
World Journal of Economics and Business Research
ISSN: 2960-0081
DOI: https://doi.org/10.61784/wjebr3045

© By the Author(s) 2025, under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

DYNAMIC RISKASSESSMENT IN THE INSURANCE INDUSTRY
BASED ONAHIGH-RISK UNDERWRITING DECISION MODEL

BinHao Guo, ShuJie Shi*, GuoLiang Wen, XingPeng Zhuo
School of Electronic Countermeasures, National University of Defense Technology, Hefei 230000, Anhui, China.
Corresponding Author: ShuJie Shi, Email: 17730001109@163.com

Abstract: With the increasing frequency of extreme weather events, dynamic risk assessment has emerged as a crucial
research topic for the sustainable development of the insurance industry. To address the underwriting decision-making
challenges faced by insurers in high-risk areas, this study develops a risk assessment model that integrates historical
data to predict property loss ratios in such regions for the coming year. By considering the perspectives of both insurers
and policyholders, we propose a utility value model that evaluates the utility values of risk-free and risk-exposed
properties separately. This framework derives the conditions for insurance underwriting and identifies a reasonable
range for premium rates, thereby determining the optimal underwriting strategy for insurers. Finally, the model is
applied to two regions in China—Fujian and Guizhou—for validation. Simulation results demonstrate that the proposed
model exhibits high predictive accuracy and sensitivity in risk assessment, confirming the feasibility of the proposed
underwriting strategy.
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1 INTRODUCTION

In recent years, the frequent occurrence of extreme weather events and their associated economic losses have become a
global concern. Ben J. Clarke et al. highlighted that global losses caused by extreme weather events over the past
decade have exceeded $1 trillion, encompassing thousands of natural disasters, including floods, hurricanes, tornadoes,
droughts, and wildfires [1]. According to the IPCC, the frequency and intensity of such events are likely to escalate
further due to climate change [2].
Multiple studies indicate that extreme weather events not only cause significant damage to personal property but also
pose unprecedented challenges to the insurance industry. The increasing frequency of these events has directly led to a
surge in insurance claims. For instance, in 2022, the insurance industry’s payout for natural disasters was 115% higher
than the 30-year average [3]. This trend is projected to continue until 2040, with premium prices expected to rise by
30%–60% over the next two decades [4]. Peter Zweifel noted that such rapid premium increases not only make
insurance more expensive but also reduce its accessibility in many regions [5]. Many insurers are adjusting their
underwriting strategies by limiting coverage in high-risk areas, further exacerbating market tensions. Research by
Ganesan and Reva reveals that the global insurance protection gap averages 57%, and this figure continues to rise [6].
This gap signifies that a substantial portion of properties damaged by extreme weather events lack adequate insurance
coverage, threatening insurers’ profitability and exposing property owners to significant financial risks [7].
Academic interest in this phenomenon is growing, with existing literature exploring the causes and mitigation strategies
from multiple perspectives. For example, Peterson et al. argued that climate change is redefining the risk landscape of
the insurance industry, rendering traditional actuarial models inadequate for accurately predicting the frequency and
impact of extreme weather events [8]. Chloe H. Lucas et al. reviewed 175 studies on extreme weather and household
insurance, emphasizing that flood insurance dominates current research and calling for expanded focus on storms and
wildfires [9]. Additionally, Smith and Johnson examined the potential impacts of extreme weather on the sustainable
development of the insurance industry, proposing novel risk-sharing mechanisms to address future uncertainties [10].
Tian-Zhen Hua et al. advocated for leveraging fiscal policies to amplify support and establish agricultural insurance
mechanisms under extreme weather conditions [11]. Yang-Xiao Tong summarized strategies for building robust
catastrophe insurance systems and multi-layered risk protection frameworks to enhance the "stabilizing role" of
catastrophe insurance [12].
However, traditional insurance models rely on static risk assessments, failing to account for the dynamic impacts of
climate change. This shortcoming has led insurers to reduce coverage in extreme weather-prone regions due to
mounting underwriting pressures, aggravating market failures in high-risk areas. Consequently, insurers urgently need
to enhance their risk assessment and prediction capabilities to make informed underwriting decisions. This study
establishes a high-risk underwriting decision model that combines historical data to forecast risk parameters, evaluates
underwriting conditions in extreme weather-prone regions through utility value analysis, and identifies optimal
underwriting strategies to balance the insurer's need for profit maximization and risk minimization. Finally, the model is
validated through case studies in Fujian and Guizhou provinces, China.

2 HIGH-RISK UNDERWRITING DECISION MODEL
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Insurance companies face a contradiction between underwriting risks and profitability: Generally, refusing to
underwrite catastrophe policies may lead to insufficient profits and potential bankruptcy, while underwriting
excessively risky policies could result in substantial claim payouts that exceed revenues. Therefore, this paper first
establishes a risk assessment model to predict risk scenarios and then constructs a utility value model to determine
underwriting decision conditions in regions prone to extreme weather events.

2.1 Risk Assessment Model

Using historical data on the frequency of extreme weather events, direct economic losses, and Gross Regional Product
in a specific area over recent years, the annual economic loss rate caused by a specific extreme weather event is
calculated. The grey prediction model GM(1,1) is employed to forecast the economic loss rate for the next year, thereby
quantifying the underwriting risk of the policy.
The damage rate time series ( 0 )X contains four observed values:

 (0) (0) (0) (0) (0)(1), (2), (3), (4)X X X X X (1)
By accumulating the original data to reduce volatility and randomness in the damage rate sequence, a new sequence is
generated:

 (1) (1) (1) (1) (1)(1), (2), (3), (4)X X X X X (2)
where,
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A first-order linear differential equation for the GM(1,1) model is established for (1) ( )X t :
(1)

(1)dX
aX

dt
  (4)

Here, a is the development coefficient, and  is the grey action quantity.
Let ̂ denote the parameter vector to be estimated. Construct the mean generation matrix B and constant term
vectorY for the accumulated data:
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Using the least squares method, solve for the parameter vector ̂ :
1ˆ ( )T T

nB B B Y  (6)
Substituting ̂ into the differential equation yields the predicted time sequence:

 (1) (0)ˆ ( 1) (1) 0,1, 2, ,akX k X e k n
a a
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… (7)

Discretize the predicted sequence (1)ˆ ( )X k , and subtract (1)ˆ ( 1)X k  from (1)ˆ ( )X k to restore the predicted sequence

for (0) ( )X k :
(0) (1) (1)ˆ ˆ ˆ( 1) ( 1) ( )X k X k X k    (8)

2.2 Utility Value Model

2.2.1 Economic principles
From the client's perspective, failure to purchase insurance exposes their future personal assets to potential risks and
losses, termed "risky assets". However, by obtaining insurance coverage with full compensation provisions, their future
assets become fixed-value and risk-free, thus classified as "risk-free assets".
Conversely, for insurance companies, underwriting policies introduces probabilistic losses to their future corporate
assets, making them "risky assets", whereas declining coverage maintains fixed-value future assets without risk
exposure, hence making them "risk-free assets".
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In practice, individuals do not make straightforward comparisons between risky and risk-free assets but exhibit a
preference for risk-free options. Consequently, decision-making requires the conversion of actual asset values into
utility-based measurements for proper evaluation.
2.2.2 Client perspective
Assume a client’s protected asset is 1E , potential loss is X , and the premium paid isY . Define the client’s risky asset

utility rate 1l and risk-free asset utility rate 1k . The subjective value of assets is determined by:

 
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where 1YE is the subjective value of the client’s assets with insurance, and 1NE is the subjective value without insurance.
The condition for a client to purchase insurance is:

1 1Y NE E (10)

Define the damage rate 1X E  and premium rate 1r Y E . The above condition becomes:
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2.2.3 Insurer Perspective
Assume the insurer’s asset is 2E , and the number of policyholders is n . The subjective value of assets is determined by:
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where 2YE and 2NE are the subjective values of the insurer’s assets with and without underwriting, respectively,

2l and 2k are the insurer’s risky and risk-free asset utility rates.
The condition for the insurer to underwrite the policy is:

2 2Y NE E (13)

Combining the damage rate and premium rate r , assuming 2 1E nE , the above condition becomes:
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Define the client’s risk attitude index 1 1 1u l k and the insurer’s risk attitude index 2 2 2u l k . The condition further
simplifies to:
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where max is the maximum allowable damage rate.

3 CASE ANALYSIS

3.1 Case Setup

Taking Fujian Province and Guizhou Province in China, which frequently experience extreme weather, as examples (as
shown in Tables 1 and 2), data on economic losses caused by typhoon disasters and Gross Regional Product (GRP) in
Fujian Province from 2016 to 2024, as well as data on economic losses caused by floods and hailstorms and GRP in
Guizhou Province from 2018 to 2024, were collected from publicly accessible web sources (https://www.fujian.gov.cn/,
http://fjnews.fjsen.com/, https://www.guizhou.gov.cn/, https://yjgl.guizhou.gov.cn/). Simulations were conducted to
evaluate the effectiveness of the high-risk underwriting decision model, considering whether insurance companies
should provide catastrophe insurance for these regions.

Table 1 Impact of Typhoon Disasters in Fujian Province (2016–2024)

Year Direct Economic Loss
(100 million CNY)

Gross Regional Product
(100 million CNY)

Economic Loss Rate
(%)

2016 382.34 28519.15 1.3406

2017 9.54 32298.28 0.0295

https://www.fujian.gov.cn/
http://fjnews.fjsen.com/
https://www.guizhou.gov.cn/
https://yjgl.guizhou.gov.cn/
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2018 29.04 38687.77 0.0751

2019 0.13 42395.00 0.0003

2020 12.10 43903.89 0.0276

2021 0.49 48810.36 0.0010

2022 67.31 53109.85 0.1267

2023 198.09 54355.10 0.3644

2024 26.41 57761.02 0.0457

Table 2 Impact of Flood and Hailstorm Disasters in Guizhou Province (2018–2024)

Year Disaster
Type

Direct Economic Loss
(100 million CNY)

Gross Regional Product
(100 million CNY)

Economic Loss Rate
(%)

2018
Flood 6.29

14806.45
0.0425

Hailstorm 13.78 0.0931

2019
Flood 43.56

16769.34
0.2598

Hailstorm 1.63 0.0097

2020
Flood 86.03

17826.56
0.4826

Hailstorm 4.5 0.0252

2021
Flood 19.88

19586.42
0.1015

Hailstorm 8.18 0.0418

2022
Flood 43.2

20164.58
0.2142

Hailstorm 9.9 0.0491

2023
Flood 10.2

20913.25
0.0488

Hailstorm 11.3 0.0540

2024
Flood 61.08

22667.12
0.2695

Hailstorm 12.22 0.0539

3.2 Underwriting Decision

Considering that different property owners possess varying total assets, insurance companies tend to be more risk-
averse compared to policyholders [13,14], therefore, the risk attitude index of the insurance company is set
as

2 0.751u  , and that of the policyholder as
1 0.667u  . The maximum acceptable loss rate for the insurance company,

calculated using the utility value model, is max 0.4331%  .
3.2.1 Underwriting decision for typhoon disasters in Fujian Province
First, the risk assessment model was used to predict the economic loss rates caused by disasters in Fujian Province from
2020 to 2024. A comparison between predicted and actual values is shown in Table 3. The results indicate high model
accuracy, with errors controlled within 15%, meeting the requirements for addressing uncertainties in extreme weather
risks.

Table 3 Comparison of Predicted vs. Actual Economic Loss Rates in Fujian Province (2020–2024)

Year Predicted Loss Rate
(%)

Actual Loss Rate
(%)

Relative Error
(%)

2020 0.0288 0.0276 4.35
2021 0.0009 0.0010 10.00

2022 0.1165 0.1267 8.05

2023 0.3126 0.3644 14.22

2024 0.0482 0.0457 5.47

Furthermore, the expected loss rate for Fujian Province in 2025, denoted as̂ , is calculated to be 0.2095%, which is less

than the maximum acceptable loss rate max . Therefore, the insurance company may choose to provide typhoon

catastrophe insurance. Based on the utility value model, the premium rate range is determined as  3.337%, 3.344%r  .
Thus, a premium rate of 3.344% can be selected for insurers.
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3.2.2 Underwriting decision for flood and hailstorm disasters in Guizhou Province

Table 4 Comparison of Predicted vs. Actual Economic Loss Rates in Guizhou Province (2022–2024)

Year Disaster
Type

Predicted Loss Rate
(%)

Actual Loss Rate
(%)

Relative Error
(%)

2022

Flood

0.2215 0.2142 3.41

2023 0.0541 0.0488 10.86

2024 0.2517 0.2695 6.60

2022

Hailstorm

0.0516 0.0491 5.09

2023 0.0523 0.0540 3.15

2024 0.0530 0.0539 1.67

A comparison of predicted versus actual economic loss rates in Guizhou Province from 2022 to 2024 is shown in Table
4. The model’s accuracy improves further when historical loss rates exhibit minimal fluctuations.
The predicted combined loss rate for floods and hailstorms in Guizhou Province in 2025, denoted as ̂ , is 0.2439%,

which is also less than the maximum acceptable loss rate max . Therefore, the insurance company may choose to provide
a combined catastrophe insurance package for these disasters.
3.2.3 Analysis of underwriting conditions
By analyzing the conditions under which customers choose to purchase insurance and insurers decide to underwrite
risks in the model, it can be observed that insurers’ decisions on corporate assets determine the lower bound of premium
rates, while customers’ decisions on personal assets determine the upper bound. This aligns with real-world scenarios.
From the insurer’s perspective, catastrophic risks may lead to substantial payouts, necessitating relatively high premium
rates. However, customers’ limited capacity and willingness to bear premiums constrain excessive rates, as overly high
premiums would deter purchases and deprive insurers of revenue.
Furthermore, the underwriting decision criteria derived from the model are consistent with economic principles. Against
the backdrop of increasing extreme weather events, loss ratios rise over time. On one hand, risk-averse customers will
opt for insurance when their fixed assets without coverage equal their expected assets with coverage, thereby mitigating
risks. On the other hand, insurers, also risk-averse, will decline underwriting if their expected assets from underwriting
equal their fixed assets without underwriting. Therefore, the aversion coefficient must be less than 1, and a maximum
loss ratio exists. Insurers may underwrite risks only when the expected loss ratio remains below this threshold.

3.3 Optimal Underwriting Strategies

3.3.1 Single extreme weather region
Using utility value theory, the utility values of assets for both insurers and customers are converted. By comparing the
utility values of purchasing versus not purchasing insurance (for customers) and offering versus not offering insurance
(for insurers), acceptable premium rate ranges for both parties are derived.
If the two ranges do not overlap, insurers cannot balance their interests with customer demand and should refrain from
offering coverage.
If the ranges intersect, insurers may select an appropriate premium rate within the overlapping interval. The optimal
scheme is to adopt the maximum value in this interval to maximize profits.
3.3.2 Multiple extreme weather regions
For regions prone to multiple extreme weather events, insurers must categorize risks and design distinct insurance
products for each type. The total predicted loss ratio across all covered risks is compared against the maximum
allowable loss ratio.

If
max

1

ˆ
N

i
i

 


 , full coverage is offered, assuming all risks.

If
max

1

ˆ
N

i
i

 


 , the combined risk exceeds acceptable thresholds, leading to unaffordable premium rates. In such cases,

insurers should sequentially exclude underwriting for extreme weather events with higher loss ratios in descending
order until the total loss ratio falls below the maximum allowable threshold. The resulting insurance combination at this
stage represents the optimal underwriting scheme.

3.4 Sensitivity Analysis

Statistical data and model inputs in practical applications often contain errors, which may affect output reliability. To
assess the model’s robustness, a sensitivity analysis was conducted.
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Figure 1 Sensitivity Analysis of Risk Attitude Index Model

The sampling diagram initially selected four sample points, yet the probability distribution across the entire region
exhibited uniformity. By altering sampling points, variations were analyzed (Figure 1).
Adjusting the policyholder’s risk attitude index X and the insurer’s risk attitude index Y generated different risk attitude
combinations. Figure 1 reveals that the model’s maximum loss ratio may fall below 0 or exceed 1: a maximum loss
ratio below 0 implies insurers may reject all extreme weather risks, while a ratio above 1 suggests insurers might
underwrite all risks. Moreover, the surface plot trend indicates that the loss rate is highly sensitive to changes in the risk
attitude indices of both parties. Any variation in either risk attitude index triggers significant fluctuations in the
corresponding maximum loss rate, with the loss rate frequently exceeding the reasonable range of [0,1]. The analytical
results demonstrate that the model exhibits robust sensitivity characteristics.
Practically, policyholders’ risk attitude indices depend on their subjective perception of current risks, which is directly
influenced by extreme weather events. Thus, precise quantification of extreme weather risks is critical for decision-
making. Insurers can leverage this model to accurately assess risk levels and ensure informed underwriting decisions.

4 CONCLUSION

This study establishes a high-risk underwriting decision model to address insurers’ challenges amid escalating extreme
weather risks. Key conclusions include: (1) Insurers should provide coverage when the expected loss rate is below the
maximum allowable threshold and assume risks when the premium rate falls within a feasible range. (2) For single
extreme weather regions, the optimal scheme is to adopt the maximum premium rate within the overlapping acceptable
range of both customers and insurers. (3) For regions with multiple extreme weather events, insurers should categorize
risks and design coverage combinations where the total loss ratio remains below the maximum threshold, maximizing
profitability. This model provides data-driven and theoretical support for insurers in risk assessment and underwriting
decisions in high-risk regions, demonstrating practical applicability. While the current study focuses on underwriting
strategies for single versus multiple extreme weather events, future research could explore coupling risk quantification
methods for compound disasters and incorporate stochastic processes to simulate time-varying loss rate characteristics.
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