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Abstract: This paper focuses on the decoupling of self-adjoint second-order linear systems. It is proposed a method
with congruence transformation matrix that preserving the Lancaster structure. This method requires fewer parameters
during the decoupling while remaining the spectrum of the system before and after decoupling. Numerical simulation
experiments demonstrate the implementation results achieved by applying this method to system decoupling.
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1 INTRODUCTION

Typically, dynamic systems inherently possess highly intricate structures. It is defined as a coupled system when the
system consists of interconnected subsystems. Coupled systems find extensive applications across diverse domains such
as aerospace technology, economic development, and agricultural production[1-3]. However, the complex
configurations of coupled system devices and apparatuses, combined with interactions and mutual influences among all
or partial subsystems, introduce numerous uncertain, complex, and difficult-to-control factors during system analysis.
These challenges ultimately hinder the effective optimization of system performance[4-8]. Currently, to address the
challenges in system analysis caused by mutual interference among subsystems in coupled systems, engineers primarily
employ system decoupling methods. These approaches preserve the intrinsic properties of the original coupled system
while eliminating all or partial coupling relationships, thereby transforming a multi-degree-of-freedom system into
multiple independent single-degree-of-freedom subsystems without mutual interactions. Given that higher-order linear
coupled systems can be effectively reduced to second-order linear coupled systems through appropriate treatment, this
study focuses on the decoupling of self-adjoint second-order linear dynamical systems. We present a congruence
transformation of decoupling with preserving the Lancaster structure, accompanied by a series of numerical simulation
experiments.

2 TRANSFORMATION FOR SELF-ADJOINT SECOND-ORDER LINEAR SYSTEMS

The second-order linear dynamical systems is represented by differential equations: M Ojc'(t) + COJ'c(t) +K0x(t) =f (t) ,

where M, , G, and K, are respectively the given initial coefficient matrices of an n-degree-of-freedom system,
x(t) and f(¢) are vectors with n degrees of freedom[9]. Such systems are extensively utilized in across critical

disciplines such as applied mechanics, acoustics, circuit simulation, structural mechanics, fluid mechanics, and
microelectronics design.

To perform decoupling on the coefficients of the second-order linear dynamical system, we first denote the Lancaster
structure composed of the coefficient matrices as

L(2)=L(A4M,,C),K,) = ByA+ 4, (1)

c, M, K, 0
B=lyr ol % 0 _m
0 o

the parameter A represents spectrum of this system. The parameterized governing equations of the system are
formulated as follow

where

M (2)X(2)+C(t)x(2)+ K (t)x(t) = f(2) (2)
Then, denote the Lancaster structure[10] corresponding to the parameterized system (2) is as
L (A:M(1),C(1),K (1)) =B(t)A+A(t) 3)

where

0=ty ‘305 @
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Since the spectrum is critically important for determining the motion displacement and vibrational states of second-
order linear systems, therefore, the spectrum of the parameterized system remains invariant. Additionally, all coefficient
matrices are required to be differentiable with respect to the time parameter A .

There must exist a set of 2nx2n invertible parameter-dependent real transformation I, (r) and IT, (), that ensure

{B(t) =1I1; (t)BOHR (t) (5)
A1) =T1; (1) A1, (1)
By differentiating both sides of Equations (5) with respect to the parameter A, we obtain
B(t)=L"(¢)B(t)+B(t)R(¢) ©
A(t)=L" (1) A(t)+ A(1)R(¢)

L(t) and R(t) are the introduced condition matrix. By reorganizing the aforementioned transformations, we derive the

following system of equations comprising 5n> equations with 87° unknowns
) 0
Ly, (t)K (1)=M (t)R, (t)=0 (7)
(

A second-order linear system is defined as self-adjoint when all its coefficient matrices are symmetric. When the initial
coefficient matrices are all symmetric matrices, we should require preserving the symmetry of the coefficient matrices

during decoupling. Specifically, matrices M (¢),C(¢) and K () must retain their symmetric properties for any time

parameter ¢ . Introducing three nxn parameter-dependent matrices D(t), N, (t) and N, (t) , Where D(t) is a skew-

symmetric matrix. This ensures that the symmetry of all coefficient matrices is preserved. We
let N} (t) =N, (t) = N(t) , 11, (t) =11, (t) = T(t) . At this stage, the number of parameter matrices is reduced to two,

and the number of independent parameters is decreased to 2n°.

Impose a constraint on the self-adjoint second-order linear system by normalizing the initial mass matrix M|, to the
identity matrix. Simultaneously, to preserve the self-adjoint property, the following constraint is imposed M (t) =/,
ie. M (t) =0. Consequently, the system (7) can be simplified to
K (1) Ry (1)- RS (0)M (1) =0
RS (1)M(t)+M(t)R,(t)=0 8)
M(1)R,(t)-M(1)R,, (t)+ R, (1)C(t)=0
C(¢)
R(t)_{D(t) 0 } —— M) J{N(t) 0 }
| o D(t c 0 N(t
) Pl (1

where the coefficient matrix is

)

Now the number of unknowns is reduced to n(n—1) / 2+n” . To further simplify the number of parameters, a skew-
symmetric matrix is introduced that satisfied the following condition
N(t)-N"(t)=2S8(¢) (10)
Matrix S(t) serves as the new parameter matrix capable of replacing the original parameter matrix N (t) . After
substitution, matrix N (t) can be expressed as a combination of two skew-symmetric matrices D(t) and S (t)
1

N(t)=Z(C(t)D(t)—D(t)C(t))+S(t) (11)
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Since the parameter matrices are now both skew-symmetric, the number of parameters has been simplified to » (n - 1) .

Furthermore, the derivative equation of the congruence transformation matrix 7'(¢) with respect to time ¢ is derived as

follows
1 3
T T —CD—-=DC+S -D
_| ' e 4 4 (12)
L, T, 1 1
DK ZCD+ZDC+S

Herein, the description of parameter ¢ is omitted, with T (t) defined as the derivative of matrix 7' with respect to time
parameter ¢ . By appropriately selecting only n(n—1) parameters from the skew-symmetric matrices D(¢) and S(¢),
the transformation T (t) can be obtained. Subsequently, a congruence transformation is applied to the Lancaster
structure using the transformation 7' (t) . Through suitable optimal control methods, the trajectories of matrices M (t) ,
C (t) and K (t) are tracked at different time instants ¢, thereby driving these matrices progressively toward diagonal
structures. A self-adjoint second-order linear system is said to achieve complete decoupling, at a specific time instant ¢,
all transformed coefficient matrices are diagonal matrices.

3 NUMERICAL SIMULATION EXPERIMENTS

A numerical simulation verification is provided for the structure-preserving congruence transformation solving
algorithm targeting self-adjoint second-order linear systems. The experiments were implemented using MATLAB
programming, where the iterative integration method invokes MATLAB's standard ODE integrators. Both the absolute

error tolerance (AbsTol) and relative error tolerance (RelTol) in the simulation program were set to 107, with the
output data retaining four significant decimal places.
Given a self-adjoint second-order linear system with 4 degrees of freedom, its initial mass matrix M, =1, initial

damping C; and stiffness matrices K|, are defined as follows

04108 0.0000 —0.3529 0.0000
0.0000  0.0000 0.0000  0.0000
©=| 03529 00000 2.1661 —1.8132
| 0.0000 0.0000 —1.8132 18132 13)
223480 —9.3547 -8.9365 0.0000
 _| 03547 185240 -9.1690 00000
©7| 89365 -9.1690 222080 —4.1027
| 0.0000  0.0000 —4.1027 4.1027

By employing the transformation 7'(7) solving algorithm that maintains the Lancaster structure, appropriate numerical

integration iterations are performed on the time parameter ¢ . The integration process terminates at ¢ ~ 4.0x10°, and the
damping matrix and stiffness matrix of the decoupled system are output as follows
[0.2073  0.0000 0.0000 0.0000

0.0000 2.2029 0.0000 0.0000

= 0.0000 0.0000 1.9436 0.0000
1 0.0000 0.0000 0.0000 0.0363 (14)
29.5482 0.0000 0.0000 0.0000

Ko 0.0000 6.0921 0.0000 0.0000

0.0000 0.0000 27.5510 0.0000
| 0.0000 0.0000 0.0000 0.8435

In this case, the decoupled mass matrix M is the identity matrix. As evidenced by the output data, the damping matrix
C and stiffness matrix K are perfectly diagonal matrices. The total decoupled system represents four independent
single-degree-of-freedom subsystems, where the damping coefficient and stiffness coefficient of each subsystem are
given by the diagonal elements of matrices C and K , respectively.

The variation in the sum of off-diagonal elements for matrices C and K during the complete system decoupling
process is graphically illustrated in Figure 1.
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Figure 1 The Evolution of Off-Diagonal Portions of Matrices C and K

When the integration begins, the curves representing the sum of off-diagonal elements of the damping matrix and
stiffness matrix start to descend at identical rates. Upon termination of the integration, both curves stabilize near the
order of magnitude of 10~ Since the error tolerance in the program was set to 10~ , this confirms that the system has
been totally decoupled.

To validate spectrum invariance, the spectrum of the quadratic eigenvalue problem (QEP) associated with the total
decoupled system is computed. The absolute error between the spectrum at each time parameter ¢ and the initial
spectrum is selected as the metric for spectral variation. The evolution of spectral variation during the decoupling is
graphically illustrated in Figure 2.

Spectrum Deviation

spectrum gap

-

Figure 2 The Deviations of Spectrum

As illustrated in Figure 2, the spectrum of the totally decoupled system has changed. When the integration commences,
spectral variations emerge, with their magnitude progressively increasing as the integration proceeds. Upon integration

termination, the magnitude of spectral variations stabilizes near the order of 107 . Since the error tolerance in the

numerical simulation was set to 107", these spectral variations can be considered negligible.
4 CONCLUSION

Decoupling of second-order linear systems constitutes a pivotal challenge in system analysis. This paper focuses on self
-adjoint second-order linear systems. We proposed a structure-preserving congruence transformation solving this
problem. Leveraging the isospectral theory of Lancaster structure preservation for quadratic eigenvalue problems (QEPs)
inherent to such systems, the algorithm constructs a derivative equation of the congruence transformation matrix with
respect to the time parameter. Through appropriate numerical integration of this derivative equation, a congruence
transformation matrix is obtained at a specific time, which nullifies the sum of non-prespecified off-diagonal elements
in the coefficient matrices. Subsequent application of this matrix to transform the coefficient matrices achieves
complete decoupling of the self-adjoint second-order linear system.
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