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Abstract: In object detection tasks, the sparse distribution, weak saliency and context-dependent nature of small objects
pose three major challenges for perception systems. Although end-to-end detection architectures like the YOLO series
have achieved a good balance between and speed accuracy in recent years, their utilization of shallow-layer features is
low, resulting in performance bottlenecks in micro-object recognition. To address this, this paper proposes a small-
object perception-enhanced detection framework, TFE-Net (Tiny-aware Feature Enhancement Network). By
constructing a shallow high-resolution feature pathway and a multi-scale fine-grained semantic interaction module, it
achieves a lightweight improvement of the YOLOv8s model structure. While maintaining the original model's
computational complexity, this method significantly enhances the spatial perception and discrimination accuracy for
extremely small objects. Experiments were conducted on the VisDrone dataset. Results show that the improved model
boosts the mAP@0.5 from 0.386 to 0.421, with noticeable improvements in PR curves across all categories. This
confirms the proposed strategy's ability to perceptually reconstruct and detect small objects in complex scenarios.
Keywords: Small object detection; Feature enhancement network; YOLOv8; Multi-scale fusion; Weak saliency
awareness

1 INTRODUCTION

In today's rapidly advancing digital and intelligent era, small object detection (SOD), a key branch of computer vision,
is growing in importance. It's widely used in intelligent transportation systems for real-time vehicle and pedestrian
monitoring, in public safety for threat identification, in precision medicine for detecting cells and minor lesions, and in
military surveillance for tracking distant small targets. Yet, SOD faces tough technical challenges. Small targets,
occupying minimal pixel areas in images or videos, are hard to capture and recognize. Their lack of distinctiveness
makes them hard to spot against complex backgrounds, causing mainstream detection models to suffer from severe
perceptual degradation and fail to accurately locate and identify these targets. Moreover, the weak feature representation
of small targets further increases detection difficulty.
Nowadays, the field of small object detection (SOD) faces numerous technical challenges, primarily caused by the
following key factors. First, data sparsity is a significant issue. Limited samples of small objects and high annotation
costs lead to class-imbalanced long-tailed distributions in training datasets, which restricts the effective learning ability
of models. Second, during the process of multi-layer downsampling in convolutional neural networks, the fine-grained
features unique to small objects are prone to being lost. This results in missing representations in high-level feature
expressions, thereby affecting the final detection accuracy. Furthermore, the insufficiency of existing models in spatial
context modeling makes it difficult to effectively capture the key discriminative information of small objects in
complex backgrounds, thus weakening the ability to distinguish targets from backgrounds. These factors collectively
result in "perception blind spots" in specific scales and regions, which seriously limits the performance and scope of
application of SOD. The three core challenges in the SOD field are specifically as follows: Inadequate feature
representation. Due to their limited size and sparse spatial distribution, the features of small objects gradually
degenerate in deep networks, which impacts the extraction and recognition of detailed information; Perceptual scale
imbalance. Traditional object detection frameworks focus on the detection performance of medium and large objects
and lack dedicated path designs for small objects. This leads to unreasonable allocation of computing resources and
attention mechanisms, causing the detection performance of small objects to be far below expectations; Missing
contextual information. Accurate recognition of small objects is highly dependent on local contextual clues. However,
most existing models lose a significant amount of spatial detail information during high-level feature abstraction. Due to
the lack of effective context retention and fusion mechanisms, the detection difficulty is further increased, particularly
in complex background scenarios. To address the above challenges, researchers have proposed a variety of innovative
models and technical solutions aimed at improving the accuracy and reliability of SOD.
RetinaNet, a refined model based on Feature Pyramid Network (FPN), is widely used in small object detection. Its
essence lies in constructing a top-down feature pyramid to enhance the perception of small objects by fusing multi-scale
features. For instance, Tian et al. proposed a small object detection algorithm based on an improved RetinaNet model[1].
This algorithm addressed the low accuracy of traditional object detection algorithms when dealing with objects in
horizontal and aerial images. Ahmad et al. introduced a detector integrated with RetinaNet to enhance low-level
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semantic information and high-level spatial resolution[2], thereby effectively improving the superiority of small object
detection in aerial images. Ahmad et al. adopted an anchor optimization method to improve the baseline framework's
accuracy, thereby enhancing the detection of extremely small objects[3]. Nevertheless, RetinaNet has limitations, such
as over-reliance on high-level features causing detail loss, and a linear feature fusion method lacking non-linear feature
reshaping, which affect the detection of tiny objects.
DETR, based on the Transformer architecture, has pioneered a new paradigm for object detection. Its core is using self-
attention mechanisms to model global spatial dependencies and enhance contextual information perception. For
example, Dubey et al. proposed a normalized inductive bias for object detection with data fusion[4], improving DETR's
accuracy in detecting small objects. Dai et al. replaced the cross-attention module with a dynamic attention module
based on ROI[5], achieving faster convergence with fewer training epochs. Cao et al. introduced a new decoder layer to
improve localization accuracy, especially for small objects[6]. However, DETR has limitations in handling local micro
features. Specifically, the self-attention mechanism tends to focus on global features and overlook local details of small
objects, leading to suboptimal performance in extremely small object detection tasks.
The YOLO series holds a significant position in object detection, with YOLOv5 and YOLOv8 being representative.
YOLOv5 offers more efficient feature extraction and a flexible network structure, improving detection accuracy while
maintaining real-time performance. YOLOv8 further introduces technologies like Decoupled Head and Task-Aligned
Assigner to enhance training efficiency and detection accuracy. For example, Wang et al. introduced a query-based
model with a new pipeline to address remote detection challenges in driving scenarios[7]. Sun et al. combined optical
flow with background suppression images as auxiliary inputs[8], significantly improving the detection of infrared
moving small objects. Shen et al. incorporated deformable convolution modules and a dynamic non-monotonic focusing
mechanism into the backbone network[9], addressing object detection challenges in complex remote sensing image
tasks. Despite the YOLO series' excellent real-time performance and detection accuracy, its lack of a dedicated
perception path for shallow high-frequency information limits the model's spatial resolution for tiny objects, making it
difficult to adapt to high-density small object distributions in complex scenes.
Currently, traditional perception models, constrained by the single paradigm of global representation of deep features,
fail to leverage the descriptive advantages of shallow features for local fine-grained information, leading to significant
capability gaps in small target perception. Most models also lack effective feature interaction mechanisms, making it
hard to achieve fine perception and precise localization of small targets under controllable computational complexity,
which further increases the difficulty of SOD. Against this backdrop, SOD research is showing significant paradigm
evolution. On the one hand, the hierarchical semantic fusion paradigm is gaining attention. By enhancing shallow
feature representation and introducing cross-scale feature interaction, it significantly improves the model's perception
granularity of small targets. On the other hand, the cross-domain feature reconstruction direction is emerging. By
leveraging the complementarity of multimodal feature spaces to fill representation gaps, it provides a new technical path
to maximize perceptual integrity.
The SOD problem is essentially a representation deficiency caused by the imbalanced distribution of small-sample
categories in high-dimensional feature spaces. Its core lies in constructing effective high-resolution descriptors within a
limited feature perception domain. Starting from the dual perspectives of computational graph spatial modeling and
information flow optimization, this paper proposes an architectural adjustment strategy with weakly-supervised feature
enhancement capabilities to maximize information integrity in perceptual scenarios. In summary, this paper makes the
following technical contributions to the field of SOD: (1) Proposes TFE-Net (Tiny-aware Feature Enhancement
Network), an optimized network model based on the YOLOv8s framework. TFE-Net incorporates a dedicated small
target perception branch, integrating shallow feature enhancement, multi-scale fine-grained perception fusion, and local
non-linear feature reshaping strategies. This innovative architecture effectively expands the feature representation space
while maintaining the model's original computational efficiency, significantly improving the model's ability to identify
extremely small targets in complex scenes. By enhancing shallow features to capture local fine-grained information of
small targets, fusing multi-scale features to enhance the model's perception of different-sized small targets, and
reshaping local non-linear features to further improve feature representation, the model can more accurately identify
extremely small targets that occupy minimal pixel areas in images. (2) In architectural design, TFE-Net balances
practicality and computational efficiency. Through feature path reparameterization and perceptual redundancy
compression, TFE-Net not only enhances SOD performance but also ensures efficient inference in practical
deployment. Feature path reparameterization optimizes the feature extraction process for more efficient computational
resource utilization, while perceptual redundancy compression reduces unnecessary computational overhead and speeds
up inference. This balance enables TFE-Net to quickly and accurately process complex visual scenes in practical
applications, meeting the demands of real-time applications.

2 METHOD

2.1 Overall Architecture Design

2.1.1 Core design philosophy
The core of TFE-Net's design is to boost feature perception and discrimination for tiny object detection. On the one
hand, We introduce a Shallow Perception Enhancement Pathway (SPEP) to strengthen shallow feature extraction and
highlight local details of small objects. On the other hand, A Cross-Scale Fine-Grained Aggregation Unit (CFAU) is
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used to promote interaction and fusion of features at different scales, preserving crucial small object information. Also,
Feature Flow Diversity Pathways are built to enrich feature propagation routes for better mining and utilization of small
object features. Overall, TFE-Net inherits YOLOv8s' strong feature extraction ability and effectively alleviates feature
degradation and insufficient representation of small objects. It offers a better feature foundation for tiny object detection
and enhances detection performance in complex scenarios.

2.2 Core Module Design

TFE-Net has three key innovations: (1)Local Feature Perception Enhancement. TFE-Net strengthens expression of local
fine-grained information by adding a small-object detection head and a dedicated shallow high-resolution feature
pathway. The detection head is designed for small objects to capture their features precisely. The shallow high-
resolution feature pathway preserves local details. This design improves the model's handling of local small-object
features and boosts recognition accuracy. (2)Nonlinear Cross-Scale Feature Interaction. TFE-Net introduces a CFAU
module for dynamic nonlinear interaction between features of different scales. Through nonlinear transformation and
fusion, the CFAU module captures complex relationships between multi-scale features, enhancing context perception of
small objects. (3) Feature Reconstruction and Alignment Optimization. TFE-Net uses feature space reparameterization
via a selective feature enhancement module (SFEM) to compress redundant information. SFEM selectively enhances
important features and suppresses redundant ones, optimizing representation for efficient object detection. This strategy
also ensures feature consistency across levels and scales, improving overall model performance.

2.2.1 Shallow Perception Enhancement Pathway(SPSE)
The Shallow Perception Enhancement Pathway (SPEP) is a key component of TFE-Net for boosting small-object
detection performance. Building on YOLOv8s' original three-layer detection heads, SPEP adds a new small-object
detection head. This enables the model to better utilize the rich local detail information in shallow feature maps, which
is crucial for small-object detection. Moreover, the Upsample-Concat-C2f module in SPEP plays a significant role in
enhancing feature-map resolution. It strengthens spatial details through up-sampling and reconstructs high-dimensional
features effectively via channel concatenation and convolution fusion. Which is,

���ℎ����� = �2�(������(��������(�����), ��ℎ�����)) (1)
Where, ����� represents the deep feature map, ��ℎ����� represents the shallow feature map, and �2� denotes the feature
reconstruction module.
Specifically, in the neck network, deep-layer feature maps are first upsampled to achieve high-resolution feature maps.
Then, the Concat module merges these upsampled features with early-stage features from the backbone network.
Finally, the �2� module performs multiple convolutions and skip connections to extract and fuse multi-level features,
generating richer representations. This fusion strategy effectively combines multi-level feature information, enhancing
feature expression. Consequently, the model's perception and detection accuracy for small objects are improved, as
shown in Figure 1.

Figure 1 Shallow Perception Enhancement Pathway Diagram

Overall, the SPEP pathway effectively boosts the expressive density of the feature space. By enhancing local perception,
it eases the issue of microscopic feature degradation and enables strong responsiveness reconstruction of small-object
features.
2.2.2 Cross-Scale Fine-Grained Aggregation Unit(CFAU)
The Cross-Scale Fine-Grained Aggregation Unit (CFAU) is a key module in TFE-Net for boosting feature fusion and
small-object detection. It uses multi-path nonlinear interaction strategies to achieve dynamic weighting and context
enhancement of features at different scales. Specifically, CFAU has three core mechanisms:
(1) Multi-Scale Adaptive Fusion: CFAU dynamically adjusts the weights of features at different scales, allowing

effective fusion based on their importance. This adaptive weighting strategy improves the flexibility and
adaptability of feature fusion.

(2) Spatial-Aware Enhancement: CFAU emphasizes enhancing spatial information in local regions of feature maps. It
uses spatial attention mechanisms to highlight areas of small objects and reduce background noise interference.

(3) Channel Recalibration: CFAU dynamically adjusts the weights of feature channels. It enhances important channels
and suppresses unimportant ones, further optimizing feature representation and improving discriminability.

In summary, CFAU combines these three core mechanisms through multi-path nonlinear interactions. Which is,
�CFAU = �=1

� ��� ⋅ �(��) (2)
Where, � denotes the adaptive attention module, �� signifies dynamic weights, and �� represents feature maps of
different scales.
CFAU enhances the model's local context perception and expands the spatial coverage and diversity of feature
representations through non-linear cross-scale feature fusion.
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2.2.3 Selective Feature Enhancement Module(SFEM)
The Selective Feature Enhancement Module (SFEM) in TFE-Net optimizes feature representation and boosts model
performance. It uses a Convolution-BatchNorm-Activation (���) pattern with a SiLU activation function to enhance
non-linear feature expression. Which is

�������� = ���(������(�2�(�����), ���ℎ�����)) (3)
Here, ����� represents the deep feature map, ���ℎ����� denotes the shallow feature map obtained from the Shallow
Perception Enhancement Pathway (SPEP), and ��� represents the feature re-extraction module, which is:

��� = ����(����ℎ����(����(��)) (4)
Here, �� represents the input feature maps of different scales to the module.
Specifically, the feature map first undergoes a convolution operation to extract higher-level features. Then, BatchNorm
and the SiLU activation function are applied to enhance feature expression through the ��� module. Next, the
processed feature map is concatenated with the one from the first part to integrate features from different sources.
Finally, the �2� module is used again to further fuse and enhance the concatenated features, extracting more robust and
discriminative representations. As shown in Figure 2, SFEM's feature-channel selective enhancement mechanism
dynamically adjusts channel weights, suppressing irrelevant features and boosting key-feature expression.

Figure 2 Feature Selective Enhancement Module Diagram

SFEM enables dynamic selection and enhancement of local features in the feature space. Through nonlinear mapping
and channel recalibration, it improves the discriminative power and information density of feature distributions. This
design boosts feature discrimination and enhances the model's detection accuracy and robustness for small objects.

2.3 Improved Architecture Overall Process

The improved architecture presented in this paper enhances YOLOv8s in multiple ways to boost tiny-object detection.
The Backbone retains YOLOv8s' original structure for feature extraction. The Neck adds a Shallow Perception
Enhancement Pathway (SPEP), which, with the Upsample-Concat-C2f module, introduces shallow high-resolution
features, crucial for small-object detection. It also incorporates a Cross-Scale Fine-Grained Aggregation Unit (CFAU)
for adaptive weighting and dynamic nonlinear interaction of multi-scale features, thereby strengthening contextual
perception of small objects. The Head retains the original Anchor-Free decoupled head and adds a new small-object
detection head to enhance the model's ability to detect tiny objects. Moreover, the architecture uses a Selective Feature
Enhancement Module (SFEM) to boost feature distinctiveness and refine predictions. In summary, this architecture, as
shown in Figure 3, optimizes every component to fully leverage multi-level features, significantly improving tiny-object
detection performance.

Figure 3 Improved Structure Diagram

3 EXPERIMENTAL DESIGN AND RESULT ANALYSIS

3.1 Experimental Environment and Settings
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The experiments were conducted on a server with an NVIDIA RTX 4090 GPU, which excels at parallel computing and
handles large-scale deep learning tasks efficiently. The software framework uses PyTorch for YOLOv8s and builds on
the Ultralytics team's official implementation. Training hyperparameters are set as follows: SGD optimizer, initial
learning rate (lr0) of 0.01, final learning rate (lrf) of 0.01, batch size of 32, image size of 640×640, and 300 training
epochs. A linear annealing strategy was adopted to ensure stable model convergence and prevent loss of small-object
features. The loss function combines YOLOv8's CIoU Loss, DFL, and Cross-Entropy Loss to enhance small-object
localization accuracy.

3.2 Dataset Selection and Feature Analysis

3.2.1 Overview of the VisDrone dataset
The VisDrone dataset, collected by Tianjin University's Machine Learning and Data Mining Laboratory (AISKYEYE
Team), is a benchmark for small object detection in low-altitude UAV scenarios[10]. It features complex real-world
scenes with challenges like occlusion, multi-scale changes, complex backgrounds, and varying illumination, as shown
in Figure 4. These characteristics make it a key benchmark for assessing and improving small object detection models.
Additionally, its diversity in weather, lighting, and urban-rural backgrounds enables models trained on it to adapt better
to various practical scenarios, thus enhancing their generalization and robustness.

Figure 4 Dataset Scenario Diagram

3.2.2 Categories and sample distribution
The VisDrone dataset comprises 10 common urban-scene object categories, such as pedestrian, car, bus, and bicycle.
These categories, typical in urban environments, are applicable across various scenarios. The dataset exhibits a long-tail
distribution, where some classes have many samples and others few. In VisDrone, common classes like vehicles and
pedestrians have abundant samples, offering rich training data. This helps models learn their features well during
training. But less common classes, such as special devices or specific animals, have few samples, causing the long-tail
distribution. Due to this distribution, VisDrone is great for testing model robustness and generalization. It can
effectively evaluate how well models handle class-imbalance issues.
3.2.3 Challenges
In the VisDrone dataset, objects are typically small, occupying less than 2% of the image on average, which is
challenging for detection. The scenes often include multiple object categories that are densely packed, partially
occluded, and frequently overlapping, further complicating recognition and differentiation. Additionally, the uneven
background in the dataset significantly interferes with local feature perception, demanding greater robustness and
adaptability from models during detection. These characteristics make the VisDrone dataset an ideal platform for
evaluating object detection models.

3.3 Result Evaluation Metrics and Assessment Protocols

The key metrics for this experiment include mAP@0.5, mAP@0.5:0.95, Precision, and Recall. The mAP@0.5
measures average precision at an IoU threshold of 0.5, a critical indicator of object detection performance.
mAP@0.5:0.95 evaluates overall model performance across multiple IoU thresholds. Precision assesses prediction
accuracy, i.e., the proportion of correct predictions among all predicted objects. Recall measures the model's ability to
recall objects, i.e., the proportion of correct predictions among all actual objects. These complementary metrics offer a
comprehensive view of model performance.
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Regarding evaluation protocols, all metrics are computed on the validation set to ensure reproducibility. Experimental
settings are kept consistent, with only the addition of the small-object detection head being compared. This approach
accurately reflects the performance contribution of TFE-Net.

3.4 Quantitative Result Analysis

The following is a quantitative analysis of the experimental results based on the aforementioned experimental setup.

Table 1 Basic Model Performance Table
Class mAP@0.5 Class MAP@0.5

pedestrian 0.408 truck 0.357
people 0.322 tricycle 0.267
bicycle 0.130 awning-tricycle 0.153
car 0.786 bus 0.553
van 0.446 motor 0.436

all-classes 0.386

Table 1 shows the original model's varying performance across categories. Small objects like bicycles and tricycles
have lower average precision, indicating challenges in detecting small targets due to their subtle features and smaller
pixel presence in images. Additionally, the overall recall is low, suggesting frequent missed detections, especially for
small objects. This implies the model's insufficient shallow-feature expression, as it fails to fully capture and utilize
local details of small targets, affecting detection comprehensiveness.

Table 2 TFE-Net Model Performance Table
Class mAP@0.5 Class MAP@0.5

pedestrian 0.451↑ (+4.3%) truck 0.394↑ (+3.7%)
people 0.355↑ (+3.3%) tricycle 0.316↑ (+4.9%)
bicycle 0.158↑ (+2.8%) awning-tricycle 0.168↑ (+1.5%)
car 0.807↑ (+5.1%) bus 0.621↑ (+6.8%)
van 0.469↑ (+2.3%) motor 0.471↑ (+3.5%)

all-classes 0.421 ↑ (+3.5%)

Table 2 shows TFE-Net detection performance across categories, with significant improvements, especially for "hard-to
-detect" objects like pedestrians and bicycles. Compared to the original model, the mAP@0.5 for pedestrian detection
increased from 0.408 to 0.451, and for bicycle detection, it rose from 0.130 to 0.158. Overall, the mAP@0.5 improved
by 3.5%, indicating enhanced accuracy in detecting small and confusing objects. The results demonstrate that TFE-Net
enhances shallow perception paths, enabling better re-expression and re-localization of tiny targets. This constructs
more layered and discriminative feature maps and highlights the model's robustness and reliability in small object
detection.

3.5 Visualization and Phenomenon Attribution

3.5.1 Analysis of small target enhancement effects

Figure 5 Basic Model PR Curve
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Figure 6 TFE-Net Model PR Curve

By comparing the PR curve trajectories in Figures 5 and 6, it can be observed that the latter achieves a Pareto frontier
breakthrough in precision-recall co-optimization, indicating that the improved model has higher precision. For the
pedestrian category, the PR curve is more stable in the high recall rate region, indicating more accurate detection of
pedestrians. The curve for the bicycle category also shows a significant upward shift, indicating a more substantial
enhancement of the model's ability to detect small objects. In terms of specific data, the TFE-Net model shows varying
degrees of improvement in the mAP@0.5 values across all categories. For the pedestrian category, it improves from
0.408 to 0.451, and for the bicycle category, it increases from 0.130 to 0.158. This suggests a significant improvement
in the model's performance when dealing with small and easily confusable objects. Moreover, the overall mAP@0.5
across all categories improves from 0.386 to 0.421, indicating an enhancement in the model's overall detection
performance. Additionally, the regions where the original model suffered from severe missed detections are effectively
captured by the improved model. This demonstrates that the improved model has enhanced its ability to express shallow
features and can better capture the local details of small objects, thereby reducing missed detections. This is also
consistent with the improvement in the PR curve, indicating a significant improvement in the model's ability to detect
small objects in complex scenes.
3.5.2 Attribution analysis of improvement effects
The improved model in this study has achieved remarkable performance gains in small object detection, and the main
reasons can be attributed to the implementation of the following key strategies. Firstly, a specially designed small object
detection head (i.e., a shallow pathway) has been introduced, which effectively compensates for the feature compression
and detail loss of small objects caused by the traditional downsampling process. This detection head directly utilizes
high-resolution feature maps from shallow layers for processing, thereby significantly reducing feature loss and
substantially enhancing the model's ability to represent the features of small objects. Secondly, the feature fusion
structure of the model has been optimized, which significantly improves the cross-scale semantic consistency. The
optimized feature fusion mechanism can more efficiently integrate feature information from different scales, enabling
the model to perform more accurately when detecting objects of varying scales. Finally, high-resolution feature maps
have been made to participate directly in the detection process, which has greatly improved the model's ability to recall
tiny objects. High-resolution feature maps contain richer local detail information, which helps the model to more
accurately locate and identify small objects, thereby effectively reducing the occurrence of missed detections. These
design improvements work together in synergy to collectively drive the significant enhancement of the TFE-Net
model's detection performance in small object detection tasks.

4 CONCLUSION

This paper presents TFE-Net (Tiny-aware Feature Enhancement Network), a lightweight framework for enhancing
shallow perception in YOLOv8s to address performance degradation in small object detection. By integrating shallow
high-resolution feature pathways and local perception paths, TFE-Net significantly improves detection of tiny objects.
Its architecture focuses on minor structural modifications to build a shallow perception framework with high feature
sensitivity and discrimination, offering an optimized, cost-effective solution for small object detection. From a
theoretical perspective, TFE-Net's design emphasizes weak feature reconstruction and diverse feature paths, providing a
new framework for identifying small objects in complex settings. In practical terms, it efficiently enhances YOLOv8's
architecture, ensuring compatibility with mainstream inference frameworks and showcasing strong transferability and
deployability. This makes it suitable for various scenarios like traffic monitoring, UAV security, and industrial defect
detection.
However, TFE-Net has certain limitations. It hasn't optimized loss function reconstruction or dynamic label allocation,
and its local robustness can be further enhanced. It also mainly depends on RGB images and lacks multimodal data
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fusion capabilities. Future research will focus on several key areas. We will integrate infrared, depth, and radar data for
multimodal enhancement to enrich semantic representation. Unsupervised and self-supervised learning methods will be
explored to reduce reliance on labeled data and improve adaptability in data-sparse areas. Architecture optimization via
Neural Architecture Search (NAS) will be conducted to achieve high-performance, low-power detection. We will also
apply end-to-end DETR structures to small object tasks, promoting the shift from "Anchor to Attention." Additionally,
cross-scale dynamic perception and local refinement will be emphasized. By utilizing lightweight convolutional
modules and high-resolution feature pathways, we can enhance shallow features and boost local fine-grained feature
expression for better small object detail capture. Efficient perception path designs, such as incorporating GhostNet and
MobileNet modules along with feature sparsity compression, will continue to be developed. These approaches balance
efficiency and effectiveness by reducing computational complexity while maintaining perception performance. Overall,
small object detection is moving towards multi-layer, cross-scale, non-linear feature reconstruction. This evolution
offers new breakthroughs for micro-perception in complex environments. Feature space density reconstruction and
perception path diversity expansion are becoming crucial in SOD research. These improvements will enhance the
model's robustness, adaptability, and efficiency, unlocking more potential in complex scenarios. We believe TFE-Net
will play a key role in advancing the field of small object detection.
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