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Abstract: Accurate demand forecasting is a cornerstone of effective supply chain management, enabling companies to
align production, inventory, and distribution with market needs. Traditional statistical models often fail to capture the
nonlinear and complex patterns in consumer demand, particularly in the presence of seasonal shifts, promotional events,
and external shocks. In recent years, machine learning (ML) has emerged as a powerful tool for enhancing demand
forecasting accuracy by leveraging large-scale historical and real-time data. This paper reviews the core machine
learning techniques applied to demand forecasting, including supervised learning, time series forecasting models, and
ensemble methods. We develop and evaluate a hybrid forecasting framework that integrates Long Short-Term Memory
(LSTM) neural networks with gradient boosting to capture both sequential patterns and feature-based dependencies.
The proposed approach is validated using a retail demand dataset, and its performance is benchmarked against
traditional models. The results demonstrate that ML-based methods significantly outperform classical forecasting
techniques, offering improvements in forecast precision, robustness to noise, and responsiveness to dynamic market
signals.
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1 INTRODUCTION

Demand forecasting is one of the most critical components of supply chain management, influencing decisions related
to procurement, production planning, inventory control, logistics scheduling, and customer service[l]. Inaccurate
forecasts can lead to a range of operational inefficiencies, including stockouts, overstocking, excess holding costs, and
loss of customer loyalty[2]. Therefore, organizations have a strong incentive to develop accurate and timely demand
forecasting systems that can adapt to rapidly changing consumer behavior and market dynamics[3].

Historically, demand forecasting has relied heavily on classical statistical techniques such as exponential smoothing,
moving averages, and autoregressive integrated moving average (ARIMA) models[4]. While these methods are
computationally efficient and interpretable, they often struggle with high-dimensional data, nonlinear relationships,
seasonality, and sudden changes in demand due to exogenous factors such as promotions, weather, or economic
shocks[5]. Moreover, traditional models require significant manual intervention and domain knowledge for feature
engineering and parameter tuning, limiting their scalability and adaptability[6].

In contrast, machine learning (ML) offers a data-driven alternative that is capable of learning complex, nonlinear, and
hierarchical relationships from historical data without relying on rigid parametric assumptions [7]. ML models can be
trained to automatically capture patterns across large datasets, incorporate a wide array of features including categorical
and temporal variables, and adapt continuously as new data becomes available[8]. Recent advancements in deep
learning, particularly recurrent neural networks (RNNs) and their variants such as Long Short-Term Memory (LSTM)
networks, have further pushed the frontier of demand forecasting by modeling long-term dependencies in time series
data [9].

This paper explores the application of various machine learning approaches to demand forecasting in retail supply
chains. We propose a hybrid framework that combines LSTM networks for temporal sequence learning with gradient
boosting for incorporating static and contextual features. The proposed methodology is evaluated using a real-world
retail dataset and benchmarked against classical forecasting models. We aim to demonstrate that machine learning not
only improves forecasting accuracy but also enhances robustness and adaptability in complex supply chain
environments.

2 LITERATURE REVIEW

The field of demand forecasting has undergone a significant transformation with the advent of machine learning,
evolving from conventional statistical approaches to data-driven algorithms capable of modeling complex temporal and
cross-sectional patterns[10]. In traditional supply chain operations, statistical techniques such as exponential smoothing,
ARIMA, and seasonal decomposition were widely used due to their interpretability and ease of implementation[11].
However, these models are inherently limited in their ability to capture nonlinear dependencies, interaction effects
among multiple variables, and sudden regime shifts caused by promotional events, competitor actions, or
macroeconomic changes[12].
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Machine learning has emerged as a promising alternative, offering flexible models that can learn directly from data
without requiring strong assumptions about underlying distributions or data-generating processes[13]. Supervised
learning models, such as decision trees, random forests, support vector machines, and gradient boosting machines, have
demonstrated superior performance in scenarios where a rich set of features is available[14]. These algorithms can
incorporate exogenous variables such as holidays, weather, regional economic indicators, and product-level metadata,
making them highly suitable for retail forecasting tasks[15].

In addition to classical machine learning algorithms, deep learning has gained substantial attention due to its ability to
automatically learn hierarchical representations from raw input data[16]. Specifically, RNNs and their gated variants
like LSTM and GRU (Gated Recurrent Unit) have shown notable success in capturing long-term dependencies in time
series data[17]. These models can maintain internal memory states that are updated dynamically based on the input
sequence, allowing them to model temporal lags, seasonality, and abrupt changes in demand patterns[18].

Another strand of literature has focused on hybrid modeling strategies that combine the strengths of different machine
learning methods[19]. For instance, some frameworks use gradient boosting to process static features such as store
location, product category, and promotion types, while relying on LSTM networks to model the temporal dynamics[20].
This fusion of static and dynamic modeling components enhances both short-term responsiveness and long-term trend
recognition[21].

Furthermore, the rise of big data technologies has facilitated the use of high-frequency data sources such as clickstream
logs, customer transaction histories, and point-of-sale information[22]. These data sources provide granular insights into
consumer behavior, enabling forecasting models to move beyond simple SKU-level predictions and incorporate
customer segmentation, behavioral clustering, and personalized demand forecasting[23]. The literature also highlights
the importance of feature engineering, model interpretability, and forecast explainability, especially in business contexts
where decisions based on forecasts have significant operational implications[24].

Despite the advancements, several challenges persist. One major issue is the lack of transparency and interpretability in
black-box models, which hinders their adoption in risk-averse industries[25]. Moreover, machine learning models are
sensitive to data quality, missing values, and outliers, which are common in real-world supply chain datasets. Another
concern is the requirement for continuous retraining and validation to ensure sustained performance over time[26].

The literature reveals a growing consensus that while no single model universally outperforms others across all
forecasting scenarios, machine learning models—particularly when customized and hybridized—offer substantial
improvements in forecast accuracy, adaptability, and decision support. These findings form the foundation for our
proposed framework, which aims to integrate advanced ML architectures with real-time retail data streams to enable
dynamic and granular demand forecasting in modern supply chains.

3 METHODOLOGY

This section outlines the methodological approach employed to implement ML models for demand forecasting in
supply chain management. The methodology consists of four key stages: data acquisition and preprocessing, feature
engineering and selection, model development and training, and evaluation and validation. Each stage is crucial in
ensuring the accuracy, robustness, and applicability of the forecasting models in real-world supply chain operations.

3.1 Data Acquisition and Preprocessing

The foundation of any forecasting model lies in high-quality, relevant data. In this study, historical sales data, inventory
records, pricing logs, promotional calendars, weather indicators, and macroeconomic variables were collected from
multiple retail outlets over a three-year period. The raw data exhibited typical challenges such as missing values,
seasonality, outliers, and inconsistent temporal resolution.

To address these issues, we employed a multi-step preprocessing strategy as in Figure 1. First, time series were
resampled to a uniform daily granularity using forward filling and linear interpolation. Outliers were detected using
seasonal hybrid extreme studentized deviate (S-H-ESD) tests and were capped to maintain statistical integrity. Missing
categorical values were imputed using mode substitution, while continuous variables used k-nearest neighbor (KNN)
imputation based on correlated features.

Raw Time Series Data
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Figure 1 Multi-Step Preprocessing Strategy
3.2 Feature Engineering and Selection

Effective forecasting requires the transformation of raw data into meaningful, compact representations. We constructed
a feature matrix consisting of temporal attributes (e.g., day of week, month, holiday indicators), lagged demand values,
rolling statistics (e.g., moving averages, standard deviations), product attributes (e.g., brand, category, shelf life), and
exogenous signals such as promotions or weather conditions.

To identify the most informative predictors, we applied SHAP (SHapley Additive exPlanations) value analysis on a
baseline XGBoost model as in Figure 2. This allowed us to rank features by their marginal contribution to model
predictions. Temporal proximity (e.g., lagged 1-day sales), promotion indicators, and rolling demand volatility emerged
as the most predictive variables across multiple retail SKUS.
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Figure 2 Feature Importance Based on SHAP Values

Furthermore, feature reduction was performed via recursive feature elimination (RFE) and principal component analysis
(PCA) for models sensitive to multicollinearity. These techniques enhanced computational efficiency and helped
prevent overfitting in high-dimensional models.

3.3 Model Development and Training

We developed and compared multiple ML algorithms, including Random Forest (RF), Gradient Boosting Machines
(GBM), LSTM, and Temporal Fusion Transformers (TFT). Each model was tailored for time series forecasting, using
rolling-window cross-validation to preserve temporal dependencies.

Hyperparameter tuning was conducted using Bayesian Optimization with cross-validated mean absolute percentage
error (MAPE) as the objective function. Early stopping was used to mitigate overfitting, particularly for deep learning
models. In addition, each model was trained on a distributed computing cluster using GPU acceleration where
applicable, to handle high-volume data and model complexity efficiently.

Forecasting Error Metrics by Model
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Figure 3 Forcasting Error Metrics by Model
Throughout the training process, performance metrics such as root mean square error (RMSE), MAPE, and symmetric

mean absolute percentage error (SMAPE) were recorded for model comparison as in Figure 3. Ensemble methods were
also evaluated by aggregating outputs from multiple models to enhance prediction robustness.

4 RESULTS AND DISCUSSION

Volume 2, Issue 2, Pp 73-78, 2025



76 Liu Zhen & Yang Lin

The experimental evaluation of machine learning approaches for demand forecasting was conducted on a real-world
retail dataset, encompassing daily sales data across multiple product categories, regions, and seasons. The models
evaluated included Random Forest, Gradient Boosting, LSTM, TFT, and a final ensemble method combining the
strengths of the best-performing models.

The performance of each model was assessed using two key error metrics: MAPE and RMSE. These metrics provide
complementary insights—MAPE reflects the relative prediction error, which is crucial for inventory decisions across
products with different volume scales, while RMSE penalizes larger errors more heavily, highlighting forecasting
robustness in high-variance scenarios.

The results demonstrated that classical tree-based models such as Random Forest and Gradient Boosting provided
reasonable accuracy, with MAPE values around 11-12%. However, deep learning models significantly outperformed
them. The LSTM model achieved a MAPE of 10.3% due to its ability to model temporal dependencies, while the TFT
model pushed the error down further by incorporating attention mechanisms and covariate information. The ensemble
model, which combined predictions from LSTM and TFT with weighted averaging based on validation set performance,
yielded the best results overall, achieving a MAPE of 8.7% and RMSE of 18.5.
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Figure 4 Model Performance Comparison

These findings underscore the importance of choosing forecasting methods that are sensitive to both seasonality and
covariate shifts, especially in volatile retail environments. Deep learning models, particularly those designed to process
sequential and multivariate data, are well-suited for such settings. Moreover, the ensemble strategy mitigates the
weaknesses of individual models and stabilizes forecasts, making it highly applicable in operational supply chains.

In addition to quantitative metrics, qualitative analysis of demand forecast plots revealed that advanced models more
effectively captured demand surges (e.g., promotional spikes) and long-tail seasonal trends, whereas traditional methods
often lagged or oversmoothed the response. This has direct implications for inventory management, as underestimating
demand during such periods can lead to costly stockouts and lost revenue, while overestimating leads to increased
holding costs.

Overall, these results validate the application of modern ML architectures in real-world forecasting pipelines and
provide a compelling argument for integrating these approaches into retail demand planning systems.

5 CONCLUSION

Accurate demand forecasting remains a cornerstone of effective supply chain management, directly influencing
inventory control, logistics coordination, and customer satisfaction. This study explored and compared various machine
learning approaches, including traditional models and advanced deep learning architectures, for forecasting demand in
dynamic retail environments. Our findings highlight the clear performance advantages of deep learning
models—particularly LSTM and Temporal Fusion Transformer—over classical methods such as Random Forest and
Gradient Boosting. By leveraging temporal dependencies and exogenous features, these models deliver more nuanced,
accurate, and adaptable forecasts.

The ensemble strategy further improved forecasting robustness by combining the strengths of individual models,
leading to a significant reduction in both MAPE and RMSE. These quantitative improvements translated into practical
benefits for supply chain operations, such as reduced stockouts, optimized safety stock levels, and better alignment
between supply and demand.

Moreover, our analysis shows that the use of machine learning not only enhances forecasting accuracy but also supports
more proactive and strategic supply chain decisions. Rather than reacting to demand fluctuations, companies can
preemptively adjust procurement, production, and logistics plans based on high-quality predictive insights.

Future work can extend this research by incorporating external data sources such as economic indicators, competitor
pricing, and weather conditions to further enhance forecast accuracy. Additionally, integrating explainability
frameworks such as SHAP values or attention weight analysis can improve model transparency and support human
decision-makers in validating and adjusting forecasts.

Volume 2, Issue 2, Pp 73-78, 2025



Machine learning approaches for accurate demand forecasting in supply... 77

In conclusion, the integration of advanced machine learning models into demand forecasting workflows represents a
critical step toward building agile, resilient, and data-driven supply chains capable of thriving in an increasingly
complex market landscape.
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