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Abstract: The integration of big data, machine learning (ML), and artificial intelligence (AI) is driving a transformative
shift in biomedical and ecological sciences. This review examines the pivotal role of predictive analytics across three
interconnected fields: drug discovery, disease surveillance, and mycology. In pharmaceutical research, predictive
models have significantly accelerated the identification of drug candidates, streamlined lead optimization, and enhanced
toxicity prediction ultimately reducing both time and cost. Advanced approaches, including deep learning and graph-
based algorithms, are now standard tools for designing new therapeutics and efficiently screening compound libraries.
While mycology has traditionally been underrepresented in computational research, it is now benefiting from predictive
analytics through improved fungal classification, ecological modeling, and biosurveillance. Progress in image
recognition and genomic trait prediction is opening new frontiers for studying fungal biodiversity and discovering
bioactive compounds. Despite these advances, critical challenges remain, such as data heterogeneity, limited model
interpretability, regulatory hurdles, and ethical concerns. This review identifies these barriers and proposes strategic
solutions, including the integration of multimodal datasets, increased model transparency, and broader accessibility of
analytical tools. By bridging innovations in drug development, public health, and fungal science, this review
underscores the growing synergy between predictive analytics and life sciences offering a pathway to faster drug
development, enhanced disease diagnostics, and more informed ecosystem management.
Keywords: Predictive analytics; Drug discovery; Fungal biodiversity; Machine learning integration

1 INTRODUCTION

Predictive analytics encompassing machine learning (ML), deep learning (DL), graph neural networks (GNNs), and
statistical modeling has become a foundational component of modern biomedical and ecological research. Its capacity
to process and derive insights from large, heterogeneous datasets is revolutionizing drug discovery, disease monitoring,
and the exploration of complex biological systems [1–2]. In drug development, ML algorithms are now integrated
across the pipeline, from virtual screening and target identification to lead optimization and toxicity prediction. Notably,
recent reviews highlight the growing use of GNNs and generative models in molecular design, with several AI-
generated compounds advancing into early-stage clinical trials [3–4]. In parallel, predictive analytics is enhancing
disease surveillance through the deployment of wearable technologies such as smartwatches and ECG patches. These
devices utilize ML-driven algorithms to detect cardiovascular anomalies, monitor vital signs, and predict adverse health
events. Cutting-edge models, including CNN–LSTM hybrids, have demonstrated high accuracy in arrhythmia detection
and heart attack risk prediction [5–6]. The field of mycology, though historically underexplored in computational
biology, is beginning to leverage predictive techniques in meaningful ways. DL models have shown success in
classifying fungal species from colony morphology and microscopic imagery, significantly accelerating identification
timelines by 2–3 days compared to conventional biochemical assays [6]. Furthermore, ML models trained on whole-
genome data have proven effective in predicting fungal ecological traits and lifestyles, supporting biosurveillance and
functional inference via phylogenomic frameworks [7–9].
Collectively, these three domains reflect a shared trajectory: rich, high-dimensional datasets powering ML/DL
approaches to yield actionable insights. But integration across fields is not purely methodological, it flows from
converging challenges and opportunities [10]. Data heterogeneity, for example, is a universal bottleneck: drug discovery
relies on chemical libraries, protein interactions, and QSAR data; disease monitoring employs time-series physiological
signals and demographic information; mycology spans imaging, environmental parameters, and genomic sequences.
These data sources demand preprocessing protocols for normalization, augmentation, and integrity checks, making
cross-pollination of best practices beneficial across sectors [6, 11-12]. Another shared challenge is model interpretability
and regulatory alignment. In drug development, ML-generated candidates require mechanistic validation and FDA
approval. In healthcare, explainability is increasingly essential for ML-based diagnoses and treatment monitoring.
Fungal identification for clinical or ecological endpoints similarly demands transparent models. Emerging efforts in
explainable artificial intelligence (XAI) and hybrid modeling frameworks aim to address these needs facilitating trust
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and enabling human-machine collaboration [13-14]. A major emerging frontier is cross-pollination across domains. For
instance, fungi have historically been rich sources of antibiotics and novel metabolites. Predictive models that
accurately classify fungal species or deduce functional traits can help prioritize promising isolates for novel drug leads
an intersection of mycology and drug discovery. Conversely, methods honed in molecule design or physiological signal
analysis can be adapted for fungal imaging or environmental biosurveillance, illustrating a bidirectional exchange of
ML innovations [15-16].
In the broader context, we’re observing an accelerated convergence among disciplines driven by both technological and
societal factors. Similarly, the global challenge of antimicrobial resistance calls for integrative models that combine
genomic data from pathogens, pharmaceutical intervention strategies, and environmental monitoring systems. This
review aims to holistically assess predictive analytics across drug discovery, disease surveillance, and mycology,
addressing both siloed advancements and synergies. We prioritize literature from 2020 onward to ensure coverage of the
latest breakthroughs, particularly in graph-based deep learning, multi-modal sensor fusion, and AI-assisted biodiversity
research.

2 PREDICTIVE ANALYTICS IN DRUG DISCOVERY

Predictive analytics in drug discovery harnesses machine learning (ML), deep learning (DL), and graph neural networks
(GNNs) to revolutionize each phase of the pharmaceutical pipeline from target identification and virtual screening to
compound optimization and toxicity prediction [6, 17]. This core stages of predictive analytics illustrates in drug
development, including target identification, virtual screening, toxicity prediction, and integrated AI-driven pipelines. It
highlights how machine learning, deep learning, and graph-based models accelerate therapeutic discovery by enhancing
precision, reducing costs, and shortening timelines in pharmaceutical research (Figure 1).

Figure 1AI-Driven Drug Discovery Pipeline: From Target Identification to ADMET Prediction

2.1 Target Identification & Hit Discovery

The identification of high-value drug targets continues to represent a critical bottleneck in pharmaceutical research.
Recent advancements in machine learning (ML) have introduced powerful strategies for overcoming this challenge by
integrating multi-omics, phenotypic, and biomedical graph data. ML-driven knowledge graph techniques now exploit
heterogeneous biomedical networks to predict novel drug targets and repurposing candidates, thereby reducing reliance
on costly and time-consuming experimental assays [18]. Graph Machine Learning (GML) frameworks are especially
well-suited for modeling intricate protein–protein and gene–disease interactions, offering marked improvements in
predictive accuracy compared to conventional approaches. Deep learning (DL) is also playing a transformative role in
accelerating hit discovery. A landmark study published in 2020 demonstrated the successful application of DL
techniques to identify halicin a novel antibiotic with a previously uncharacterized mechanism of action effective against
multidrug-resistant bacteria. This discovery underscores the vast potential of AI in combating antimicrobial resistance
[19–20]. Concurrently, AlphaFold 2 has revolutionized protein structure prediction by achieving near-experimental
accuracy in modeling protein folding. This advancement provides a powerful computational framework for mapping
druggable sites and simulating target–ligand interactions, significantly broadening the range of targets accessible to in
silico drug discovery.
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2.2 Virtual Screening & Compound Optimization

Virtual screening powered by machine learning (ML) models is increasingly employed to predict ligand–target binding
affinities at scale, enabling the efficient prioritization of bioactive compounds from vast chemical libraries. Graph
Neural Networks (GNNs) offer a distinct advantage in this domain by directly encoding molecular geometry and
topological features, consistently outperforming traditional descriptor-based methods in affinity prediction tasks [21].
Beyond predictive scoring, generative models such as Variational Autoencoders (VAEs), Generative Adversarial
Networks (GANs), and Junction Tree VAEs (JT-VAEs) have emerged as powerful tools for de novo molecule design.
JT-VAE frameworks, for instance, can generate novel molecular structures by navigating learned latent spaces,
optimizing both binding affinity and drug-like properties in the process [17,22]. Recent advances have further enhanced
generative capabilities by integrating reinforcement learning (RL) with graph-based generative models. These hybrid
approaches can propose synergistic compound combinations that not only exhibit high efficacy but also minimize
resistance potential. This convergence of reinforcement learning and GNN-based architectures exemplifies cutting-edge
strategies for network-guided molecule generation and optimization [23].

2.3 ADMET & Toxicity Prediction

Early prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) is critical for minimizing
late-stage drug development failures. In Silico approaches, particularly those leveraging multi-task deep neural
networks (DNNs), have shown substantial promise in this area. Notably, the Tox21 Challenge demonstrated the
effectiveness of a multi-task DNN model in predicting multiple toxicity endpoints, achieving cross-validation
accuracies exceeding 86% and outperforming both single-task models and traditional machine learning approaches [23–
24]. Recent advancements have introduced multi-modal frameworks that integrate molecular fingerprints such as
Morgan features with pre-trained SMILES embeddings in multi-task learning architectures. These models provide
interpretable predictions across in vitro, in vivo, and clinical toxicity endpoints, successfully recovering known
toxicophores and offering a potential alternative to animal-based testing. Equivariant Graph Neural Networks (GNNs),
which inherently account for molecular symmetry and three-dimensional structure, have further improved the prediction
of drug-induced liver injury (DILI). By encoding 3D molecular configurations, these models have demonstrated
encouraging early results and represent a promising direction for structure-aware toxicity prediction [24].

2.4 Integrating Predictive Pipelines

The transformative potential of predictive analytics is most evident in fully integrated drug discovery pipelines that span
hit identification, lead optimization, and ADMET filtering. Companies such as Insilico Medicine have reported the
development of clinical-stage drug candidates discovered entirely through artificial intelligence (AI) within a timeframe
of less than 50 days achieved by combining generative chemistry models within silico ADMET screening [25].
Similarly, major pharmaceutical players like GlaxoSmithKline (GSK) and Exscientia are leveraging AI-driven
platforms to design candidate molecules, evaluate them using Graph Neural Networks (GNNs), and simulate
pharmacokinetic and toxicity profiles significantly lowering both development costs and timelines [6,17,25].
Collectively, these advancements reflect a broader transition in drug development: predictive analytics is evolving from
a supplementary exploratory tool into a foundational technology. The convergence of deep generative modeling, graph-
based learning, and multi-modal toxicity prediction is ushering in a new era of end-to-end AI-powered discovery
pipelines. However, realizing the full potential of this paradigm will depend on ongoing progress in areas such as data
standardization, model interpretability, and the development of tailored solutions for specific therapeutic domains.

3 DISEASE SURVEILLANCE AND MONITORING

Predictive analytics has rapidly transformed disease surveillance and monitoring, combining machine learning (ML),
wearable devices, and big data to enable early detection, risk stratification, and real-time public health interventions.
This section discusses three interrelated applications: (1) cardiovascular health monitoring via wearables, (2)
antimicrobial resistance (AMR) surveillance, and (3) epidemic forecasting, highlighting strengths, limitations, and
future directions [17-22].

3.1 Real-Time Cardiovascular Health Monitoring

Real-time cardiovascular health monitoring leverages wearable sensors and digital technologies to continuously track
key physiological parameters such as heart rate, blood pressure, electrocardiogram (ECG) signals, oxygen saturation,
and physical activity. These systems enable the early detection of abnormalities including arrhythmia, hypertension, and
cardiac arrest thereby facilitating timely medical intervention. Data collected by these devices is typically transmitted
via cloud-based platforms, allowing healthcare providers to remotely manage patients and deliver personalized care [17,
22, 24].
The integration of artificial intelligence further augments these systems, enabling advanced predictive analytics to
identify emerging trends and risk factors. This data-driven approach is transforming cardiovascular care by enhancing
patient outcomes, reducing hospital admissions, and supporting preventive strategies for chronic heart conditions.
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Wearable health devices such as smartwatches, ECG patches, and fitness trackers have revolutionized cardiovascular
disease (CVD) monitoring. These devices continuously capture a range of physiological signals, including heart rate
variability, accelerometry data, and skin temperature. Machine learning (ML) algorithms analyze this data in real time
to detect anomalies and predict adverse cardiac events [21, 24]. Overall, wearable-driven cardiovascular analytics
represent a rapidly advancing field that has already demonstrated significant potential. However, transitioning from
promising prototypes to clinically validated, scalable solutions will require robust clinical trial designs, regulatory
alignment, and seamless integration into existing healthcare infrastructures.

3.2 Surveillance of Antimicrobial Resistance

Preventing future epidemics will require the development of interoperable infrastructures that seamlessly integrate data
from wearable devices, electronic health records, and public health indicators within robust predictive analytics
frameworks. Such integration is essential for real-time surveillance, early warning systems, and informed public health
interventions. A critical component of epidemic preparedness is the surveillance of Antimicrobial Resistance (AMR) the
systematic collection, analysis, and dissemination of data on resistance patterns among microbial populations [5,21].
AMR surveillance plays a vital role in safeguarding public health by detecting emerging resistance trends, informing
clinical decision-making, guiding antibiotic stewardship, and shaping evidence-based policy interventions. Surveillance
efforts span clinical, agricultural, and environmental domains, employing a combination of culture-based techniques,
molecular diagnostics, and whole-genome sequencing to monitor resistance dynamics. Global initiatives, such as the
World Health Organization’s Global Antimicrobial Resistance Surveillance System (GLASS), aim to standardize data
collection and reporting methodologies across countries. These coordinated efforts enable early identification of
resistance threats and support an integrated, international response to the growing AMR crisis [5,25].

4 INTEGRATION OF PREDICTIVE ANALYTICS IN MYCOLOGY

Predictive analytics is increasingly being applied in mycology both for basic research in fungal biodiversity and
practical applications in diagnostics and biosurveillance. Whereas traditional mycological identification relies heavily
on expert-led morphological examination and laboratory assays, machine learning (ML) and deep learning (DL)
techniques are reshaping the field by automating classification, reducing diagnostic time, and enabling ecological
predictions [3-4].

4.1 Microscopic & Clinical Diagnostics

Microscopic and Clinical Diagnostics are two essential approaches in identifying and managing diseases. Microscopic
diagnostics involve the examination of biological samples (e.g., blood, tissue, or fluid) under a microscope to detect
pathogens, cellular abnormalities, or tissue damage [26-27]. Techniques include light microscopy, fluorescence
microscopy, and electron microscopy, commonly used in microbiology, histopathology, and parasitology. Clinical
diagnostics encompass broader methods such as physical examinations, biochemical tests, imaging, and molecular
assays to evaluate symptoms and diagnose diseases. These tests provide critical information on a patient’s health status,
guiding treatment decisions. Together, these diagnostic tools ensure accurate disease detection and effective healthcare
management [25, 28].

4.2 Genomic Prediction of Ecological Traits

High-throughput fungal genomics has matured to the point where ML models can predict Genomic prediction of
ecological traits involves using genomic data to forecast phenotypic characteristics that influence an organism's
interaction with its environment. This approach leverages statistical models and machine learning algorithms to link
DNA sequence variation with traits such as drought tolerance, growth rate, nutrient use efficiency, or disease resistance.
By incorporating high-throughput genotyping and ecological metadata, researchers can predict how individuals or
populations may perform under varying environmental conditions [29-30]. This method enhances conservation
strategies, ecosystem management, and crop improvement by enabling selection based on genetic potential rather than
observed performance alone, thus accelerating adaptation to climate change and habitat shifts.

4.3 Emerging Integrations & Hybrid Models

Advancements in time-lapse imaging, micromorphological analysis, genomics, and environmental monitoring are
converging to enable holistic, multimodal fungal identification systems. Hybrid image–genomic models that integrate
early-stage growth patterns with genomic markers are being developed to classify fungal pathogens and ecotypes with
high accuracy. Additionally, knowledge graph–based AI frameworks are emerging that unify real-time identification,
ecological distribution data, and genomic threat profiles offering powerful tools for on-site biosurveillance in
agriculture, forestry, and ecosystem management. These developments reflect a broader paradigm shift in predictive
analytics, moving beyond siloed image- or genome-based approaches toward more integrated, interpretable, and
actionable fungal intelligence [3–4,16]. The application of predictive analytics in mycology is expanding rapidly from
high-precision, image-based species classification and clinical diagnostics to genomics-driven ecological trait modeling.



Md Majedur Rahman, et al.

Volume 4, Issue 2, Pp 28-35, 2022

32

Despite this progress, the field continues to face challenges related to data quality, cross-domain generalizability, and
model interpretability. Addressing these issues through hybrid models, real-world validation, and standardized protocols
will be key to realizing the full potential of AI in mycology. Such advancements promise near-instantaneous fungal
identification, large-scale ecological surveillance, and expedited clinical decision-making [16,26–27]. Within the
broader context of this review, the evolution of predictive analytics in mycology not only complements innovations in
drug discovery and disease monitoring but also holds immense promise for accelerating the discovery of novel fungal
bioactive compounds—potentially paving the way for new classes of therapeutics.

5 CHALLENGES AND LIMITATIONS

Even as predictive analytics revolutionize drug discovery, disease monitoring, and mycology, each domain grapples
with common and domain-specific barriers. Addressing these is essential for validated, scalable, and ethical application
of ML and AI [13].

5.1 Data Quality, Availability & Heterogeneity

Across all domains, data heterogeneity and limited datasets pose first-order challenges:
Drug Discovery: Public datasets often suffer from incomplete annotations, batch effects, and skewed target/drug
representation (e.g., overemphasis on cancer targets). A recent critical review noted that poor-quality data and non-
standardized pipelines are primary barriers to AI adoption in pharmaceutical R&D [11, 17].
Mycology: Image repositories are limited in taxa coverage, environmental settings, and life stages; genomic and trait
datasets suffer sampling bias toward human pathogens or model fungi, limiting generalizable pattern detection [31-33].

5.2 Model Interpretability and Trust

High-performing but opaque models’ risk being “black boxes” that hinder clinical, regulatory, and ecological adoption:
In drug discovery, the inability to explain why a model predicts toxicity or efficacy impedes validation and regulatory
trust. Explainable AI (XAI) surveys highlight emergent techniques like attention, gradient maps, and rule extraction but
widespread adoption lags.
In healthcare, opaque models raise liability and bias concerns. Advocates emphasize interpretable frameworks like
SHAP, counterfactuals, and ensemble transparency to build confidence.
In mycology, end-users (e.g., ecologists, clinicians) expect transparent species classifications or trait predictions;
models using prototype layer attribution or visual saliency are increasingly recommended to gain trust and
reproducibility [29].

5.3 Model Robustness, Validation & Generalizability

Models must prove resilient to real-world variability and attacks:
Adversarial threats: Studies in medicine reveal that small image perturbations or sensor spoofing could misclassify
conditions, compromising patient safety.
Domain shift: Models trained in controlled settings often fail under real-world noise, varying lighting, or multi-ethnic
data-across drug assays, wearable sensors, and fungal imagery.
Prospective validation: Few ML models undergo longitudinal or prospective validation. Healthcare and mycology
models usually report retrospective AUCs without deployment or real-world testing.
Federated evaluation, challenge datasets, and standard benchmarks are needed. Regulations should evolve to encourage
field pilots before commercial use. While technological advances in predictive analytics are impressive, real-world
impact depends on thoughtful attention to data quality, transparency, robustness, equity, and deployment pathways [25].
Overcoming these challenges calls for multidisciplinary effort, aligned governance, and sustained funding. Doing so
will unlock trustworthy, scalable AI across drug discovery, health monitoring, and mycology and ultimately secure the
societal benefits of these domains.

6 FUTURE DIRECTIONS AND CONCLUSION

Predictive analytics is charting a new era in drug discovery, disease monitoring, and mycology. As the field matures, the
next generation of advances will likely focus on integration by building end-to-end, multimodal pipelines and on
frameworks that prioritize trustworthiness, scalability, and real-world impact. Below, I outline key future directions
before summarizing the review’s insights [18, 28]. The four pillars present guiding the future of predictive analytics in
mycology and healthcare: integrated multimodal pipelines, explainable AI, equitable access, and strategic policy. It
emphasizes real-world impact by aligning data fusion, federated learning, and global collaboration with regulatory and
ethical standards to drive trustworthy, inclusive innovation (Figure 2).
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Figure 2 Building the Bio-Intelligence Ecosystem: Strategies for Scalable, Ethical, and Integrated AI Applications

6.1 Toward Integrated, Multimodal Pipelines

The convergence of traditionally siloed research pipelines is reshaping the landscape of biomedical and ecological
sciences. In drug discovery, formerly isolated processes such as binding affinity prediction, ADMET profiling, and
target validation are now being integrated into unified, AI-driven platforms capable of generating viable therapeutic
candidates within days or weeks. A similar trend is emerging in disease monitoring and mycology. For example,
wearable ECG devices can initiate cloud-based diagnostic workflows, while macrofungal image recognition systems are
increasingly being linked to genomic analysis platforms and biosurveillance networks [12,18,28]. Despite these
advances, such convergence introduces new challenges. The fusion of multimodal data including chemical, genomic,
physiological, and environmental inputs require the adoption of standardized ontologies and interoperable data formats.
Federated and transfer learning approaches offer promising solutions for overcoming institutional data silos while
preserving data privacy and regulatory compliance. Moreover, embedding Explainable AI (XAI) across these pipelines
is critical for enhancing model transparency, enabling rigorous validation, and fostering trust among clinicians,
researchers, and policy stakeholders. Ultimately, these integrated systems represent a transformative shift in predictive
analytics, offering the potential to accelerate discovery and intervention across both healthcare and ecological domains
[12,15–16].

6.2 Explainable, Trustworthy, and Ethical AI

Ensuring transparency and trust in artificial intelligence (AI) systems is critical, particularly in high-stakes domains
such as healthcare, biosurveillance, and ecological modeling. Hybrid modeling approaches that combine physical
simulations with machine learning (ML) offer both predictive accuracy and interpretability, providing mechanistic
insights for instance, in modeling drug toxicity or fungal trait expression. To demystify black-box algorithms and build
stakeholder confidence, techniques such as prototype learning, attention heatmaps, and Grad-CAM visualizations must
become standard components of AI toolkits used by clinicians, researchers, and regulators alike [14–16]. Reliability in
AI applications demands rigorous evaluation. Tools deployed in critical settings such as Software as a Medical Device
(SaMD), biosurveillance alert systems, or AI-based crop diagnostics should be validated through prospective clinical or
field trials rather than relying solely on retrospective datasets. Moreover, alignment with international regulatory
frameworks, including the FDA’s guidelines and the European Union’s AI Act, is essential to ensure safety,
accountability, and ethical compliance [14].
Equity and accessibility also remain central concerns. Democratizing AI tools and datasets can bridge gaps in scientific
research and healthcare delivery. Open-science initiatives such as the NIH’s model-sharing platforms and global
pathogen databases offer promising foundations for transparent and inclusive innovation. Expanding these frameworks
to include fungal data repositories and multilingual health applications will further enhance global research capacity.
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Emerging technologies like edge computing and federated learning enable the deployment of AI models on wearable
devices and mobile diagnostic platforms, facilitating real-time insights in remote or underserved settings. These
advances hold particular promise for delivering life-saving interventions and enhancing global health equity [19,23].

7 CONCLUSION

The transformative potential of predictive analytics is increasingly evident across three pivotal domains: drug discovery,
disease monitoring, and mycology. From the accelerated design of novel therapeutics via AI-driven molecular
generators to real-time cardiovascular monitoring enabled by wearable devices, predictive modeling is revolutionizing
biomedical innovation and diagnostic accuracy. In parallel, machine learning tools reshape fungal taxonomy and
ecological analysis, while genomic models are uncovering previously unrecognized traits and bioactive potential within
macrofungal species. Despite the distinct contexts, these fields converge around shared computational challenges
including data quality, model interpretability, generalizability, and the ethical implications of AI deployment. This
review has highlighted the growing intersection of big data and artificial intelligence in shaping the future of healthcare,
pharmaceutical development, and fungal biosciences. Looking forward, the next frontier lies in building integrated,
multimodal pipelines that synthesize biological, chemical, genomic, and environmental data to support real-world
decision-making. Ensuring that AI systems are trustworthy, explainable, and ethically governed will be critical to their
adoption in clinical, ecological, and regulatory settings. Key enablers of this transition will include investment in
diverse, high-quality open datasets; development of federated learning frameworks to protect data privacy; and
interdisciplinary training to prepare a new generation of scientists and practitioners. Cross-domain synergies such as
applying fungal AI models to drug discovery or ecosystem biosurveillance represent promising avenues for both
therapeutic breakthroughs and environmental resilience. As predictive analytics continue to evolve, its responsible
integration across these interconnected domains offers a powerful pathway to address some of the most urgent health
and ecological challenges of our time.
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