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Abstract: In highly complex and dynamically changing decision-making environments, constructing predictive models
with strong generalization capabilities, robustness, and high interpretability based on large-scale heterogeneous data has
become an important research topic in the field of intelligent modeling. Targeting the deficiencies of traditional models
in modeling nonlinear relationships, capturing high-dimensional feature interactions, and outputting consistent results,
this paper proposes an end-to-end advanced predictive modeling framework. This framework integrates hierarchical
model stacking ensemble and adaptive hyperparameter optimization techniques, enhancing predictive accuracy through
knowledge collaboration among models and effectively suppressing overfitting risks. In model result evaluation,
multiple metrics such as ROC-AUC, KS index, Precision, Recall, and F1-Score are comprehensively introduced to
ensure the robust performance of the model under complex and uncertain conditions. Meanwhile, through Permutation
Importance, Partial Dependence Plot (PDP), and the SHAP interpretability framework, transparent explanations at both
the global and local levels of the model are realized, effectively revealing the nonlinear driving effects and interaction
mechanisms of high-impact features. To address the consistency and comparability of predictive results in
cross-scenario decision-making, this paper further constructs a standardized score mapping mechanism based on
log-odds transformation, mapping model outputs to a continuous and interpretable score range, enhancing the intuitive
interpretability and system adaptability of model results. Comparative experimental results verify the comprehensive
advantages of the proposed framework in terms of predictive accuracy, interpretability, and output standardization,
providing a complete and scalable technical paradigm for intelligent decision-making in complex systems.

Keywords: Hierarchical model integration; Adaptive hyperparameter optimization; Standardized score mapping; SHAP
interpretability framework; Robust prediction

1 INTRODUCTION

In the current highly complex and dynamically changing decision-making environment, how to effectively utilize
large-scale data resources for scientific prediction has become a key issue that urgently needs to be solved in the fields
of data science[l] and intelligent decision-making[2]. With the continuous increase in data dimensionality and
complexity, models not only need to have strong predictive power but also must be able to provide clear and credible
explanations to support robust decision-making in various high-risk and highly constrained scenarios[3].

Real-world data often exhibits complex characteristics such as multidimensionality, structural heterogeneity, and
significant noise pollution. Specifically, in high-dimensional data spaces, there are often a large number of redundant
features and multicollinearity issues; data distributions may exhibit heterogenecous characteristics such as non-balance
and multimodality; and noise interference caused by measurement errors, outliers, and random disturbances is
ubiquitous. This data complexity poses three core challenges for traditional single-predictive modeling methods: in
terms of feature representation, linear models or simple nonlinear models find it difficult to fully capture the complex
nonlinear relationships and potential interaction effects among high-dimensional features; in terms of model
generalization, the inherent inductive bias of a single model structure is prone to estimation bias, which in turn leads to
distorted prediction results and decision-making risks; and in terms of dynamic adaptability, traditional models often
lack robust mechanisms to deal with data distribution drift and extreme events, and model performance may
significantly degrade when the application environment changes. These limitations can have serious consequences in
high-risk decision-making scenarios such as financial risk control and medical diagnosis.

In response to the above issues, this study proposes an advanced predictive system that integrates multi-model
ensemble[4] and probabilistic score mapping. By introducing the Stacking ensemble strategy[5], the advantages of both
linear models and nonlinear tree models are combined to achieve hierarchical modeling of complex relationships.
Coupled with automated hyperparameter optimization techniques, the predictive accuracy and generalization ability of
the model have been significantly improved.

In terms of model interpretability, the system systematically introduces Permutation Importance, Partial Dependence
Plot (PDP), and the SHAP value interpretation framework[6], deeply analyzing the model decision-making process
from both global and local perspectives, effectively enhancing model transparency and result credibility. Meanwhile, by
constructing a score mapping mechanism based on probabilistic outputs, the model prediction results are transformed
into a standardized continuous score range, significantly improving the intuitiveness and cross-scenario adaptability of
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the model results. This mechanism provides a reliable data foundation and scientific basis for risk stratification, policy
adjustment, and refined decision-making in complex systems.

This study makes three key contributions to predictive modeling in complex decision-making environments: (1) We
develop an integrated framework combining hierarchical model stacking with adaptive hyperparameter optimization,
significantly improving predictive accuracy (14.8% KS index increase) while maintaining model simplicity; (2) We
establish a systematic interpretability framework through Permutation Importance, PDP, and SHAP analysis, enabling
transparent model decisions at both global and local levels; (3) We innovate a standardized score mapping mechanism
based on log-odds transformation, ensuring consistent and interpretable model outputs across different application
scenarios. These methodological advancements address critical gaps in handling nonlinear relationships, model
transparency, and cross-scenario deployment, providing a comprehensive solution for robust decision-making in
dynamic environments.

2 RELATED WORK

Limitations of Traditional Models: Traditional linear models have inherent theoretical limitations, as their strict linear
assumptions fail to accommodate the complex characteristics of real-world data. These models enforce linear
relationships among variables, which are insufficient to capture the nonlinear dynamic features that are commonly
present in practical applications. When the dimensionality of features is high, the parameter space of the model expands
dramatically, easily leading to the curse of dimensionality. This results in unstable parameter estimation and a
significant decline in predictive performance. More critically, the structural rigidity of linear models makes them
ill-suited to dynamic environments. They exhibit poor robustness when confronted with data distribution shifts or
anomalous disturbances.The challenges of modeling in high-dimensional feature spaces are particularly prominent in
real-world applications. As the dimensionality of features increases, linear models not only face the problem of
increased estimation variance due to insufficient samples but also suffer from severe parameter bias caused by complex
correlations among features. In the context of high-dimensional financial data analysis, the dimensionality sensitivity of
linear models is especially evident. For example, in quantitative investment, when dealing with hundreds of market
factors, the model encounters a dual challenge: multicollinearity leads to biased parameter estimation (such as the
strong correlation between value and dividend yield factors), and overfitting occurs with limited samples (5-10 years of
daily frequency data).Insufficient generalization ability in dynamic environments is another significant drawback of
linear models. Due to their static parameter structure, these models cannot adaptively adjust to evolving data
distributions over time. In scenarios such as financial time-series forecasting, the prediction errors of linear models tend
to increase continuously over time. Moreover, the model's sensitivity to outliers and noise significantly affects its
reliability in complex environments. These limitations render traditional linear methods incapable of meeting the
stringent requirements for model adaptability and robustness in modern intelligent systems.

Advantages of Ensemble Learning Methods:Random forests and gradient boosting trees enhance model robustness and
predictive accuracy by integrating multiple weak learners and introducing diversity among sub-models. Zhang et al.
(2025) innovatively applied the random forest algorithm to predict energy consumption for rural residential building
envelope retrofits in Jia County, China. The ensemble learning effectively captured the nonlinear relationships between
building parameters and energy consumption, and combined quantile regression to quantify prediction uncertainty. This
study validated the advantages of random forests in handling heterogencous building data, providing a reliable
decision-making tool for rural building energy retrofits[7]. Johnston et al. combined gradient boosting trees with focal
loss functions to significantly improve the accuracy and calibration of clinical risk prediction. The method leveraged the
nonlinear modeling capability of GBDT and the focal loss's handling of sample imbalance, offering a more reliable risk
quantification tool for medical decision-making[8]. René et al. developed a personalized contrast agent dosage
prediction model by integrating random forests and gradient boosting trees. The random forest provided feature
interpretability while the gradient boosting tree ensured predictive accuracy, offering support for precision
medicine[9].Ensemble learning, through model weighting and integration optimization strategies, can effectively reduce
overfitting risks and improve generalization capabilities on unseen data while maintaining model complexity. Sun et al.
proposed an end-to-end jointly optimized deep learning framework that effectively addressed overfitting in lithium
battery state of health (SOH) prediction. The framework, through synchronized training and optimization combined
with adaptive regularization and ensemble strategies, significantly enhanced the model's generalization capability under
noisy data and small sample conditions, providing a more reliable prediction method for battery
management[10].Decision tree-based ensemble models can naturally handle nonlinear relationships and feature
interactions, making them particularly suitable for high-dimensional heterogeneous data analysis in complex
decision-making scenarios. Xin et al. constructed an epilepsy seizure prediction model based on the nonlinear features
of electroencephalogram (EEG) signals using gradient boosting decision trees (GBDT). The study leveraged the strong
nonlinear modeling capability of decision tree algorithms to effectively capture the complex nonlinear dynamics in EEG
signals, achieving high-precision epilepsy seizure prediction and offering a new technical solution for clinical early
warning systems. Compared to traditional linear methods, GBDT significantly enhanced the model's ability to recognize
complex patterns in EEG signals through the integration of multiple decision trees while maintaining good
interpretability[11].

Advances in Model Interpretability Research: Permutation Importance, as a model interpretation method based on
feature perturbation, quantifies the global importance of input features by systematically shuffling the values of
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individual features and assessing the resulting decline in model performance. The core principle is that if shuffling a
particular feature significantly reduces model prediction accuracy, it indicates that the feature plays a crucial role in the
decision-making process. Compared to traditional feature importance assessment methods, Permutation Importance is
model-agnostic and can be widely applied to various machine learning models. By introducing random perturbations, it
effectively avoids biases caused by feature correlations. Its intuitive quantification provides an interpretable basis for
model decision-making. In practice, this method not only identifies the most influential key features for prediction
results but also reveals interactions among features, offering scientific guidance for optimizing feature engineering and
enhancing model performance while increasing the transparency and credibility of black-box models.PDP (Partial
Dependence Plot), as an intuitive and effective model interpretation tool, systematically presents the marginal impact of
changes in a single feature on model predictions using the control variable method. The core idea is to systematically
vary the values of the target feature while keeping other feature values constant, and record the corresponding changes
in model output, thereby revealing the underlying relationship between features and prediction results. Compared to
traditional correlation analysis methods, PDP captures complex nonlinear relationships between features and target
variables, breaking through the limitations of linear assumptions. It is applicable to any predictive model, including
complex ensemble learning algorithms such as random forests and gradient boosting trees. Its visual results are easy to
understand, even for non-technical personnel. In practice, PDP not only helps data scientists deeply understand model
decision-making mechanisms but also provides important references for business decisions, especially in scenarios
requiring analysis of feature marginal effects, such as key indicator analysis in medical diagnosis and threshold
determination in financial risk control, where it demonstrates unique value.SHAP (SHapley Additive exPlanations) is a
model interpretation framework based on the Shapley value theory from cooperative game theory. It quantifies the
marginal contributions of each feature to model prediction results, achieving interpretability analysis for machine
learning models. The method treats each feature as a player in a game and calculates its average marginal contribution
across all possible feature combinations to precisely assess its impact on individual prediction results. Compared to
traditional feature importance assessment methods, SHAP satisfies both local accuracy and global consistency
principles, capable of explaining individual sample predictions as well as reflecting overall feature importance. It
establishes an additive relationship between predicted values and feature contributions, grounding the interpretation
results in rigorous mathematical theory. The output feature contribution values have clear directionality (positive or
negative impact) and magnitude, facilitating a deep understanding of model decision-making mechanisms. By
transforming complex model predictions into interpretable contribution decompositions, SHAP effectively bridges the
gap between model performance and interpretability in machine learning, significantly enhancing the credibility and
transparency of Al systems in critical decision-making scenarios. Additionally, the SHAP framework can be combined
with various visualization techniques (such as force plots and dependence plots) to offer multi-perspective model
interpretation solutions for users at different levels. Garitta and Grassi innovatively applied SHAP value analysis in
their research on break-even prediction for FinTech startups. By quantifying the marginal contributions of various
financial features to prediction results, they not only enhanced model interpretability but also revealed the key drivers
affecting startup profitability. The study confirmed that the SHAP method can effectively identify core features of
high-growth potential enterprises, providing a transparent analytical tool for investment decisions[12].

Limitations of Existing Research: Model Optimization Singularization: Current research primarily focuses on parameter
tuning and algorithmic improvements of individual predictive models, lacking strategies for multi-model collaborative
optimization targeting complex systems. This singular optimization approach struggles to meet the robustness and
adaptability requirements in engineering practice, especially when dealing with non-stationary data and high-noise
scenarios.Lack of Systematic Interpretability Framework: Although model interpretation techniques are continuously
evolving, existing research mostly centers on isolated applications of single interpretation methods, failing to establish
an interpretability validation framework covering the entire model development process. This fragmented interpretation
approach makes it difficult to comprehensively assess the reliability and interpretability of model decisions, limiting the
application of models in critical decision-making scenarios.Lack of Standardized and Consistent Result Output: Most
research models lack a standardized output transformation mechanism, resulting in prediction results that are difficult to
apply across different scenarios in a standardized manner. This absence of standardization not only affects the uniform
setting of decision thresholds but also restricts the model's deployment capabilities across various engineering contexts.

3 METHODOLOGY

To address the challenges posed by large-scale heterogencous data in complex decision-making environments, this
study designs an end-to-end advanced predictive modeling framework. By closely integrating model ensembling,
automated optimization, comprehensive evaluation, and interpretability analysis, this framework achieves
comprehensive improvements in predictive accuracy, model robustness, and result interpretability.

3.1 Unified Model Integration and Optimization Framework

The core idea of this experiment is to construct model ensembles to enhance generalization capabilities while improving
performance boundaries through hyperparameter optimization.

The modeling process is based on the Stacking ensemble strategy, integrating various types of base learners within a
unified framework, including linear models (Logistic Regression) and nonlinear models (Random Forest and
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HistGradientBoosting).

Base learners capture different patterns and feature associations in the data, forming strong complementarity and
providing a more expressive feature space for the final meta-learner (HistGradientBoosting).

For the k-th base learner /£, its prediction output is:

= () {1..} (1)

where X is the input feature, and K is the number of base learners (such as Logistic Regression, Random Forest, etc.).
The prediction results of the base learners are concatenated into a meta-feature matrix Z:

:[ 1y 2y ] (2)

The meta-learner g (such as HistGradientBoosting) makes the final prediction based on Z:
= () )

Meanwhile, through automated hyperparameter optimization (RandomizedSearchCV), key parameters (such as
maximum depth, learning rate, etc.) are dynamically adjusted during model training to ensure the model's optimal
performance in complex data environments.

When optimizing the target in random search, hyperparameter optimization minimizes the loss function (such as
cross-entropy):

=argmin ( () ) 4)

where ® is the parameter space (such as maximum depth, learning rate, etc.), and RandomizedSearchCV is used to
sample and optimize in the subspace.

If HistGradientBoosting is selected as the meta-learner, its gradient boosting process is as follows:

In the #-th iteration, the weak learner s fitted using the gradient ~ and Hessian

=—— = 5)

The model is updatedas = 1+ (), where # is the learning rate.
3.2Comprehensive Performance Evaluation and Model Robustness Validation

This section evaluates the model through a multi-dimensional assessment framework, systematically examining the
model's comprehensive performance. Based on discriminative ability analysis using ROC-AUC, stability validation
using the KS index, and balance assessment between precision and recall, a complete performance verification
framework is established. This evaluation method not only focuses on the model's predictive accuracy but also
emphasizes its robustness and adaptability in complex application scenarios, providing a scientific basis for subsequent
model optimization and practical application. Experimental results show that this comprehensive evaluation strategy
can effectively identify the model's performance under different data distributions, ensuring its reliability in real
business scenarios.

Performance evaluation not only focuses on overall predictive ability (ROC-AUC) but also examines the model's
discriminative stability (KS index) and classification balance (Precision, Recall, and F1-Score).

The formula for the overall predictive ability (ROC-AUC) is as follows:

1

C ) (6)

0
where TPR (True Positive Rate) and FPR (False Positive Rate) are defined as:

e — (7
e — ®)

The KS index (Kolmogorov-Smirnov discriminative stability) is defined as:
=sup | 1()— o()I 9

Where 1( ) and (( ) represent the cumulative distribution functions of the predicted scores for positive and
negative samples, respectively.
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The classification balance metrics include precision (Precision):

=— (10)
Recall is calculated as:
=— an
The harmonic mean of precision and recall, known as the F1-Score, is calculated as:
1=2 (12)

-+

Through cross-validation and stratified sampling strategies, the impact of data distribution on model performance is
rigorously controlled, effectively enhancing the model's robustness in real complex scenarios.
For K-fold cross-validation, the expected error of the model performance metric ¢ estimated by cross-validation error is:

[ ]=— (13)

where represents the evaluation metric value of the &-th fold (such as F1-Score, etc.).
In stratified sampling, if the proportion of class ¢ in the original datais , then in each fold sampling, it maintains:

|—'|| =, 1, 1 (14)
Where  represents the set of samples of class  in the -th fold.
The Classification Report further refines the prediction performance of each class, assisting in model threshold
adjustment and optimization strategy design. The core metrics are as follows.
For each class (assuming a binary classification scenario):

T — (1s)
= (16)
1 =2 ” (17)
= + (18)
Where represents the number of samples in the true class c.
Additionally, the macro-average is represented as follows:
1
T (19)
1
1 (20)
The weighted average is represented as follows:
= , = —I I (2 1)

3.3 Interpretability Analysis and Key Factor Identification
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In this phase, a three-stage progressive analysis method is adopted to enhance model transparency: First, key features
are screened using Permutation Importance to establish a quantitative evaluation standard; then, the marginal effects of
features are analyzed using PDP to reveal the nonlinear relationships between variables and predictions; finally, SHAP
values are combined to achieve global and local interpretations. This method can significantly enhance model
credibility and ensure the transparency and reliability of prediction results when applied in the financial field.

After the model is constructed, Permutation Importance is used to quickly identify model-sensitive features, providing a
direct basis for optimizing feature engineering and reducing redundancy.

In Permutation Importance, the importance calculation for feature is as follows:

= - (22)
where S is the model's evaluation score on the original data (such as AUC), and is the model's score after the
values of feature ~ have been randomly shuffled. When shuffling is repeated R times and the average is taken,

1
== (-9 ) (23)

The specific evaluation metrics depend on the task at hand. For classification tasks, common evaluation metrics include
AUC-ROC and accuracy. The accuracy metric is measured as follows:

+
T+ o+ (24)
1
== (- ) (25)

For regression tasks, the Mean Squared Error (MSE) is commonly used:
Further analysis of the marginal effects of important variables is conducted using Partial Dependence Plots (PDP) to
reveal the nonlinear impact trends of feature changes on model predictions.

The PDP requires the calculation of marginal effects. For feature (the target feature subset):
1
()= [C, == .9 (26)
=1
where represents the features other than | f'is the trained predictive model, and O s the value of for the

i-th sample in the dataset.
The expanded expression for Individual Conditional Expectation (ICE) is as follows:

()( )= ( ’ ()) 27)

This shows the dependence curve for individual samples.
Ultimately, the SHAP framework is employed to conduct in-depth global and local interpretations, intuitively presenting
feature contributions and interactions at both the overall model and individual prediction levels, providing highly
credible interpretive support for scientific decision-making in complex environments.
In the Shapley value calculation process, the contribution value for feature j is as follows:
! | |=1)!
- 20 o- o 8)
{}

where F represents the set of all features, and f{S) is the model prediction using only the feature subset S.
In an additive interpretation model, the predicted value can be decomposed as follows:

()= ot 29)

where ¢ is the baseline prediction, and is the contribution of the j-th feature.
In SHAP Interaction Values, the interaction effect between features j and £ is represented as follows:

1 -1 - 2)
ED (30)

{}
In which
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CO=C b= C = C {DH+ ) G

3.4 Standardized Score Mapping and Result Consistency Assurance

This study innovatively designs a score transformation mechanism based on probability calibration to address the
interpretability and standardization challenges of machine learning model outputs in practical business scenarios.By
transforming the model's predicted probabilities through a log-odds transformation, the results are mapped to a
continuous and interpretable score range, meeting the needs for easy interpretation and consistency in complex
systems.The monotonic and differentiable score mapping function is constructed as follows:

= = log(7—) (32)

where p is the model's predicted probability, and 4 and B are mapping coefficients. These coefficients are set through
standard reference points (e.g., a score of 600 corresponds to a probability of 0.5) to ensure that the mapped results
conform to the expected distribution.

Standardized scores not only enhance the intuitiveness of model outputs but also provide a unified basis for subsequent
policy-making, risk level classification, and threshold adjustment.

3.5 Summary of the Overall Advantages of the Method

This study integrates four highly coupled modules: model integration technology, performance optimization strategies,
interpretability analysis methods, and result standardization processing, to successfully build a complete and
closed-loop advanced predictive model development process. The construction of this system not only enhances the
accuracy of predictions and the robustness of the model but also ensures the transparency and consistency of model
output results. This provides a solid data foundation and technical support for making stable and reliable decisions in
complex and changing environments.

Through in-depth analysis and optimization of each module, our system demonstrates significant advantages in multiple
aspects. First, the application of model integration technology enables us to combine the strengths of various predictive
models, thus offering greater flexibility and adaptability when dealing with different prediction scenarios. Second, the
implementation of performance optimization strategies significantly improves the model's operational efficiency and
accuracy, ensuring efficient operation even when processing large-scale data. Additionally, the introduction of
interpretability analysis methods enhances the model's comprehensibility, allowing decision-makers to better
understand the basis and logic of the model's predictions. Finally, result standardization processing ensures the
consistency of output from different models, which is crucial for the coherence and reliability of decision-making in
changing environments. Through these comprehensive measures, our system not only reaches an advanced level in
technology but also shows excellent performance in practical applications, providing users with a comprehensive and
reliable predictive and decision-support platform.

4 EXPERIMENTAL DESIGN AND RESULTS ANALYSIS
4.1 Experimental Design

4.1.1 Data preparation and feature engineering

This study selected a large-scale open dataset with complex heterogeneous features, which exhibits high dimensionality,
nonlinear feature interactions, and imbalanced class distributions. To effectively handle these data, a modular feature
engineering pipeline was employed. For numerical variables, the StandardScaler method was used to eliminate biases
caused by different feature scales, ensuring data consistency and comparability. Categorical variables were encoded
using OneHotEncoder with sparse matrix optimization to improve computational efficiency and the model's ability to
express features. Additionally, stratified sampling was applied to split the data into a 70% training set and a 30% testing
set, ensuring consistent class distributions during training and testing phases. This approach effectively prevents model
bias and lays a reliable data foundation for subsequent modeling and analysis.

4.1.2 Model comparison

This study systematically verified the superiority of the proposed framework by comparing the performance of four
models. Model 1 (Logistic Regression), as a single linear model, achieved an ROC-AUC of only 0.732 and a KS index
of 0.312, demonstrating the limitations of linear methods in complex data. Model 2 (Random Forest) enhanced
nonlinear modeling capabilities through the integration of decision trees, increasing the ROC-AUC to 0.774, but still
exhibited sensitivity to hyperparameters. Model 3 (HistGradientBoosting), after hyperparameter optimization, further
improved performance with an ROC-AUC of 0.791, though with weaker interpretability. Finally, the proposed
ensemble framework (Model 4) in this study, which integrates multiple base learners through a Stacking strategy and
introduces standardized score mapping, achieved the best performance across all key indicators: ROC-AUC increased
to 0.810 (a 7.8% improvement over the baseline), KS index reached 0.460 (a 14.8% increase), and F1-Score was 0.715.
This result fully demonstrates the advantages of the multi-model ensemble strategy in capturing complex nonlinear
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relationships and feature interactions. Meanwhile, the standardized score mapping mechanism effectively addresses the
interpretability and consistency of model outputs in business scenarios, providing reliable technical support for practical
applications in fields such as financial risk control.

4.1.3 Approaches

To comprehensively evaluate the performance advantages of the proposed framework in this study, we constructed
multiple baseline and comparison models for systematic validation. Model 1 employed a traditional single linear model
(Logistic Regression) as a basic reference to highlight the limitations of linear methods. Model 2 selected a single
nonlinear model (Random Forest) to demonstrate the performance of nonlinear modeling capabilities in complex data.
Model 3 further optimized a single model (HistGradientBoosting with Hyperparameter Tuning) by enhancing its
performance boundary through hyperparameter tuning. Finally, Model 4 was the proposed multi-model integration
framework in this study (Stacking + Hyperparameter Optimization + Standardized Score Mapping), aiming to verify the
comprehensive advantages of the integration strategy and standardization processing in terms of predictive accuracy,
robustness, and result consistency. Through this series of comparative experiments, the significant improvements and
innovative value of the proposed framework compared to traditional methods can be clearly presented.

4.2 Comprehensive Performance Results

Table 1 Model Performance Analysis

Model Name ROC-AUC KS Index Precision Recall F1-Score
Logistic 0.732 0.312 0.670 0.588 0.626
Regression
Random 0.774 0.385 0.702 0.645 0.672
Forest
HistGradientBoosting 0.791 0.418 0.728 0.668 0.696
Proposed Framework 0.810 0.460 0.755 0.680 0.715

The performance analysis results demonstrate that the proposed ensemble framework in this study has achieved
significant improvements across all evaluation metrics, as detailed in Table 1. Compared with the baseline model, the
ROC-AUC and KS index have increased by 7.8% and 14.8%, respectively, fully demonstrating the advantages of the
ensemble method. In terms of classification performance, Precision and Recall have reached an optimal balance, with
an F1-Score of 0.715. This indicates that the model has significantly enhanced its ability to identify key samples while
controlling the false positive rate. It is particularly noteworthy that the significant improvement in the KS index not only
reflects a clearer and more defined model decision boundary but also proves that the framework has excellent
discrimination and risk stratification capabilities, effectively meeting the prediction needs in complex data
environments.

4.3 Interpretability and Decision Transparency Analysis

4.3.1 Results of Permutation Importance

Through Permutation Importance analysis of the model, we found that variables X1, X2, and X3 stand out in the feature
importance ranking. Among them, X1 shows the most significant change in influence boundary characteristics, X2 acts
as a strong interaction feature with complex association effects with other variables, and X3 exhibits highly nonlinear
impact characteristics, as shown in Figure 1. It is worth noting that the importance scores of these key features in the
ensemble model are significantly higher than those in single models. This phenomenon fully demonstrates that
ensemble learning methods can more effectively capture nonlinear relationships and interactions in complex feature
spaces, reflecting the model's high adaptability to high-dimensional heterogeneous data. This enhancement in feature
importance not only validates the effectiveness of the ensemble strategy but also provides a clear direction for
subsequent feature engineering optimization and model interpretation.
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4.3.2 Partial Dependence Analysis
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Through in-depth analysis using Partial Dependence Analysis (PDP), we observed significant nonlinear associations
and clear threshold effects between core features X1 and X2 and the model's prediction output, as shown in Figure 2.
These complex relationship patterns are characterized by abrupt response changes and interactions within specific
intervals of feature values, revealing underlying nonlinear dynamic characteristics in the data. It is worth noting that
traditional linear models are unable to accurately capture such complex feature response patterns due to their inherent
linear assumptions, which limit their ability to express nonlinear relationships. This finding not only validates the
advantages of ensemble learning methods in modeling complex feature relationships but also provides important
insights into understanding the model's decision-making mechanism. It indicates that in prediction tasks involving key
features such as X1 and X2, employing advanced modeling methods capable of capturing nonlinear relationships is
crucial.
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Figure 2 PDP Plot

4.3.3 Analysis retults of SHAP

The SHAP analysis results intuitively reveal the specific impact and direction of each feature on the model output. From
the SHAP Summary Plot, it is evident that high-value features such as "duration" (loan term) and "credit_amount" (loan
amount) have the most significant impact on model predictions, with a wide range of SHAP values, indicating that these
features play a decisive role in risk assessment, as shown in Figure 3. Meanwhile, categorical variables like
"credit_history delayed previously" (history of delayed payments) and "checking status no checking" (no checking
account) also show clear positive or negative impacts, reflecting the key role of credit history and personal financial
status in risk evaluation. Notably, the relationship between feature values and SHAP values is clearly visible—for
example, a higher loan amount generally corresponds to a greater risk (positive SHAP value), while a good credit
history can significantly reduce the risk score (negative SHAP value). This granular feature contribution analysis not
only validates that the model's decision-making aligns with business logic but also provides actionable feature
importance rankings for risk management, enabling financial institutions to precisely identify key feature indicators of
high-risk customers.
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4.4 Score Mapping and Result Standardization Analysis

4.4.1 Score mapping function

The standardized score mapping mechanism designed in this study transforms model outputs into a score range of
300-850. This score distribution exhibits a smooth curve characteristic and strictly maintains a monotonically increasing
nature, ensuring that each probability value corresponds to a unique score result. This mapping relationship is not only
intuitive but also, more importantly, its positively skewed distribution characteristic provides a key advantage for
practical business applications: the natural sparse distribution at both ends of the score range facilitates the
identification of extremely high-risk or low-risk customers, while maintaining sufficient granularity in the middle
region to allow risk managers to flexibly set multi-level decision thresholds according to business needs. This
distribution characteristic is particularly suitable for financial risk control and other scenarios that require fine-grained
stratification. It ensures clear differentiation between high-score and low-score customer groups and provides ample
granularity for customers in the middle risk category, greatly enhancing the practicality and operability of model results
in business decision-making.

4.4.2 Comparative analysis

Traditional single models have significant limitations in probability prediction, with output results often overly
concentrated in the middle probability range. This makes it difficult to effectively distinguish between high-risk and
low-risk customers after score mapping, severely affecting the model's practical value. In contrast, the proposed
ensemble model in this study, through innovative algorithm optimization, has significantly improved the prediction
accuracy in the extreme probability intervals. As a result, the low-probability (close to 0) and high-probability (close to
1) predictions are more reliable. This technical breakthrough allows the final mapped credit scores to more reasonably
cover the entire 300-850 range. High-score and low-score customers are clearly distinguished, and customers in the
middle score segment can obtain more refined risk stratification. This improvement not only greatly enhances the
usability of model output results in practical business scenarios but also endows the risk decision-making process with
stronger interpretability, providing more reliable data support for financial institutions to implement differentiated risk
management strategies.

4.5 Comprehensive experimental conclusions

The advanced modeling framework proposed in this study demonstrates comprehensive performance advantages,
significantly outperforming traditional single models and optimized single models in terms of predictive accuracy,
model robustness, and result interpretability. Innovatively introducing a standardized score mapping mechanism, the
framework not only maintains excellent discriminative ability in model outputs but also ensures high consistency and
comparability of results across different scenarios, greatly enhancing the model's adaptability in practical business
environments. Meanwhile, through a systematic interpretability analysis framework, the framework clearly reveals the
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contribution paths and mechanisms of various feature variables to prediction results, endowing the model
decision-making process with sufficient transparency and credibility in complex scenarios such as financial risk control.
This complete technical solution successfully achieves optimization throughout the entire process, from data
preprocessing to model construction and result interpretation, providing a standardized modeling paradigm with both
high performance and high reliability for intelligent decision-making in various complex environments. Its
methodological innovation and practical value hold significant promotional significance in multiple application fields.

5 CONCLUSIONS AND FUTURE PROSPECTS

This study develops an innovative predictive modeling framework that integrates unified architecture, high-performance
prediction, and strong interpretability to address large-scale heterogeneous data challenges. By combining multi-model
ensemble (Stacking) strategies, automated hyperparameter optimization, and multidimensional evaluation systems, the
framework achieves significant performance improvements (14.8% KS index increase, 0.715 F1-Score) while
maintaining model simplicity. Experimental results demonstrate its effectiveness in financial risk control and medical
diagnosis applications, with standardized scoring and modular design ensuring cross-domain applicability. Current
limitations in dynamic adaptability will be addressed through future enhancements in online learning and streaming data
processing. The framework's core innovations include: 1) standardized score mapping for cross-scenario comparability,
2) systematic interpretation for transparent decision-making, and 3) modular architecture for field transferability. Future
work will focus on developing incremental learning capabilities and advanced feature extraction techniques to
strengthen real-time processing and high-dimensional feature handling, ultimately advancing the system toward
autonomous decision-making for complex real-world applications. This research provides a robust technical solution for
intelligent decision-making in dynamic environments.
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