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Abstract: This paper addresses the problem of low segmentation accuracy of cracks and joints in complex scenarios
and proposes an improved model, ViR-Deeplabv3+, based on DeepLabv3+. First, the model replaces the traditional
backbone network with the Vision Transformer (ViT) with global perception ability. This enables the model to no
longer be limited to extracting local information when processing image data, but to capture the global context features
of the image more efficiently, thereby enhances subsequent segmentation tasks. Secondly, residual connections between
the ViT and the Hollow Space Pyramid Pooling (ASPP) module are ingeniously introduced. The design concept of
residual connection effectively solves problems such as the gradient vanishing problem, ensuring that the rich feature
information from ViT can be smoothly and unobstructedly transmitted to the ASPP module for further fusion and
mining of multi-scale features. Finally, we conducted model training and ablation experiments based on the self-built
dataset (including crack and seam samples). The results showed that the mean intersection and union ratio (mIoU) of
ViR-Deeplabv3+ reached 75.27%, which was 2.97% higher than that of the baseline model Deeplabv3+. This scheme
provides an effective solution for precisely detecting and segmenting cracks and joints in complex scenarios, and has
important practical application value.
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1 INTRODUCTION

With the acceleration of urbanization and the aging of infrastructure, detecting cracks on the surface of concrete
structures has become an important task to ensure the safety and durability of buildings. Cracks not only affect the load-
bearing capacity of structures but may also cause secondary problems such as leakage and corrosion, posing a serious
threat to public safety. Traditional crack detection methods mainly include visual inspection and manual measurement,
which are simple and low-cost but are greatly influenced by human factors and difficult to monitor continuously [1]. In
addition, manual inspection has limitations such as low efficiency, strong subjectivity, and high cost. In practical
scenarios, the similarity in appearance between cracks and prefabricated joints, complex background interference, and
the scarcity of datasets pose severe challenges to the generalization ability and practicality of models. Therefore,
research on effective detection and segmentation of cracks and joints is crucial for ensuring the safety and reliability of
infrastructure such as bridges, roads, and buildings.
Over the past few decades, crack detection has been continuously carried out and has achieved significant
accomplishments. In the research methods based on object detection for crack detection, Pratibha et al. [2] deployed an
automated process based on a deep learning object detection model, YOLOv5, By capturing and accurately locating
cracks in masonry structures through bounding boxes, the training time of the model is relatively short and can be used
for real-time crack detection; Marin B et al. [3] proposed a new detection method, progressive detection, which adopts
the architecture of Faster R-CNN object detector to provide crack detection in images. From the perspective of
detection, they re examined the binary classification of images with and without cracks, minimizing the crack loss rate
to the greatest extent possible; Wang et al. [4] proposed an improved method based on the SSD algorithm, adjusting the
combination of the number of prior boxes at different resolutions in the original SSD algorithm to achieve high-
precision crack recognition for images with noise. In the research methods based on image segmentation for crack
detection, Lau et al. [5] proposed a U-Net-based network architecture that replaces the encoder with a pre-trained
ResNet-34 neural network and uses a "single cycle" training plan based on cyclic learning rates to accelerate
convergence. Their model achieved higher F1 scores on CFD datasets compared to other models; Attard et al. [6]
demonstrated that Mask R-CNN can be used to localize cracks on concrete surfaces and obtain their corresponding
masks to aid extract other properties that are useful for inspection; Yao et al. [7] added an RFB multi-branch
convolution module to the Deeplabv3+ model [8], replaced the backbone of Deeplabv3+ with Mobilenetv2, and
replaced all ordinary convolutions in the algorithm with depthwise separable convolutions, improving the segmentation
accuracy and detection efficiency of the Deeplabv3+ model for bridge cracks.
Most of these works focus on a single category of cracks and lack joint segmentation and geometric parameter
calculation for cracks and joints. In actual engineering, the joints of precast concrete slabs are highly similar in
morphology to real cracks. However, most current models only perform single-category detection for cracks without
considering the interference of joints, leading to an increase in misjudgment rates. False positives in crack detection,
such as misidentifying construction joints as cracks, waste resources, and delay critical repairs. [9]. Moreover, public
datasets typically only contain crack samples and lack images simultaneously labeled with both cracks and joints, which
limits the models' ability to distinguish between the two. Research shows that when the test set includes joints, the
average mIoU of existing models drops by approximately 12% [10]. Although current research has provided valuable
insights and techniques in the field of crack detection, the models' ability to segment cracks and joints remains to be
improved when dealing with the highly similar morphologies of the two.
To address the aforementioned issues, we propose a ViR-deeplabv3+ model, which integrates Vision Transformer (ViT)
and residual connections to improve the deeplabv3+ model for image segmentation of cracks and joints. The main
contributions of this paper are as follows:



Fang Wang

Volume 3, Issue 3, Pp 33-40, 2025

34

(1) Replace the backbone network Xception of DeepLabv3+ with Vision Transformer (ViT), and utilize its self-
attention mechanism to capture global context dependencies, thereby overcoming the limitations of traditional
convolutional networks in long-distance feature modeling.
(2) Introducing residual connections between the ViT and ASPP modules alleviates the vanishing gradient problem in
deep networks, enhances the multi-scale feature fusion capability, and improves the edge segmentation accuracy of
cracks and joints.
(3) By integrating publicly available data with self-collected data, a concrete structure image dataset containing
annotations of cracks and joints is constructed. The sample size is effectively expanded through data augmentation
techniques to enhance the generalization ability of the model.
(4) The ablation experiments verified the effectiveness of ViT and residual modules. The mIoU of ViR-Deeplabv3+
was significantly improved compared to the baseline model, and it demonstrated stronger robustness under complex
background interference.

2 METHOD

The Deeplabv3+ model is a powerful semantic segmentation framework. Its classic version uses Xception as the
backbone network and combines Atrous Spatial Pyramid Pooling (ASPP) with a decoder structure to achieve multi-
scale feature fusion and fine edge recovery. However, because of the limitations of Xception in extracting global
context dependencies and the potential problems, such as gradient vanishing when training deep networks, this study
proposes the ViT-deeplabv3+ model. By replacing the original Xception with ViT (Vision Transformer) as the
backbone network and introducing a residual connection module between the backbone and ASPP, the feature
transmission efficiency and semantic expression ability are enhanced. The overall structure is shown in Figure 1.

Figure 1 Overall Structure of ViT-deeplabv3+

2.1 ViT Feature Extraction Module

The Vision Transformer (ViT) is an image classification network based on the Transformer architecture, as shown in
Figure 2. It divides the image into fixed-size patches and flattens them to be processed by the Transformer. ViT
employs the self-attention mechanism to capture the global context information of the image, thereby demonstrating
stronger performance than traditional convolutional neural networks (CNNs) in many computer vision tasks.

Figure 2 Network Structure of Vision Transformer

For the input image � ∈ ��×�×�, it is first divided into � = �×�
�2 parts. A � × � small block, each small block through.

Linearly embed the mapping into a high-dimensional space to form the input features:



Joint segmentation model for cracks and joints based on DeepLabv3+

Volume 3, Issue 3, Pp 33-40, 2025

35

z� = E ⋅ Flatten �� + e� (1)

Here, E is the linear embedding matrix, Flatten �� represents the flattening operation of the -th small block, e� is the
position encoding used to retain the spatial position of the small block in the original image, and z� is the feature of the
-th block. In this way, ViT can encode the spatial information of the image into a sequence of inputs for the
Transformer to process.
In ViT, the core computational module is the self-attention mechanism (Self-Attention). The self-attention mechanism
assigns an attention weight to each input by computing the relationships among Query, Key, and Value, thereby
performing a weighted sum of different parts of the input sequence. The calculation formula for self-attention is as
follows:

Attention �, �, � = softmax ���

��
� (2)

Among them, � is the query matrix, � means the key matrix, � indicates the value matrix, and �� denotes the
dimension of the key. Under the multi-head self-attention mechanism, multiple attention heads calculate in parallel and
concatenate the results to provide richer context information.
By stacking multiple Transformer encoder layers, ViT can capture multi-level context information from local to global,
which makes it more flexible and efficient than traditional CNNs in handling global dependencies. After being
processed by multiple self-attention layers, the feature map output by ViT will be used as the input for the subsequent
Deeplabv3+ model.

2.2 Residual Connection

Deep neural networks may encounter problems of vanishing or exploding gradients during training, especially when
there are many layers, which can lead to unstable training. Residual connection is an effective solution. It forms a
shortcut path by directly adding the input to the output, thereby avoiding the problem of vanishing gradients.
Specifically, the mathematical representation of the residual connection is:

y = ℱ x, �� + x (3)

Among this is the input, ℱ x, �� represents the output after a series of operations (such as convolution, activation, etc.),
and y means the final output.
In this study, residual connections are introduced between the ViT backbone network and the ASPP module.
Specifically, the feature maps output by ViT are added to the multi-scale feature maps processed by the ASPP module,
thereby enhancing information flow and alleviating the vanishing gradient problem in deep networks. This process can
be expressed as:

Fout = ASPP FViT + FViT (4)

Among them, FViT is the high-level feature extracted by ViT, and Fout denotes the output processed by ASPP. The final
feature after the residual connection is used as the output of the model.
By introducing residual connections, the network can more efficiently propagate gradients, thereby facilitating the
learning of deeper features. Additionally, residual connections help preserve high-level semantic information, enabling
the network to better retain detailed information during multi-scale feature fusion, and improving edge recovery and
segmentation accuracy.
In summary, we propose an improved Deeplabv3+ model that uses ViT as the backbone network to overcome the
limitations of traditional convolutional networks (such as Xception) in handling global context information.
Additionally, we introduce a residual connection module between ViT and the ASPP module to address the gradient
vanishing problem that may occur during the training of deep networks. Experimental results show that the Deeplabv3+
model with ViT as the backbone network, combined with residual connections, demonstrates better performance in
semantic segmentation tasks.

3 EXPERIMENTAL EVALUATION

3.1 Dataset Construction

In this study, we integrated publicly available crack datasets with our own collected data to construct a specialized
dataset of concrete crack and joint images. This dataset contains 151 high-resolution images, including 118 crack
samples and 33 seam samples. All images were collected from diverse real-world engineering scenarios (as shown in
Figures 3 and 4), covering various environmental conditions and structural types to ensure the representativeness and
generalization ability of the data. In the data preprocessing stage, a standardized process was adopted: first, all original
images were uniformly adjusted to a resolution of 513×513 pixels; then, the labelme annotation tool was used to
conduct meticulous manual annotation on the self-collected data, automatically generating corresponding JSON format
annotation files (as shown in Figure 5); finally, these JSON files were converted into annotation masks suitable for
image segmentation tasks.
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Figure 3 Partial Crack Images

Figure 4 Partial Images of Seams

Figure 5 LabelMe Annotated Seam Image

Besides, to optimize the data quality, we applied Gaussian filtering for noise reduction to all images. For the issue of
insufficient sample size, to effectively expand the dataset, data augmentation techniques were adopted. For crack
images, two random augmentation methods were each applied twice, resulting in 354 augmented samples (118×3). For
seam images, each of the two augmentation methods was applied nine times, ultimately yielding 330 augmented
samples (33×10). (The specific augmentation effects are shown in Figures 6 and 7.) Through this strategy, not only was
the data scale significantly increased, but also the diversity of key features and the consistency of annotations in the
samples were ensured.
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Figure 6 Cracks Image after Preprocessing

Figure 7 Preprocessed Seam Image

3.2 Model Training and Its Analysis

The experimental environment of this paper is RTX 3090 (24GB) GPU, PyTorch 2.0.0, Python 3.10 (Ubuntu 22.04),
and Cuda 12.4. During the experiments, each data domain was divided into a training set and a validation set in an 8:2
ratio. The Adam optimizer was used with an initial learning rate of 0.1, which decreased stepwise as the training epochs
increased. We set the batch size to 16 and use the mean Intersection over Union (mIoU) as the evaluation metric. Both
the proposed ViR-Deeplabv3+ and the comparison method Deeplabv3+ were trained for 100 epochs under the same
experimental settings. The experimental results show that the proposed ViR-Deeplabv3+ achieved the best mIOU on
the test set, as detailed in Table 1.

Table 1 Comparison Results of Different Backbones

Method Backbone Segmentation accuracy (mIoU) (%)

Deeplabv3+ Xception 72.3

ViR-Deeplabv3+ Vision Transformer 75.27
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Figure 8Model Training Loss Results

As shown in Figure 8, after 100 training epochs, the training loss of the deep learning model decreased from the initial
value of 2.8 to 0.4. The convergence curve is smooth without obvious oscillations, indicating that the model has
effectively learned the segmentation features of cracks and joints on the training set. By comparing the performance
differences between the Vision Transformer and Xception backbones (see Table 1), the results show that Vision
Transformer performs better in segmentation tasks: its deep residual structure, through skip connections, it alleviates the
vanishing gradient problem and can accurately capture the slender morphological features of cracks and the regular
edge information of joints. However, although Xception reduces the computational load through depthwise separable
convolution, its ability to capture local details is significantly weakened under complex background interference (such
as concrete surface texture and stains), resulting in limited segmentation accuracy, as shown in Figures 9 and 10.
Experiments have demonstrated that the multi-scale feature fusion mechanism of Vision Transformer is effective in
distinguishing morphologies. Similar cracks and joints play a crucial role.

(a)

(b)



Joint segmentation model for cracks and joints based on DeepLabv3+

Volume 3, Issue 3, Pp 33-40, 2025

39

(c)
Figure 9Model Training Results of Cracks

(a)

(b)

(c)
Figure 10Model Prediction Results of the Joint Seam

3.3 Ablation Experiment

To verify the effectiveness of the proposed method, ablation experiments were conducted, and the specific results are
shown in Table 2. By comparing the results of ViR-Deeplabv3+ (w/o ViT (use Xception)) and ViR-Deeplabv3+, it can
be seen that when ViT is used to replace Xception, the segmentation accuracy (mIoU) increases from 73.3% to 75.27%,
indicating that the introduction of ViT significantly improves the segmentation performance. This may be attributed to
ViT's stronger ability to capture global information and its advantages in handling objects of different scales and
structures. Meanwhile, by comparing the results of ViR-Deeplabv3+ (w/o residual) and ViR-Deeplabv3+, it is found
that after adding the residual module, mIoU increases from 74.3% to 75.27%, suggesting that the residual module also
contributes to improving the segmentation accuracy. It can alleviate the gradient vanishing problem in deep network
training and facilitate cross-layer information transmission, enabling the model to better integrate feature information
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from different levels. In conclusion, both the ViT and residual module in the ViR - ViR-ViR-Deeplabv3+ method
contribute to enhancing the segmentation accuracy. The synergy of these components enables the model to achieve
higher accuracy in semantic segmentation tasks, validating the effectiveness of the proposed method.

Table 2 Average Intersection over Union of Ablation Experiments under Different Networks
Method Segmentation accuracy (mIoU) (%)

ViR-Deeplabv3+(w/o ViT (use Xception) 73.3

ViR-Deeplabv3+(w/o residual) 74.3

ViR-Deeplabv3+ 75.27

4 CONCLUSIONS AND OUTLOOKS

The ViR-Deeplabv3+ model proposed in this paper significantly improves the segmentation accuracy of cracks and
joints through the collaborative optimization of the ViT backbone network and residual connections, solving the
misjudgment problem caused by traditional models' neglect of joint interference. Experiments show that the improved
model achieves an mIoU of 75.27% on the self-built dataset, a performance improvement of 2.97% compared to the
original DeepLabv3+ (with Xception backbone), verifying the effectiveness of the global modeling ability of ViT and
residual connections. Besides, the constructed specialized dataset provides a data foundation for the joint segmentation
research of cracks and joints.
Unfortunately, due to the scarcity of datasets, our dataset only contains images of either seams or cracks, but not both
types simultaneously. In the future, we will further optimize the model's performance and practicality, expand data
diversity, collect more samples of mixed cracks and seams in complex scenarios, and enhance the model's
environmental adaptability. Additionally, we will deploy the model in actual engineering scenarios such as bridges and
roads and conduct long-term stability tests to verify its robustness and generalization ability, promoting the
transformation of intelligent detection technology from theoretical research to engineering application.
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