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Abstract: In order to improve the accuracy and system understanding of industrial wastewater treatment efficiency
prediction, an intelligent analysis model integrating XGBoost is constructed with a typical A²/O process wastewater
treatment system as an example. 14 high-frequency operational variables are collected and processed in the system, and
a multi-dimensional input system containing ratio features and time-difference features is designed. Combining the
PCA dimensionality reduction and the temporal sliding window mechanism, the model effectively compresses the
redundant information and enhances the expression ability of the dynamic features. The model stability and
generalization ability are improved by the joint tuning strategy of grid search and Bayesian optimization. Comparison of
the SVR, RF and MLP models shows that XGBoost is better in terms of prediction accuracy, robustness and feature
interpretation, and SHAP analysis further clarifies the dominant roles of COD, NH₄⁺-N and other variables in the
performance of the system, which verifies the potential and scalability of the constructed model in complex industrial
scenarios. The constructed model is validated for its practical potential and extension value in complex industrial
scenarios.
Keywords: Industrial wastewater treatment efficiency; XGBoost-based intelligent analysis; Feature engineering;
Principal component analysis (PCA); Time-series sliding window

1 INTRODUCTION

With the continuous advancement of industrialization, wastewater discharge has been growing rapidly, and its treatment
efficiency has become an important index to measure the level of resource utilization and the ability of environmental
governance. Industrial wastewater has complex composition and large fluctuation of pollution load, and the traditional
treatment system is easy to be disturbed under highly variable working conditions, which makes it difficult to realize
stable and compliant discharge. At present, the influence of multivariate coupling relationship and dynamic
characteristics on the treatment effect is becoming more and more prominent, and there is an urgent need to construct a
high-precision analysis model with strong generalization ability to realize the accurate perception and process
optimization of the operating state of wastewater treatment system. In this context, the modeling strategy based on the
integrated learning method provides a new path for revealing the influence mechanism of treatment efficiency, which
has important theoretical value and engineering significance for promoting the construction of intelligent water
treatment system.

2 DATA ACQUISITION AND PRE-PROCESSING OF INDUSTRIAL WASTEWATER TREATMENT
EFFICIENCY INFLUENCING FACTORS

2.1 Experimental Data Acquisition Program Design

In order to ensure the representativeness and engineering usability of the input data of the industrial wastewater
treatment efficiency influencing factors analysis model, a systematic and reproducible experimental data collection
program is designed based on the typical operation process of a municipal wastewater treatment plant. The A²/O
biochemical treatment system is selected as the object, and high-frequency data collection points are deployed in the
key units of pretreatment, anaerobic, aerobic and sedimentation, mainly collecting water quality indicators (pH, COD,
BOD₅, NH₄⁺-N, SS, TN, TP), operation parameters (influent flow rate, reflux ratio, sludge concentration, sludge
concentration, etc.), and data collection data. NH₄⁺-N, SS, TN, TP, operating parameters (influent flow rate, reflux ratio,
sludge concentration, aeration intensity), environmental variables (air temperature, water temperature, humidity) and so
on, a total of 14 core variables, the collection frequency is set to 15 minutes / times, the continuous operation of the
collection of 30 days in order to ensure the timeliness and integrity of the data [1]. The collection equipment adopts
online multi-parameter water quality analyzer (such as YSI 6600 V2) and PLC system linkage control, and through the
RS485 interface to access the SCADA platform, real-time transmission and automatic recording. The data flow
structure is shown in Figure 1, the system organizes the raw data according to the time series structure, and
automatically marks the missing measurements and abnormal points. In order to follow up the structural consistency of
feature construction and model input, the collection program defines the data field format and metadata standards
simultaneously to ensure that the pre-processing stage can accurately identify and convert the indicators.
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Figure 1 Industrial Wastewater Treatment Data Acquisition System Architecture Diagram

2.2 Data Preprocessing

The data preprocessing process includes key steps such as identifying and filling in missing values, detecting outliers,
normalizing variables and aligning time series. Due to the existence of sensor signal drift, communication interruption
and human intervention in the actual acquisition process, data integrity is difficult to ensure. First, the original
timestamp sequence is sampled synchronously, the uniform interval Δt = 15 min is set, and the linear interpolation
method is used to fill in the missing data with an interruption of no more than 1 hour, and the missing segments with an
interruption of more than 1 hour are marked as unavailable. Second, anomaly detection was performed based on the
IQR method for the distribution intervals of each variable and combined with engineering upper and lower limits to
screen out physically unreasonable values (e.g., COD > 2000 mg/L or pH > 14). In terms of variable scale
standardization, considering that XGBoost is insensitive to feature scales, but the subsequent feature construction
involves similarity measures and PCA, the Z-score standardization method is uniformly adopted [2]:
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Where μ and σ are the sample mean and standard deviation, respectively. To cope with the problem of multi-source data
synchronization, a time window sliding mechanism is introduced to achieve asynchronous feature alignment and
compress high-frequency noise. This preprocessing design not only improves the robustness of feature engineering, but
also provides standardized, high-quality data input for the model training phase.

2.3 Feature Engineering

The feature engineering scheme for XGBoost modeling is designed to cover three aspects: variable selection, feature
construction and feature dimensionality reduction. In the variable selection stage, basic indicators with significant
influence were screened based on domain knowledge and statistical correlation analysis (Pearson's coefficient |r| > 0.6),
and the Variance Threshold method (Variance Threshold ≥ 0.01) was introduced to exclude the redundant features with
low information content [3]. In terms of feature construction, combined with the physicochemical coupling
characteristics of water quality parameters, ratio class combination features (e.g., COD/TN, BOD₅/COD) and time-
difference categorization dynamic features (e.g., ΔCODt= CODt- CODt-1)were designed to enhance the model's ability
to perceive the system's nonlinearities and temporal variations. Considering the problem of dimensional catastrophe
caused by feature dimension expansion, principal component analysis (PCA) is used for compression to retain the
principal components with more than 95% of cumulative explained variance (Figure 2), and the final modeling input
feature matrix X∈ Rn×d is generated on this basis.
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Figure 2 Plot of PCA Principal Component Contribution Analysis

2.4 Data Set Division

After completing the preprocessing and feature construction of the data related to industrial wastewater treatment, in
order to ensure the scientific and generalization ability of the model evaluation, the training set, validation set and test
set division scheme based on the temporal integrity and sample balance is designed. Considering the dynamic
characteristics of the wastewater treatment process and the temporal correlation of the data, the overall dataset is
initially segmented according to the chronological order and the sample units are constructed with a non-overlapping
sliding window (window length of 60 minutes, step length of 15 minutes) [4]. In order to avoid the information leakage
problem, a forward rolling segmentation strategy is used to ensure that the training set is completely independent of the
test set time interval, thus realistically simulating the model deployment scenario. Eventually, the dataset is divided into
training set (70%), validation set (15%) and test set (15%), each of which covers the smooth period, high load period
and abnormal fluctuation period respectively to ensure the diversity and representativeness of sample distribution. The
structure of the dataset is summarized in Table 1, which takes into account the operating cycle of the industrial system
and the typical load variation characteristics, and helps to improve the adaptability and stability of the subsequent
XGBoost model in the real engineering environment.

Table 1 Summary of Dataset Division Scheme

Data set Time interval coverage Percentage Number of windows
with time series Characterization

Training set Day 1-21 70% 2016
Covering both smooth and varying
working conditions with sufficient
samples

Validation set Day 22-25 15% of the total
number of samples 432 For parameter tuning

Test Sets Day 26-30 15 percent 432 No data at all, simulating
deployment effects

3 INTELLIGENT ANALYTICS MODEL CONSTRUCTION BY INCORPORATING XGBOOST

3.1 Model Selection and Problem Definition

Considering the high degree of nonlinear coupling and complex dynamic disturbances among multiple variables in the
industrial wastewater treatment system, the wastewater treatment efficiency prediction problem is modeled as a typical
multi-input regression problem, with the treatment efficiency index (e.g., COD removal rate) as the target variable, and
the construction of a multidimensional feature input vector X ∈ Rn×d, corresponding to the output vector y ∈ Rn. To
maintain good generalization performance while dealing with high-dimensional features, nonlinear mapping and strong
feature interactions, eXtreme Gradient Boosting (XGBoost) is preferred as the core model in this paper. eXtreme
Gradient Boosting (XGBoost) is an enhanced integrated learning algorithm, which introduces second-order derivatives,
regularization control, and parallel processing mechanisms based on the traditional gradient boosting tree (GBDT), and
is equipped with highly efficient training and strong generalization capabilities. It is especially suitable for modeling
situations with missing values, noise perturbations and variable covariance in industrial data. The model loss function is
designed as follows [5]:
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Where l(⋅ ) denotes the squared error loss, Ω(f) is the regularity term, T is the number of leaf nodes, and λ controls the
weight penalty. The model selection process is shown in Figure 3. Considering the data size, variable characteristics and
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application requirements, XGBoost achieves a good balance between accuracy and computational efficiency compared
with SVM, RF and ANN, which provides a theoretical guarantee and algorithmic basis for modeling training and
parameter tuning.

Figure 3Model Selection Process and Decision Logic Diagram

3.2 Model Construction Process

After clarifying the task attributes and modeling objectives, this study systematically constructs an intelligent analysis
model process integrating XGBoost based on the temporal characteristics and feature dimension design of industrial
wastewater treatment data. The whole process starts from the standardized feature matrix X ∈ Rn×d input, flows into
the gradient boosting framework at the core of the model via the training set data, generates multiple weighted
regression trees by minimizing the regularized loss function in each iteration, and finally outputs the prediction result
y^[6]. The input and output formats, data flow paths and processing order of each module in the model structure are
shown in Figure 4. In order to maintain the versatility and scalability of the modeling process, the feature selection
module is decoupled from the model engine, allowing subsequent replacement of the feature construction method or the
model structure; for the dynamic perturbations that may exist in the wastewater data, this process introduces a time-
sliding window mechanism and an incremental model updating mechanism to provide support for online optimization
in the deployment environment. In addition, the training-validation-testing data channels are strictly independent, and
the processing logic of data flow, model parameters and output indexes are standardized through a unified pipeline
module (Pipeline) [7]. The whole modeling process emphasizes efficiency, traceability and engineering deployment
friendliness, aiming to provide a structured foundation for parameter tuning and model performance evaluation.



Yang Xu

Volume 2, Issue 3, Pp 46-53, 2024

50

Figure 4 Flowchart of XGBoost Intelligent Analysis Model Construction

3.3 Hyper-Parameter Tuning

Based on the two-stage parameter tuning strategy jointly driven by Grid Search and Bayesian Optimization, the initial
stage conducts coarse screening in a predefined discrete grid by Grid Search to determine the response trend of the
objective function to the main control parameters (e.g., the learning rate η, the maximum tree depth max_depth, the
proportion of subsamples, etc.), and to determine the response trend of the objective function to the main control
parameters (e.g., the learning rate η, the maximum tree depth max_depth, the proportion of subsamples). subsample);
subsequently, a Bayesian optimization method based on Gaussian process is introduced to iteratively approximate the
optimal parameter combinations in the local optimal region. The whole tuning process aims at minimizing the
validation set error, and adopts five-fold cross-validation to control the risk of overfitting, with the loss function as [8]:
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Where K=5, nk denotes the number of samples in the kth fold. The tuning parameter space design is shown in Table 2.

Table 2 XGBoost Key Hyperparameters and Search Interval Settings
Parameter name Description Search range
learning_rate (η) Learning rate [0.01, 0.05, 0.1, 0.2]
max_depth Maximum depth of each tree [3, 5, 7, 9]
subsample Sample sampling ratio [0.6, 0.8, 1.0]
colsample_bytree Sampling ratio of feature columns [0.5, 0.7, 0.9]
n_estimators Upper limit on the number of weak learners [100, 300, 500]
gamma Split minimum loss function gain threshold [0, 0.1, 0.2]

3.4 Model Training and Validation

After completing the hyper-parameter tuning, the XGBoost training and validation process based on structured pipelines
is constructed to realize the robust training and scientific validation of the model in the task of industrial wastewater
treatment prediction. The training stage takes the normalized feature matrix Xtrain ∈ Rn×d and the corresponding
target value ytrain as inputs, adopts the parallel tree construction strategy, minimizes the squared error loss function
with regular terms as the optimization objective, and uses the parameter combination after a priori tuning to control the
training process. To avoid overfitting, an early stopping mechanism (early stopping) is introduced, where training is
interrupted when the loss does not decrease in several consecutive rounds on the validation set Xval. Both training error
and validation error are evaluated by Root Mean Square Error (RMSE) metric, defined as follows [9]:
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The model training iteration process and error convergence trend are shown in Figure 5, which can be used to assess the
model learning stability and generalization ability. In addition, in order to enhance the robustness of the assessment, the
whole training process is nested with a five-fold cross-validation structure, with the average RMSE as the performance
metric, based on which the model structure with the best validation performance is further preserved for the test phase
deployment.
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Figure 5 Convergence Curve of Model Training Error and Validation Error

4 EXPERIMENTAL VALIDATION AND RESULT ANALYSIS

4.1 Experimental Design

In order to systematically evaluate the performance of the intelligent analytical model integrating XGBoost in industrial
wastewater treatment efficiency prediction, the experiment relies on the previously constructed dataset division
structure, with the training set to complete the model training, the validation set for parameter tuning, and the test set for
the final performance verification to ensure the independence of the whole process data. The experiments are
categorized into three types of evaluation dimensions [10]: prediction accuracy, robustness and feature sensitivity, and
the RMSE, MAE, R² and residual distribution structure are used as the main evaluation indexes, respectively. To test
the advantages of XGBoost in nonlinear multivariate industrial data scenarios, comparison experiments with
mainstream models such as Support Vector Regression (SVR), Random Forest (RF), and Multi-Layer Perceptron (MLP)
are designed, and all the comparison models are uniformly configured on the same training and validation test set, and
the dimensionality of the input features is controlled to be consistent to avoid the influence of bias. In addition, in order
to analyze the degree of model dependence on key features, SHAP (SHapley Additive exPlanations) based method is
introduced for explanatory experimental design, and feature importance mapping diagrams are constructed to provide
mechanism-level support for the result analysis part. The parameters and evaluation indexes of each experimental setup
are summarized in Table 3, and the experimental environment configuration and software version are supplemented in
the Appendix to ensure the reproducibility and engineering promotion value of the experiments.

Table 3 Configuration Table of Experimental Program Design and Evaluation Indexes

Experiment type Comparison model Data source Evaluation index Feature interpretation
method

Accuracy Validation XGBoost, SVR, RF,
MLP Test Sets RMSE, MAE, R² N/A

Robustness Analysis XGBoost Noise sample
injection RMSE, ΔR² N/A

Feature Sensitivity
Analysis XGBoost Test Set -SHAP SHAP

4.2 Comparative Analysis of Model Performance

In order to systematically assess the comprehensive performance of the fused XGBoost model in predicting the
efficiency of industrial wastewater treatment, this section constructs a design of experiments for comparison with three
mainstream algorithms, namely SVR (Support Vector Regression), RF (Random Forest) and MLP (Multi-Layer
Perceptron), focusing on three major dimensions, namely, prediction accuracy, model robustness and feature expression
ability. All models uniformly use divided datasets with consistent input variables and are optimized separately in the
tuning space to ensure the fairness of comparison and the principle of control variables. The performance evaluation
metrics include RMSE (root mean square error), MAE (mean absolute error) and R² (coefficient of determination), and
the residual distributions of the output fluctuations of the different models under stability test conditions are analyzed to
check their disturbance resistance. The structural arrangement of the assessment results is shown in Figure 6, in which
the results of each index are normalized to the [0,1] interval to uniformly compare the relative advantages of the
performance of each model. In addition, in order to enhance the interpretability, the SHAP value attribution is
visualized for the input responses of each model, and the feature importance ranking is listed in Table 4, which provides
a structural explanation basis for the model performance differences. The overall analysis process not only reflects the
horizontal comparison of prediction accuracy, but also combines the error composition, feature dependence and
nonlinear fitting ability to carry out a multi-dimensional comprehensive analysis, forming a closed-loop performance
evaluation system from data-driven to mechanism cognition.
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Figure 6 Radar Chart of Standardized Comparison of Multi-Model Performance Indicators

Table 4 Summary of SHAP Importance Ranking of Main Input Features of Each Model
Feature Name XGBoost Ranking RF Ranking SVR Ranking MLP Ranking

COD 1 1 2 1
NH₄⁺-N 2 3 1 3
BOD₅ 3 2 4 2
TN 4 4 3 4

5 CONCLUSION

In this study, we constructed an intelligent analytical model of factors influencing industrial wastewater treatment
efficiency by integrating XGBoost, which realized the organic integration of systematic acquisition of high-frequency
time-series data, feature construction and nonlinear modeling, and enhanced the model's generalization ability and
engineering adaptability while accurately predicting the treatment efficiency. Through feature selection and SHAP
interpretive analysis, the dominant role of key water quality indicators on system performance is revealed, providing a
quantitative basis for mechanism understanding. The model demonstrates superior accuracy and stability in multi-
metric and multi-model comparison experiments, demonstrating the potential of integrated learning methods for a wide
range of applications in modeling complex industrial processes. However, the sample source is limited to a single
scenario, and the model mobility and real-time feedback ability still need to be improved. In the future, a multi-source
heterogeneous data fusion mechanism can be further introduced to expand the cross-scene adaptability of the model,
and at the same time, the online incremental learning strategy can be combined to explore new paths for intelligent
optimization and decision support of wastewater treatment systems.
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