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Abstract: In recent years, Radio Frequency Identification (RFID) technology has seen expanding applications across
both industrial production and daily life, driving growing demand for efficient tag reading systems.When faced with a
large numeral of tags, the Dynamic Framed Slotted ALOHA (DFSA ) algorithm keeps the throughput at a high position
for most of the time. The chief principle is to dynamically adjust the frame length based on the response consequence of
the triumphant transmission of the earlier frame, so that during the data container transmission process, the length of
each frame is close to the number of data packets that need to be transmitted within the range that the information
transmission system can receive. Based on the analysis of traditional algorithms, this paper proposes a new tag number
estimation algorithm. This algorithm based on Transformer, residual connections, and Multi-Layer Perceptron (MLP),
combined with algorithms such as tag grouping techniques. Compared with traditional algorithms, the algorithm
proposed in this paper addresses the shortcomings of the traditional ALOHA protocol in dynamic frame slot adjustment,
collision avoidance, and throughput optimization by introducing deep learning. It significantly improves the
effectiveness and reliability of RFID systems and is able of maintaining a high data storage rate even in scenarios with
large amounts of data.
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1 INTRODUCTION

RFID is a non-contact automatic discovery technology that uses radio recurrence signals to automatically recognize
targets and retrieve associated data. RFID systems are widely applied in logistics, manufacturing, healthcare, and other
fields, their performance is often hindered by tag collision problems, which significantly reduce identification
efficiency[1-8]. ALOHA-based algorithms are widely adopted due to their simplicity, but they suffer from low
throughput and high collision rates under heavy tag loads. In contrast, binary tree algorithms offer better collision
resolution but are computationally complex, making them impractical for real-time systems.To solve these limitations,
this paper proposes an improved ALOHA algorithm that dynamically adjusts frame time slots using deep learning. Our
method enhances identification efficiency by predicting optimal slot allocation, reducing collisions, and maintaining
low computational overhead. This innovation bridges the gap between performance and practicality in large-scale RFID
deployments. Among these, research on the performance of RFID anti-collision algorithms [9] is particularly
remarkable. Currently, widely used anti-collision identification algorithms can be divided into inflexible allowance
types and dynamic allocation types. Fixed allocation types include Time Division Multiple Access (TDMA), Frequency
Division Multiple Access (FDMA), and Code Division Multiple Access (CDMA). Dynamic allocation types can be
further categorized into contention-based access, reservation-based access, and polling-based access.
In RFID systems, the primary approaches to address tag collision issues fall into two distinct categories: predetermined
channel assignment methods and adaptive channel contention strategies. The former involves preallocating dedicated
communication resources to individual tags, eliminating the unpredictability associated with contention-based
mechanisms. Nevertheless, this approach demonstrates inefficiency in resource utilization during periods of low activity
and exhibits limited flexibility when confronted with unexpected service demands. On the other hand, adaptive
contention strategies enable tags to opportunistically access available channels according to established contention
parameters, offering enhanced responsiveness to fluctuating tag populations. Within this category, protocols derived
from the ALOHA framework have gained widespread adoption owing to their straightforward implementation and
seamless integration with existing system architectures. Regarding tag population estimation, conventional approaches
encompass the Q-value assessment technique, the Schouten analytical method, and the Vogt iterative algorithm. The
Q-value approach determines tag quantities by monitoring response attempts, providing computational simplicity at the
expense of precision. Schoute's methodology, integrated with the Dynamic Frame Slotted ALOHA framework,
approximates tag populations by analyzing collision slot proportions. The Vogt algorithm, while achieving optimal
theoretical accuracy through iterative comparison between empirical observations (including empty slots, successful
transmissions, and collision events) and their mathematical expectations, suffers from substantial computational
overhead. This characteristic notably diminishes operational effectiveness, especially in scenarios involving large-scale
tag deployments.
Traditionally, Deep learning techniques have been widely used in such problems. Reference [10] is based on the
energetic mounting slotted algorithm and BP neural network. By processing the dataset of tag quantity, it establishes the
mapping relationship between the reader and the tag quantity. This algorithm improves the system efficiency without
sacrificing its accuracy[10]. Reference [11] is based on the dynamic frame slotted ALOHA algorithm (D-G-MFSA)
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with tag grouping and long short-term memory (LSTM). It regards the tag quantity as a time series, uses LSTM for
real-time prediction, dynamically adjusts the frame length, and groups tags when the tag quantity is large. This
algorithm promotes the stability of the system when the tag quantity is large, and has the advantages of simple principle
and high reading efficiency[11]. Reference [12] combines the dynamic frame slotted ALOHA (DFSA) algorithm with
Transformer and long short-term memory (LSTM) neural networks. This algorithm ensures more accurate tag quantity
prediction, reduces the time consumption of the reading system, and improves the system throughput[12].
This paper trains a neural network based on residual connections, a multi-layer perceptron (MLP), and a Transformer
encoder, combined with the tag grouping algorithm, to predict the number of tags.The main contribution of this paper is
as follows:
(1) Residual connections accelerate training convergence, and the parallel computing advantages of Transformer
improve computational efficiency.
(2) By incorporating tag grouping, the algorithm achieves scalability for high-density tag environments.
(3) Experimental results indicate that, compared to the traditional BP network algorithm, the proposed manner
accomplish higher throughput and consumes fewer total time slots.
(4) MLP is combined with residual connections, it maintains stable gradient norms during backpropagation, resulting in
a 3x faster training convergence speed compared to traditional BP networks.
(5) The DFSA algorithm's dynamic frame length adjustment mechanism estimates the number of tags in real-time and
automatically optimizes the frame size, improving the theoretical system throughput. Additionally, its time slot
grouping technique further reduces collision probability.

2 DFSA ALGORITHM

2.1 Algorithm Principle

The pure ALOHA protocol serves as a fundamental multiple access control mechanism in wireless communication
systems.The ALOHA protocol is characterized by the fact that any station can transmit immediately after a slot is
generated and determines whether the transmission is successful by detecting signal feedback on the channel. When two
or more stations transmit data simultaneously, a collision occurs, resulting in a high collision rate and low efficiency.
SALOHA improves the throughput of the ALOHA system by dividing time into fixed slots, where tags can only
transmit data at the beginning of a slot, thereby reducing collisions. However, the frame length is fixed, leading to
limited resource utilization. The FSA protocol further enhances the time division dimension. The DFSA protocol
dynamically adjusts the frame length based on the successful transmission responses from the previous frame, ensuring
that the length of each frame is close to the optimal value during data packet transmission. This significantly improves
throughput and resource utilization.

2.2 Mathematical Analysis

The fundamental principle of dynamically modifying the frame length in DFSA (Dynamic Frame Slotted ALOHA) lies
in establishing the correlation between the current number of unidentified tags and the most efficient frame size. In this
study, we define the frame length as **N**, while the total number of tags within the reader's detection range is
denoted as **M**. Each tag has an equal and independent probability of selecting any given time slot within the frame.
This assumption ensures that tag transmissions are uniformly distributed across the available slots, facilitating effective
collision management and frame length optimization. Let its probability be P = 1

L
，Thus the quantity of arriving tags X

in each time slot conforms to the binomial distribution X~B(N, 1
L
)，Then the probability of having a tag in a time slot is:

�� =
�
�

1
�

�

1 −
1
�

�−�

1

Where there are no tags in the time gap, the corresponding probability is as follows (Pidle), When there is a single tag in
the time gap, the corresponding probability is as follows (Psucc ). When there are multiple tags in the time gap, the
corresponding probability is as follows (Pcoll). These probabilities can be expressed as:
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�coll = 1 − �idle − �succ 4

The expected values for the number of idle time slots, successful time slots, and collision time slots within a frame can
be derived based on the given parameters. Let the frame length be N and the total number of tags be M. Assuming each
tag independently and uniformly selects a time slot, the probabilities and expected values can be calculated as follows:

�idle = � × �idle 5
�succ = � × �succ 6
�coll = � × �coll 7
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Clearly, the estimated number of remaining unrecognized tags kestimate is:
�estimate = � − �succ 8

According to the formula, when the number of tags k is 1-4, a frame length M=4 is sufficient to cover the number of
tags and reduce collisions. When the number of tags k>4, using M=4 would lead to increased collisions, thus requiring a
larger frame length. When the number of tags k is between 5 and 10, a frame length M=8 can effectively reduce
collisions. That is, as the number of tags k increases, the frame length gradually increases. The theoretical analysis and
experimental validation results based on the dynamic frame slotted algorithm are shown in Table 1.

Table 1 Relationship between frame size and label number of dynamic frame time slot algorithm
Frame length 4 8 16 32 64 128 256

Number of tags 1~4 5~10 11~22 23~44 45~88 89~177 Above 177

2.3 Tag grouping Algorithm

The Tag Grouping Algorithm is a technique used in Radio Frequency Identification (RFID) systems, aiming to optimize
the label discovery process by grouping labels, thereby reducing collisions and improving system effectiveness.
Formula (9) is used to calculate the number of tags after grouping, where a and b are the number of tag groups, and N is
the total number of tags. This formula aims to determine the minimum and maximum number of tags in each group
under different grouping numbers. For different grouping numbers, the minimum number of tags is obtained by
dividing the total number of tags by the number of groups and rounding down, while the maximum number of tags is
obtained by dividing the total number of tags by the number of groups and rounding up.
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When a = 1 and b = 2, substituting into formula (9) yields a critical value N of 355.With 2 groups, the tag capacity
increases to 356-709. By changing the values of parameters a and b in formula (9), different critical values for tag
grouping are obtained,this demonstrates the scalable nature of the grouping algorithm, where doubling the group count
approximately doubles the maximum tag capacity, maintaining consistent range intervals of ~355 tags per grouping
threshold. The results are shown in Table 2.

Table 2 The Correlation between the Count of Groups and the Quantity of Labels
Number of groups 1 2 4 8 ...

Minimum number of tags 1 356 710 1418 ...
Maximum number of tags 355 709 1417 2834 ...

3 METHOD

The Transformer model is a deep learning architecture. The Transformer model is a deep learning model based on the
attention mechanism, abandoning the use of CNN and RNN in previous deep learning tasks. This model exclusively
utilizes the attention mechanism to model global relationships between inputs and outputs. Unlike traditional recurrent
neural networks (RNNs) that process data sequentially, it enables parallel processing of sequence data while effectively
capturing long-distance dependencies through its attention-based architecture.
The calculation for dot-product attention is as follows:

Attention �, �, � = softmax
���

��
� 10

Where Q is the query matrix, K is the key matrix, V is the value matrix, and dk is the dimension of the keys.
The multi-head attention mechanism divides the input into multiple parallel attention heads.Each head computes scaled
dot-product attention independently, then the outputs are concatenated and linearly transformed. The computation for
each head is given by：

MultiHead �, �, � = Concat head1, . . . , headℎ �� 11
head� = Attention ���

�, ���
�, ���

� 12
This allows the model to focus on different subspaces and capture more features and information.
This paper also uses residual connection. The core idea is: instead of learning an underlying mapping (H(x)) directly,
the network learns the residual (F(x) = H(x) - x). This makes it easier to optimize because fitting a residual to zero (for
identity mapping) is simpler than learning a new function from scratch, especially for deeper layers.
The input x undergoes dimensionality expansion through a completely linked layer. The MLP module processes the
features via two fully connected layers (with ReLU activation), and the output is added to implement a residual
connection. This feature-enhanced data is then fed into the core Transformer encoder (a 2-layer stacked structure) where
each layer consists of a multi-head self-attention mechanism for capturing dependencies between time slots and a
position-wise feedforward network. Throughout the Transformer processing, the tensor dimension remains (batch_size,



Deep learning-enhanced dynamic frame slotted ALOHA optimization...

Volume 3, Issue 2, Pp 68-74, 2025

71

sequence_length, hidden_size). Finally, the encoder output is flattened and projected through a fully connected output
layer to obtain a prediction result with a dimension of 1.The transformer processes the self-attention weight matrix to
explicitly capture temporal slot correlation patterns, while the multi-head mechanism learns multiple dependency
relationships in parallel, improving the accuracy of label quantity prediction.The flowchart is shown as Figure 1.

Figure 1 Neural Network Structure

The specific steps of the proposed algorithm are as follows:
1. Data Calculation and Preparation
Using Equations (5) to (8), compute the number of idle slots yidle，successful slots ysucc , collision slots ycoll , and the
estimated number of remaining tags kestimate for different tag quantities k (assuming k∈[0,…,5M]) and frame lengths
M. These results are compiled into the datasets T = { k, M, yidle, ysucc, ycoll |kestimate} .
2. Network Training
The datasets T is fed into the network for training. Once the network metrics converge, the corresponding network
model G for each frame length M is obtained.
3.Real-Time Prediction and Adjustment
During the reader’s current reading cycle, the actual detected number of tags (k), idle slots yidle , successful slots
ysucc,and collision slots ycoll are input into the corresponding network model G to predict the remaining number of tags
kestimate. The reader then dynamically adjusts the frame length for the next reading cycle based on the rules in Table 1.

4 TRANSFORMER-OPTIMIZED DFSA ALGORITHM

4.1 Model Training

During the model training phase, we adopted the following configurations: the parameter update step size (learning rate)
was set to 0.01, with the maximum number of training epochs limited to 150. To enhance the model's nonlinear
representation capability, we employed the ReLU (Rectified Linear Unit) activation function in the network. Other key
hyperparameter settings included: 150 iterations, Lr regularization coefficient of 0.001, batch size of 128, the Adam
optimizer algorithm, and Mean Squared Error (MSE) as the loss function for optimization objectives.
Finally, as shown in Figure 2, the training results indicate that:
Initial Phase (Epoch 0–25): Both the train loss (blue) and test loss (orange) start high but drop sharply. This rapid
decrease indicates that the model quickly learns essential patterns in the early training stages.Mid - Training Phase
(Epoch 25 – 150): The losses continue to decline but with increased fluctuations. These variations arise from the
stochastic nature of batch - based training—each batch’s unique data introduces minor instability. Despite this, both
curves trend downward, showing consistent learning.Final Phase (Epoch 150–200): By epoch 200, both losses stabilize
near \(10^{-3}\). The close alignment of train and test loss throughout training suggests no significant overfitting. If
overfitting occurred, the test loss would diverge upward while the train loss continued decreasing. Here, their proximity
indicates the model generalizes well to unseen data. Overall, the curve demonstrates effective training: rapid initial
learning, steady improvement, and good generalization, as evidenced by the parallel trends of train and test loss.
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Figure 2 Training Loss with Epoch

4.2 Algorithm Performance Analysis

The primary metrics for evaluating tag reading efficiency consist of two key dimensions.The definition of system
throughput is the ratio of the number of successfully identified tags to the total number of slots consumed in a single
read cycle.In Radio Frequency Identification (RFID) systems, throughput typically refers to the number of tags
successfully read per unit of time.，reflecting the efficiency and capability of the system in processing data. As shown in
Figure 3, as the number of tags increases, the system throughput initially rises and then declines. The throughput
reaches its peak when the number of tags is around 200. After this peak, as the number of tags continues to increase, the
system throughput shows a downward trend. Following the peak throughput, the decline in throughput is significantly
faster in the BP algorithm compared to the TLE algorithm as the number of tags increases. When the number of tags
reaches around 1200, the throughput in the TLE algorithm begins to increase again, until the number of tags reaches
around 1400, after which the throughput starts to decline once more.

Figure 3 Comparison of the Throughput

As shown in Figure 4, the number of slots consumed by the algorithm proposed in this paper is lower than that of the
traditional BP neural network algorithm. The total number of consumed slots refers to the total number of slots used for
tag identification in a single read cycle of a Radio Frequency Identification (RFID) system. It is one of the key metrics
for measuring system resource consumption, directly impacting the system's throughput and efficiency.As shown in
Figure 4, when the number of tags increases, the total number of consumed slots for both algorithms also increases.
When the number of tags is less than 600, the total number of consumed slots for both algorithms is approximately the
same. However, when the number of tags exceeds 600, the total number of consumed slots for the BP algorithm
increases significantly faster than that for the TLE algorithm.
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Figure 4 Comparison of the Number of Consumed Slots

5 CONCLUSIONS

This study proposes an RFID tag identification optimization algorithm based on a Transformer architecture. By
introducing a hybrid "Transformer + Residual MLP" encoding structure, the multi-head self-attention mechanism
explicitly models the nonlinear relationships between tag time slots, while residual connections enhance training
convergence speed. Compared with conventional algorithms, the proposed deep learning-based approach addresses key
limitations of traditional ALOHA protocols in dynamic frame slot adjustment, collision avoidance, and throughput
optimization, significantly improving the efficiency and reliability of RFID systems. The algorithm maintains high data
storage rates even in large-scale data scenarios, providing an effective solution for performance enhancement in
high-demand RFID applications.
With the advancement of IoT technology, RFID performance demands are growing. The algorithms in this paper offer
robust technical support for logistics management and other fields. By combining dynamic frame length optimization
with deep learning, the TLE algorithm overcomes traditional RFID efficiency bottlenecks and demonstrates
cross-scenario adaptability. Future research will focus on model lightweighting, transfer learning, and multi-protocol
fusion to enhance real-time responsiveness and generalization in edge computing and high-collision scenarios, driving
the evolution of next-generation IoT ecosystems.
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