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Abstract: Under extreme rainfall scenarios, urban stormwater pipe networks are prone to saturation and failure,
rendering flood risk assessment under such conditions of critical importance. This study established a flood risk
assessment framework using GIS technology and open web data to evaluate 270 catchment subunits in Zhengzhou's
main urban area. Results reveal an overall stepped spatial pattern of flood risks, characterized by lower risks in the
southwest and higher risks in the northeast, with contiguous high-risk clusters identified in the city center. Spatial
autocorrelation analysis confirms strong spatial dependence of flood risks: High-High clusters concentrate in the urban
core and northeastern districts, while Low-Low clusters are distributed across the higher-elevation southwestern region.
The study further conducts bivariate correlation analysis between zonal flood risks and influencing factors, culminating
in the proposal of targeted mitigation strategies.
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1 INTRODUCTION

Urban waterlogging refers to the phenomenon of flood caused by excessive rainfall intensity or prolonged duration,
which exceeds the drainage capacity of pipe networks. In recent years, extreme heavy rainfall events have occurred with
increasing frequency in various regions[1-2]. Once urban flooding disasters triggered by torrential rains occur, disaster-
bearing bodies such as pedestrians, roads, and buildings exposed to floods are highly vulnerable to threats, leading to
casualties, waterlogging-induced traffic disruptions, water and power outages, economic losses, and even potential
collapse of urban emergency command systems and basic support systems such as communication, electricity, and
medical services . Urban flood not only affects the work and life of urban residents but also easily causes severe losses
of life and property.How to assess the risk of urban flood disasters and ensure the safety of urban drainage and flood
prevention has become an urgent issue for urban development[3].
Risk assessment is an effective means to alleviate urban flood disasters and has attracted the attention of many studies[4
-5]. Previous studies generally suggest that the formation of flooding disasters is primarily caused by two factors:
natural and anthropogenic. Natural factors mainly include urban topography and climatic characteristics, while
anthropogenic factors include: the increase in impervious surfaces during urbanization, which reduces natural buffer
zones, slows down rainwater infiltration, and leads to surface water accumulation during storms[6].
The high spatial heterogeneity of the built environment and the complexity of disaster-causing processes pose
considerable challenges to urban pluvial flooding research, manifesting as insufficient model representativeness, low
computational efficiency, and scarcity of basic and validation data[7]. Under extreme conditions, intensified surface
water accumulation renders underground stormwater pipe networks nearly ineffective. Meanwhile, for large cities, the
traditional method of establishing catchment areas involves enormous workloads, and data on underground pipelines are
difficult to obtain. Many scholars from various countries have conducted research and attempts on the assessment of
urban flood risks[8-11]. However, due to different ways of obtaining data, many indicators lack universality[12]. In this
context, more and more research has begun to use open data based on the Internet[13-15]. This study proposes using
open web data for flood risk assessment under extreme conditions to derive evaluation conclusions more efficiently and
concisely.

2 DATA AND METHODS

2.1 Study Area

Zhengzhou, the capital of Henan Province, serves as a key central city in China's central region. On July 20, 2021,
under the impact of extreme weather, Zhengzhou was struck by severe rainstorms and flooding. The hourly rainfall
reached a staggering 201.9 mm that day, with a daily cumulative rainfall of 624.1 mm. Urban waterlogging has imposed
significant impacts on Zhengzhou's strategic status and its economic and social fabric. The selection of Zhengzhou's
main urban area as the study area is highly representative.
This study selected a continuous area within the central urban district specified in the public Zhengzhou Sponge City
Special Plan (2017-2030) for assessment. Geographic information data were established through ArcGIS digitization
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and georeferencing. The assessment area, projected using WGS1984-UTM-Zone50N, encompasses 838.56 km² divided
into 270 subunits (Figure 1). The subunits range from 0.77 km² to 13.91 km² in area. These subunits are assigned
distinct annual runoff control rate targets in the Zhengzhou Sponge City Special Plan (2017-2030), which well align
with practical requirements for urban water management. The numbers in the right figure are the partition serial
numbers given by the author.

Figure 1 Study Area and Subunits Diagram

2.2 Open Web Data

2.2.1 DEM data
DEM (Digital Elevation Model) is a digital simulation of terrain through limited topographic elevation data, which
realizes the digital expression of terrain surface morphology. It is currently widely applied in geographic assessment
and analysis. The DEM data used in this study was downloaded from the Geographic Information Data Cloud, with a
precision of 30 meters. By overlaying the evaluation units with DEM rasters in ArcGIS, three indices—minimum
elevation, average elevation, and average slope—of each evaluation unit were extracted using tools such as Spatial
Analyst (Figure 2).

Figure 2 DEM Data and Overlay Map of Subunits
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Figure 3 NDVI Data and Overlay Map of Subunits

2.2.2 NDVI data
NDVI (Normalized Difference Vegetation Index) is a digital characterization of surface vegetation coverage achieved
through normalized operations of the difference and sum of reflectance values from remote sensing bands. Its core
value lies in transforming vegetation physiological status into quantifiable numerical signals, which has been widely
applied in ecological monitoring, agricultural yield estimation, and climate change research. The NDVI data used in this
study was derived from the Geospatial Data Cloud in August 2023, with a spatial resolution of 250 meters. Using the
ArcGIS platform, the vector boundaries of the study area were spatially overlaid with NDVI raster data (Figure 3), and
the average NDVI values within each unit were extracted.
2.2.3 Population density data
The population density data in this study was primarily obtained from the LandScan global population density spatial
distribution dataset, with a spatial resolution of 1 kilometer and a temporal coverage of 2020. Although population
distribution is dynamic, this dataset effectively characterizes the spatial distribution and density of human populations.
The study achieved a more refined simulation of population spatial distribution by allocating the total population of
statistical units to raster grids and performing overlay extraction (Figure 4).

Figure 4 Population Density Data and Overlay Map of Subunits

2.2.4 Building density data
Building density is calculated by dividing the total building footprint area by the unit area. As a key indicator for
measuring urban spatial development intensity, building scale, and land-use efficiency, it also serves as a critical metric
for assessing urban impervious surfaces and flood risk. The building area data used in this study was derived from the
vector building datasets of 77 major Chinese cities published online in 2022. After projecting these datasets, we
overlaid them with the evaluation units (Figure 5) to calculate the building density of each unit.
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Figure 5 Building Density Data and Overlay Map of Subunits

2.3 Methods

2.3.1 Evaluation System
The unit-based flood risk assessment for Zhengzhou's urban core under extreme conditions is a concept with relatively
clear objectives but vague details, necessitating the introduction of multiple evaluation indicators. The indicators were
selected based on their maximum correlation with surface flood risk after urban stormwater pipe networks become
saturated under extreme conditions. Referencing relevant research, an evaluation system was established (Table 1).

Table 1 Evaluation System of unit-based Flood Risk
Code Indicator Name Calculation Method Effect

A1 Minimum Elevation Extract the minimum value from the intersection of the unit area and DEM raster. Negative
A2 Average Elevation Extract the average value from the intersection of the unit area and DEM raster. Negative
A3 Average Slope Extract the average value from the intersection of the unit area and slope raster. Negative
A4 Building Density Calculate by dividing the building area by the area of the unit. Positive
A5 Average NDVI Extract the average value from the intersection of the unit area and NDVI raster. Negative

A6 Population Density Extract the average value from the intersection of the unit area and population
density raster. Positive

The scientific hypothesis of this assessment is that under extreme conditions, urban stormwater pipe networks are
saturated and unable to function effectively in the short term, leading to urban waterlogging risks. The minimum
elevation and average elevation within units are negative indicators, meaning that lower elevation values correspond to
higher flood risks. The average slope is also a negative indicator because gentle slopes under extreme conditions slow
surface runoff velocity, prolonging rainwater retention time in catchment units. If drainage facilities (e.g., pipe networks,
drainage ditches) have insufficient design capacity for flood control, rainwater easily accumulates in low-lying areas,
forming standing water.
Building density is a positive indicator: as building roofs are impervious surfaces, higher building density amplifies
risks. The average NDVI is a negative indicator—lower average NDVI values signify higher waterlogging risks.
Although green spaces lose much of their infiltration capacity under extreme conditions, vegetation itself still retains
and dissipates rainwater. Finally, population density is a positive indicator: as vulnerable recipients of waterlogging
disasters, higher population density correlates directly with greater risks.
2.3.2 Weight Determination
The flood risk assessment for Zhengzhou's urban core area under extreme conditions is a concept with relatively clear
objectives but vague extensions, thus multivariate statistical analysis methods can be adopted for evaluation. The
established evaluation system exhibits strong complexity, fuzziness, and dynamics in data information. To avoid weight
bias caused by subjective analysis methods, the entropy weight model was selected for evaluation to objectively reflect
data characteristics and patterns. Specifically, in this evaluation, smaller differences among units within the same
indicator imply lower indicator weights. The specific calculation process is as follows:
First, the range method was adopted to standardize the statistical values of each indicator. Considering the requirement
for logarithmic calculations in subsequent formulas, which necessitates avoiding zero values, the linear interpolation
method was used to standardize the data within the range of 0.1 to 1. The formula is as follows:
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Then, the standardized indicator data are normalized to obtain a matrix:
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Thus, the weight of the j-th indicator can be derived as:
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2.3.3 Model Calculation
Multiply the standardized indicator values of each subunit by the indicator weights determined via the entropy weight
method to derive the flood risk assessment model for each catchment subunit in Zhengzhou's urban core under extreme
conditions. This model is expressed as the sum of the products of individual risk indicators and their respective weights
within each subunit. The formula is as follows:
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3 RESULTS AND ANALYSIS

3.1 Results

Results from the entropy weight method show that the differences in indicator weights are not significant (Table 2),
indicating minimal variation in the within-indicator data across the 270 subunits. Specifically, Minimum Elevation and
Average Elevation exhibit the highest weights, highlighting the most pronounced topographic differences.

Table 2 Indicator Weights Derived from Entropy Weight Method
Minimum Elevation Average Elevation Average Slope Building Density Average NDVI Population Density

0.1669 0.1669 0.1668 0.1664 0.1667 0.1663

By substituting the indicator weights and standardized indicator values into the calculation model, the risk values for
individual indicators and total flood risk values of the 270 subunits were derived. The average risk value across subunits
is 0.4994, with the maximum and minimum values being 0.7066 and 0.1909, respectively—showcasing remarkable
differences.
Jenks natural breaks classification divides data into different categories by minimizing the sum of squared within-class
variances, enabling the identification of classification intervals to most appropriately group similar values. By inputting
the total risk values of each subunit into ArcGIS and applying the Jenks natural breaks classification method for legend
categorization, a flood risk assessment distribution map for each subunit was generated (Figure 6). The legend values
represent flood risk levels, where higher numbers indicate greater risks.
The flood risks in Zhengzhou's urban core under extreme conditions exhibit an overall stepped spatial distribution,
lower in the southwest and higher in the northeast. However, contiguous high-risk areas appear in the urban central
region, mainly concentrated west of Zhongzhou Avenue and north of Zhengbian Road-East Street, as well as in the
Longhu and Longzi Lake areas. Contiguous high-risk zones between Huayuan Road and Lianhuo Expressway in the
northern region are also notably present.
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Figure 6 Flood Risk Assessment Distribution Map of Subunits

3.2 Spatial Autocorrelation Analysis

It is necessary to employ spatial autocorrelation to analyze the spatial characteristics of flood risks in Zhengzhou's
urban core, using Moran's I index to determine whether spatial clustering exists within the region. The Moran's I
statistic was computed using GeoDa 1.20 to quantify spatial clustering patterns of flood risk.

Figure 7 Flood Risk Moran' I Scatter Plot and LISA Cluster Map

Moran's I value reflects the spatial clustering of an indicator within a region: a value greater than 0 indicates positive
correlation, meaning high-indicator subunits are surrounded by high-indicator neighbors, and low-indicator subunits are
surrounded by low-indicator neighbors. The univariate Moran's I value for flood risk across subunits was first
calculated as 0.847, indicating significant spatial autocorrelation (Figure 7, a). Meanwhile, a local LISA cluster map
generated by Geo-Da software (Figure 7, b) shows that High-High clusters are primarily concentrated in the city center
and northeastern areas, while Low-Low clusters are mainly distributed in the higher-terrain southwestern regions.
The GeoDa software was also used to calculate local Moran's I values between bivariate variables and generate LISA
cluster maps. This study sequentially calculated the raw values of flood risk against the minimum elevation, average
elevation, average slope, building density, NDVI values, and population density of each subunit, generating
corresponding bivariate scatter plots and LISA cluster maps(Figure 8) in turn.
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Figure 8 Bivariate Moran's I Scatter Plots and LISA Cluster Maps of Flood Risk and Various Parameters

Bivariate spatial autocorrelation analysis shows that subunit average elevation has the highest correlation with flood risk,
with a Moran's I value of -0.819, indicating a negative correlation. In terms of cluster distribution, High-Low and Low-
High clusters are contiguous in the northeastern and southwestern urban areas. Both average slope and population
density also exhibit negative correlations with flood risk, but unlike elevation indicators, High-High clusters are
remarkably concentrated in the city center. The building density indicator has the smallest correlation with flood risk
but shows a positive correlation (Moran's I = 0.154), still demonstrating a significant relationship. In spatial clustering,
High-High clusters are aggregated in the northwestern region, High-Low clusters in the city center, and Low-Low
clusters in the southern region. NDVI also has a significant negative correlation with flood risk (Moran's I = -0.373),
with High-Low clusters mainly in the city center and Low-High clusters on the urban periphery, except for High-High
clusters appearing only in the northern region.
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4 CONCLUSION

This study presents a comprehensive flood risk assessment for Zhengzhou's urban core under extreme conditions,
incorporating open web data with entropy weight modeling, spatial autocorrelation analysis, and GIS-based spatial
distribution mapping. Key findings include:
(1) Spatial Distribution Pattern: Flood risks exhibit a stepped gradient from southwest to northeast, with high-risk
clusters concentrated in central urban areas (west of Zhongzhou Avenue, north of Zhengbian Road-East Street) and
northeastern districts (Longhu, Longzi Lake areas). Contiguous high-risk zones between Huayuan Road and Lianhuo
Expressway further validate topographic influence.
(2) Indicator Significance: Topographic indicators (minimum/average elevation) dominate entropy weights,
highlighting terrain as the primary risk determinant. Negative correlations between elevation/slope and flood risk
confirm that lower-lying areas face higher vulnerability.
(3) Spatial Autocorrelation: Univariate Moran's I (0.847) reveals strong global spatial clustering, while bivariate
analysis identifies elevation as the most influential factor (Moran's I = -0.819). Building density shows weak positive
correlation (Moran's I = 0.154), indicating urban construction's indirect impact.
(4) Policy Implications: High-risk clusters in central business districts and northeastern developments necessitate
targeted drainage upgrades, while NDVI-negative correlation underscores green infrastructure's flood mitigation
potential.

5 DISSCUSION

The study bridges methodological gaps by integrating entropy weight objectivity with spatial autocorrelation's
locational insight. The -0.819 Moran's I between elevation and flood risk aligns with hydrological theory, but the
unexpected positive correlation in building density (0.154) warrants further exploration — potentially reflecting
impervious surface expansion overriding topographic effects. High-risk zones coincide with both low-lying areas and
urban heat islands, possibly exacerbated by climate change-induced extreme precipitation.
Limitations include:
(1) Data Timeliness: NDVI and population density data represent snapshots, failing to capture recent urban expansion;
(2) Climate Scenario Simplification: Extreme conditions assume historical rainfall peaks, ignoring projected climate
variability;
(3) Microtopography Omission: Subunit-scale elevation data may obscure localized depressions critical for flood
accumulation.
Future research should incorporate real-time rainfall-runoff modeling, fine-scale LiDAR topography, and climate
change projections to refine risk zonation. The framework also offers transferability to other rapidly urbanizing regions
with complex topographies.
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