Model

The main limitation of the ARIMA model in forecasting the Nasdaq index time series is that the forecast period is
relatively short, and the predicted values tend to stabilize, making it difficult to reflect the real volatility increase trend
(Figure 4). To improve the forecasting accuracy and explore the interconnectedness of the U.S. stock market, this study
introduces input variables and constructs a dynamic regression model to reforecast the Nasdaq index trends.
3.3.1 Selection of input variables and data preprocessing
In this study, the S&P 500 index , which is also highly watched, is selected as a potential input variable alongside
the NASDAQ Composite Index . To avoid heteroscedasticity, both stock time series are first transformed using
logarithms. After transformation (Figure 5), the trends of both indices are largely consistent. Since Granger causality
tests require stationary series, a first-order difference is applied to the logarithmic series of both indices. The ADF test
( ) shows that both and are stationary. The results of the Granger causality test and
cointegration test (Table 6) indicate that it is appropriate to fit a dynamic regression model for and .

Figure 5 Log-Transformed S&P 500 and Nasdaq Index Trends from 2020 to 2023

Table 6 Granger Causality Diagnosis and Cointegration Test for S&P 500 and Nasdaq
null hypothesis Statistics p

The S&P 500 ( ) is not the Granger cause of the Nasdaq( ). F=72.3113 0.0000

no cointegration relationship between and . =-6.7179 0.0000

3.3.2 Fitting the dynamic regression model to the NASDAQ time series
To determine the specific form of the dynamic regression model, it is necessary to identify several input variables that
are strongly correlated with the response series . By examining the cross-correlation function between
and (Figure 6), significant cross-correlation coefficients at lags 0 and 1 were found. Therefore, and

were selected as input variables to be included in the regression equation. The dynamic regression model is
constructed as follows:
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(15)

Figure 6 The Cross-Correlation Function Plot between and

The test reveals that is stationary and non-white noise, with an ACF tailing off and a PACF exhibiting a first-order
cutoff. Therefore, an AR(1) model is fitted to . After removing the insignificant coefficients, the final expression of
the model is as follows:

(16)

(17)

3.3.3 Dynamic Regression Forecasting Performance
The forecasting results of the Nasdaq for the first half of 2023 based on the dynamic regression model (Figure 7) show
that although there is still some deviation between the predicted values and the actual values, the predicted trend aligns
with the real trend, both showing a fluctuating upward trend. This indicates that the inclusion of the S&P 500 index has
improved the forecasting accuracy of the Nasdaq index.

Figure 7 Dynamic Regression Model Prediction Results Plot

4 CONCLUSIONS AND OUTLOOKS

This study focuses on the weekly data of the Nasdaq Composite Index (NASDAQ_Index) from January 5, 2020, to June
25, 2023. In order to better capture both the deterministic and conditional volatility information of this financial time
series, an ARIMA(1,1,(1,5)) model with GARCH(1,1) disturbances following a t-distribution was initially established
to fit the index time series from 2020 to 2022. Subsequently, the index trends for the first half of 2023 were predicted
using both models with and without GARCH effects. The results show that the model with GARCH effects produced a
wider prediction confidence interval, indicating that this model is more capable of forecasting potential risks in future
financial environments. This also suggests that investors need to be more cautious when balancing the returns and risks
of Nasdaq stocks.
However, the forecasts generated by the ARIMA-GARCH model became more stable as the forecast period increased,
failing to reflect the true rising volatility trend of the Nasdaq index effectively. To improve prediction accuracy, this
study then applied the concept of cointegration by introducing the S&P 500 index as an input variable. Through Granger
causality and EG cointegration tests, an effective dynamic regression model was initially built. By fully exploiting the
information of the input variable using the cross-correlation function between the Nasdaq index and the S&P 500 index,
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the model's specific form was determined and refined. The results show that the forecast trend of this model largely
follows the true sequence’s rising volatility, indicating that the S&P 500 index plays a facilitative role in predicting the
Nasdaq index.
Although the dynamic regression model constructed in this study has significantly improved the forecasting accuracy of
the NASDAQ Index under the condition of known input variables, it still has certain limitations. Firstly, the model’s
effectiveness depends on the availability of future values of input variables (such as the S&P 500 Index), which are
often unknown in real-world forecasting scenarios. Secondly, even if these input variables are forecasted separately, the
associated prediction errors may propagate and negatively impact the accuracy of the response variable forecast. Future
research could consider integrating dynamic regression with multivariate time series modeling or machine learning
techniques to enhance the model’s robustness and adaptability, thereby better capturing the complex volatility patterns
in financial markets.
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