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Abstract: Accurate prediction and effective optimization of energy consumption are pivotal to the advancement of
electric vehicle (EV) technologies. This paper presents a machine learning-based framework for modeling, predicting,
and minimizing EV energy consumption under varying operational conditions. By integrating real-world driving data
with advanced regression and classification models, the study achieves high-accuracy forecasts of energy usage and
proposes dynamic optimization strategies for enhanced efficiency. Experimental evaluations demonstrate that the
proposed methods can reduce energy waste by up to 15% compared to conventional strategies. These results underscore
the potential of data-driven approaches in driving sustainable electric mobility.
Keywords: Electric vehicles; Energy consumption; Machine learning; Predictive modeling; Optimization; Sustainable
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1 INTRODUCTION

The global shift toward sustainable transportation has positioned electric vehicles (EVs) as a vital component of future
mobility[1]. Unlike traditional internal combustion engine vehicles, EVs offer the advantage of zero tailpipe emissions
and higher energy efficiency, aligning with global climate targets and urban air quality improvements[2]. However,
their widespread adoption continues to face critical challenges, particularly concerning energy consumption
predictability and range efficiency[3]. These issues are magnified by the variability in driving patterns, road conditions,
and environmental factors, all of which significantly influence an EV’s energy demands[4].
Energy consumption in EVs is governed by a complex interplay of dynamic variables, including driving speed,
acceleration and deceleration behaviors, terrain elevation, external temperature, and the operational state of the
battery[5]. Unlike gasoline-powered vehicles with relatively linear fuel consumption profiles, EVs present nonlinear
and context-sensitive energy use patterns[6]. This makes accurate modeling and prediction of energy consumption a
significantly more intricate task[7]. Precise forecasting is essential not only for alleviating range anxiety but also for
enabling energy-aware routing, optimizing battery usage, and improving overall vehicle efficiency[8].
Historically, energy modeling for EVs has relied on deterministic, physics-based approaches. These models attempt to
simulate real-world energy dynamics by incorporating known mechanical and electrical relationships[9]. While
effective in controlled scenarios, such models often lack the flexibility to generalize across different driving contexts or
adapt to diverse vehicle configurations without substantial manual calibration[10]. As the diversity and complexity of
EV operating conditions increase, the limitations of rigid modeling frameworks become more pronounced[11].
In response to these limitations, machine learning (ML) has emerged as a promising alternative. ML techniques offer
the ability to capture complex, nonlinear dependencies by learning directly from data[12]. Unlike rule-based systems,
ML models can automatically adapt to new environments and driving behaviors, making them particularly suitable for
real-time energy consumption prediction[13]. Numerous studies have demonstrated the capability of supervised ML
algorithms, such as support vector machines, random forests, and deep neural networks, to predict energy use with
impressive accuracy[14]. Moreover, the integration of predictive models with optimization techniques enables
intelligent decision-making aimed at minimizing energy usage without compromising driving performance[15].
Despite these advancements, important gaps remain. Many existing models are developed in isolation, focusing solely
on either prediction or optimization, without a holistic approach that integrates both[16]. Additionally, the black-box
nature of many ML models poses a challenge for interpretability and trust, especially in safety-critical applications like
autonomous or assisted driving. Furthermore, the variability of real-world driving data and the scarcity of large, labeled
datasets continue to hinder the generalization of existing models.
This study proposes a unified machine learning-based framework that combines energy consumption prediction with
dynamic optimization for electric vehicles[30]. By leveraging both historical and real-time driving data, the framework
aims to not only forecast consumption accurately but also provide actionable strategies for reducing energy use in
diverse driving contexts. The ultimate goal is to support the development of intelligent energy management systems that
enhance EV performance, extend range, and contribute to a more reliable and sustainable electric mobility ecosystem.

2 LITERATURE REVIEW

Energy consumption modeling for EVs has evolved significantly over the past decade, transitioning from traditional
physics-based frameworks to data-driven ML approaches[17]. This evolution reflects the growing recognition of the
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inherent complexity and context-dependence of EV energy dynamics, which are often too intricate to be fully captured
by deterministic models alone[18].
Early studies in EV energy modeling primarily relied on physical and mathematical models[19]. These models typically
incorporated vehicle mass, aerodynamic drag, rolling resistance, and drivetrain efficiency to estimate energy
consumption under various driving conditions[20]. While useful in understanding the mechanical behavior of EVs,
these approaches were limited in their ability to accommodate real-time variability and contextual factors such as traffic,
weather, driver habits, and road topology[21]. Additionally, their implementation often required detailed vehicle
specifications and substantial calibration, restricting their scalability across different vehicle types and use cases[22].
To address these limitations, researchers began exploring statistical and machine learning-based techniques capable of
learning from historical driving data[23]. Supervised learning models, including linear regression, decision trees,
support vector regression（SVR）, and artificial neural networks（ANNs）, have shown promise in capturing complex
relationships between input variables（such as speed, acceleration, and gradient）and energy consumption. For instance,
several studies have used neural networks to model the nonlinear energy usage patterns of EVs in urban and highway
driving scenarios, often achieving higher predictive accuracy than their physics-based counterparts[24].
More recently, deep learning architectures have gained traction due to their ability to model high-dimensional and
time-dependent data[25]. Recurrent neural networks（RNNs）and long short-term memory（LSTM）networks, in
particular, have been applied to time-series energy prediction tasks, accounting for sequential dependencies in driving
behavior and road conditions[26]. These models have demonstrated improved performance in forecasting short-term
energy consumption, making them suitable for real-time energy-aware navigation and battery management
applications[27].
Beyond prediction, researchers have also explored the integration of optimization algorithms with ML models to
develop intelligent energy management systems[28]. Techniques such as genetic algorithms, particle swarm
optimization, and reinforcement learning（RL）have been employed to minimize energy consumption by dynamically
adjusting parameters like acceleration, speed profiles, and HVAC usage[29]. In some frameworks, predictive models
serve as input functions for optimization agents, enabling closed-loop systems that adapt to changing conditions and
driver preferences[31].
Despite these advancements, several challenges persist. One major issue is the trade-off between model accuracy and
interpretability[32]. Many high-performing ML models, particularly deep neural networks, operate as “black boxes,”
making it difficult to understand the underlying reasoning behind predictions[33]. This lack of transparency poses a
barrier to trust and adoption in safety-critical domains like autonomous driving and smart transportation[34].
Another challenge is the generalizability of models across different geographic regions, vehicle models, and driving
behaviors. Models trained on data from a specific environment may fail to perform adequately when deployed
elsewhere[35]. As such, recent studies have begun exploring transfer learning and domain adaptation techniques to
improve cross-domain robustness. Moreover, the scarcity of large, labeled EV datasets—particularly those
encompassing a wide variety of use cases—remains a significant obstacle to model development and validation[36].
Furthermore, while most research focuses on either prediction or optimization, there is a growing recognition of the
need for integrated approaches that combine both tasks within a unified framework. Such hybrid systems would not
only forecast energy demands but also provide actionable recommendations for energy-efficient driving, offering a
more comprehensive solution for EV energy management.
In conclusion, the literature reveals a strong trend toward machine learning-based solutions for EV energy modeling and
optimization. These approaches have demonstrated clear advantages in handling complexity, adapting to dynamic
environments, and improving prediction accuracy. However, to fully realize their potential in real-world applications,
future work must address key challenges related to interpretability, generalizability, data availability, and the seamless
integration of prediction and optimization within a unified control architecture.

3 METHODOLOGY

This study adopts a hybrid machine learning framework to predict and optimize energy consumption in EVs. The
methodology consists of three primary phases: data acquisition and preprocessing, model development using supervised
learning algorithms, and optimization of energy consumption using regression-based prediction and real-time tuning
strategies. Each phase is designed to ensure that the model can accurately forecast energy use while adapting to
dynamic driving and environmental conditions.

3.1 Data Acquisition and Preprocessing

Real-world driving data were collected from electric vehicles equipped with onboard diagnostics (OBD) and telematics
systems. The dataset includes variables such as speed, acceleration, ambient temperature, road slope, battery
state-of-charge (SOC), and energy usage in kilowatt-hours (kWh). Missing values were handled using forward filling,
and features were normalized to ensure comparability. A time-series segmentation approach was employed to capture
temporal patterns of energy use over varying trip intervals.

3.2 Model Development
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The energy prediction model was built using gradient boosting regression (GBR), random forest (RF), and long
short-term memory (LSTM) neural networks. These algorithms were chosen for their ability to model nonlinear
dependencies and temporal patterns. The model was trained on 80% of the dataset and validated using the remaining
20%. Root mean square error (RMSE) and mean absolute percentage error (MAPE) were used to evaluate model
accuracy as in figure 1.

Figure 1 RMSE Comparison of ML Models

3.3 Optimization Strategy

Once the best-performing model was identified, we applied it to optimize energy consumption through real-time
decision support. A multi-objective cost function was used, considering energy efficiency, battery health, and driver
comfort. The function adapted driving behavior recommendations based on predicted energy use across different
scenarios, such as urban driving, highway cruising, or regenerative braking opportunities.

Figure 2 Energy Savings by Strategy

These integrated processes in figure 2 ensure that the model not only predicts energy usage with high accuracy but also
offers practical insights for improving efficiency and extending battery life during daily operations.
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4 RESULTS AND DISCUSSION

The experimental evaluation of the proposed machine learning-based energy prediction and optimization framework
yielded promising results across multiple dimensions. The two key components—predictive modeling and consumption
optimization—were assessed using a large-scale dataset derived from diverse EV driving scenarios. The results
demonstrate clear performance improvements in both accuracy of energy forecasting and reduction of overall
consumption.
In the predictive modeling stage, three machine learning algorithms were compared: GBR, RF, and LSTM networks.
Each model was trained using the same set of input features, which included vehicle speed, acceleration, ambient
temperature, battery SoC, and HVAC usage, among others. These features were selected based on their relevance to EV
powertrain behavior and their ability to reflect real-time energy demands. Feature importance analysis from tree-based
models confirmed that vehicle dynamics (speed and acceleration) and thermal loads (HVAC and ambient temperature)
had the strongest influence on energy consumption.
When comparing the performance of the three models, the LSTM network consistently outperformed the others. This
can be attributed to its temporal learning structure, which allows it to capture sequential patterns in energy usage more
effectively than static regressors. While GBR and RF achieved reasonable results—with RF performing better between
the two—the LSTM model produced the lowest prediction error, achieving a RMSE of 1.01 kWh and a mean absolute
percentage error (MAPE) of 7.6%. These findings support the use of deep learning models, particularly those designed
for time-series data, in dynamic vehicle environments where energy demands fluctuate frequently.
Beyond prediction, the study integrated the best-performing model into a real-time optimization module. This module
adjusted driving behavior and vehicle control settings based on predicted energy consumption. Unlike traditional
eco-driving modes that rely on fixed thresholds, the machine learning-driven strategy adapted dynamically to the
driver’s real-time inputs and external driving conditions. The optimization logic was structured to prioritize smoother
acceleration, better use of regenerative braking, and moderated auxiliary power use when such trade-offs would result
in measurable energy gains.
Performance evaluation of the optimization component showed substantial energy savings. Compared to baseline
driving behavior with no energy-aware adjustments, the ML-driven strategy reduced energy consumption by 18.3%. In
comparison, traditional eco-mode systems achieved a 12.5% reduction under the same driving cycles. These
improvements translated not only into increased driving range but also into decreased thermal stress on the battery and
improved overall system efficiency. Importantly, these gains were achieved without compromising vehicle
responsiveness or driver comfort, as abrupt reductions in power or aggressive limiting of HVAC systems were avoided.
The framework was also tested across different road types, including urban, suburban, and highway environments.
Prediction performance remained stable across these scenarios, although urban conditions—characterized by frequent
starts, stops, and unpredictable events—introduced slightly higher variability in short-term forecasts. Nonetheless, the
LSTM model demonstrated strong generalization capability, maintaining low error margins even under high-variance
conditions.
In summary, the results validate the effectiveness of combining machine learning-based prediction with adaptive
optimization for EV energy management. The ability to forecast consumption with high accuracy and use those
forecasts for real-time control adjustments presents a practical and scalable solution for improving EV efficiency. This
framework offers not only enhanced operational performance for drivers but also valuable tools for fleet operators,
battery management systems, and smart charging infrastructure.

5 CONCLUSION

This study presents a comprehensive machine learning-based framework for predicting and optimizing energy
consumption in electric vehicles. By combining supervised learning models with dynamic optimization strategies, the
framework addresses two of the most pressing challenges in EV energy management: accurately forecasting short-term
energy demand and adapting vehicle behavior in real-time to reduce unnecessary consumption.
The results demonstrate that data-driven models, particularly those based on temporal architectures such as LSTM
networks, are highly effective in capturing the nonlinear and sequential nature of EV energy usage. Compared to
conventional models like Gradient Boosting Regression and Random Forest, LSTM consistently achieved lower
prediction error, confirming its suitability for energy forecasting in diverse driving environments.
Furthermore, the integration of predictive insights into a real-time optimization module yielded significant
improvements in operational efficiency. The machine learning-guided strategy outperformed traditional eco-driving
settings, reducing energy consumption by over 18% without compromising driver comfort or vehicle responsiveness.
These savings not only translate into extended range and improved battery health but also support broader goals of
sustainability and cost reduction for EV users and fleet operators.
Beyond accuracy and efficiency, the proposed approach offers adaptability and scalability. The framework generalizes
well across driving scenarios, from urban stop-and-go traffic to steady highway cruising, and is compatible with a wide
range of EV models and telematics systems. This flexibility makes it an attractive candidate for integration into
production-grade energy management systems, battery analytics platforms, or intelligent transportation infrastructure.
Nonetheless, the study also highlights areas for future work. In particular, further improvements could be made by
incorporating reinforcement learning for long-horizon optimization, enhancing model interpretability for safety-critical
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applications, and expanding training datasets with real-world variability across regions, seasons, and user profiles.
Real-time implementation on resource-constrained embedded systems remains a practical consideration for widespread
deployment.
In conclusion, machine learning holds significant promise for transforming EV energy management from static,
one-size-fits-all strategies to intelligent, adaptive systems that optimize performance based on context. As EV adoption
continues to grow, such data-driven solutions will play a critical role in enhancing vehicle efficiency, reducing
environmental impact, and advancing the global transition to sustainable mobility.
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