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Abstract: This paper focuses on the core technological breakthroughs in the integration of digital pathology slide
systems and artificial intelligence (AI), with precision cancer diagnosis as the entry point. It deeply analyzes the
innovative applications of multi-scale feature fusion algorithms, self-supervised learning models, and multi-omics
integration technologies in clinical practice. Through specific cases such as breast cancer HER2 quantification and lung
cancer subtype classification, it elaborates how AI-assisted diagnosis improves the consistency of biomarker detection
(HER2 assessment consistency increased from 93% to 99%), enhances diagnostic efficiency (doubling the number of
cases processed), and optimizes survival prediction accuracy (C-index increased by an average of 1.1-5.5%). It also
analyzes the standardization dilemmas and model generalization challenges in technology implementation, and looks
forward to the construction path of a human-machine collaborative diagnosis ecosystem, providing references for the
clinical transformation of digital pathology.
Keywords: Digital pathology slides; Artificial intelligence; Cancer diagnosis; Multi-omics integration; Clinical
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1 INTRODUCTION: AI RECONSTRUCTING THE PARADIGM OF PATHOLOGICAL DIAGNOSIS

Pathological diagnosis, as the "gold standard" for cancer diagnosis and treatment, its traditional model is facing dual
challenges: on the one hand, manual slide reading has inherent subjectivity, such as the inter-observer consistency of
breast cancer HER2 assessment is only 93%, and the consistency of Ki67 quantification is even lower at 77%[1]; on the
other hand, the demand for precision medicine promotes the transformation of pathological diagnosis from
morphological description to molecular feature interpretation, and traditional microscopes can no longer meet the needs
of "morphology-molecule" correlation analysis. The digital pathology slide system realizes the digital transformation of
pathological images through whole slide imaging (WSI) technology.the application of AI in the analysis of OCT images
extends to complex conditions such as Stargardt disease, where traditional segmentation methods struggle due to
degeneration. The in-depth involvement of AI algorithms breaks through the limitations of human vision, forming a
new closed loop of "scanning-analysis-diagnosis"[2]. This breakthrough lays a solid foundation for the in-depth
application of AI and machine learning tools in pathology, making it possible to mine sub-visual morphological features
in stained tissue specimens - these features are often unique manifestations of complex biological processes, and their
analysis through AI technology can provide key basis for precise patient management and treatment plan
optimization[3].
Cancer has significant diversity in signal transduction and transcriptional networks, which makes the development of
biomarkers based on a single gene or protein face great challenges. However, the combination of digital pathology and
AI provides new ideas to solve this problem[3]. The application of AI in digital pathology mainly focuses on deep
neural networks and manual feature extraction methods, which not only improves the efficiency of pathological image
analysis, but also opens up new paths for the development of biomarkers, enabling more accurate identification and
classification of different types of cancers, and providing strong support for personalized treatment[3]. However, the
development of this field still faces many obstacles, such as the need for well-planned validation datasets, improved
regulatory approval mechanisms, and reasonable reimbursement strategies, which are all key issues to promote the
transformation of AI technology from the laboratory to the clinic[3].
In recent years, with the emergence of innovative models such as Inter-MIL and BEPH, the application of AI in the
field of digital pathology has evolved from an auxiliary tool to a technical system with independent diagnostic
capabilities[4,5]. These models can not only accurately identify tumor microenvironment features, but also predict
molecular subtypes and patient prognosis through multi-omics integration, making the digital pathology slide system a
key link connecting morphological phenotypes and molecular mechanisms. This paper will reveal the core value of
digital pathology in precision cancer diagnosis around three dimensions: AI-driven technological breakthroughs,
clinical verification cases, and standardization construction.
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2 CORE TECHNOLOGICAL BREAKTHROUGHS: FROM FEATURE EXTRACTION TO MULTI-MODAL
INTEGRATION

2.1 Multi-Scale Feature Learning: Innovation in Subtype Classification by Inter-MIL

Accurate identification of cancer molecular subtypes is a prerequisite for personalized treatment, but traditional
methods rely on gene sequencing, which is costly and time-consuming. The Inter-MIL framework achieves a
breakthrough in directly predicting cancer molecular subtypes from WSI through the iterative optimization mechanism
of multi-instance learning (MIL)[4]. This model innovatively constructs a slide-level feature pool, reduces noise
interference through adversarial optimization, and makes attention weights automatically focus on key structures such
as tumor regions and cell nuclei.
In the validation of the TCGA dataset, Inter-MIL performed better than traditional MIL methods in multiple subtype
classification tasks such as ovarian cancer and colorectal cancer, especially in small sample scenarios. Its core
innovation lies in simulating the diagnostic logic of pathologists: first observing the global structure through low-power
microscopy, then analyzing detailed features with high-power microscopy, realizing the organic integration of multi-
scale features. This mechanism enables the model to achieve accuracy comparable to immunohistochemical detection in
predicting gastric cancer HER2 status by quantitatively calculating the proportion of high-expression regions.

2.2 Revolution in Self-Supervised Learning: Breakthrough in Generalization Ability of BEPH Model

The high cost of data annotation has always been a bottleneck in the development of pathological AI, but the BEPH
model breaks this limitation through self-supervised learning strategies. The model is pre-trained on 11 million
unlabeled pathological images, using masked image modeling (MIM) technology to enable AI to learn pathological
features like a "jigsaw puzzle", requiring only 25% of labeled data to achieve the performance of traditional models
with full data[5]. In lung cancer subtype classification tasks, the accuracy of BEPH is as high as 99.99%, and the AUC
of renal cancer subtype classification reaches 0.994, close to the level of pathological experts.
The cross-cancer adaptation ability of BEPH is particularly prominent, with its pre-training covering 32 types of cancers.
In breast cancer survival prediction, only WSI images can achieve a C-index 5.5% higher than traditional models[5].
The model's robustness to image quality is also significant, maintaining high accuracy even when the resolution is
reduced by 70%, which provides possibilities for equipment adaptation in primary hospitals. This "pre-training-fine-
tuning" paradigm is analogous to "learning a common language first, then practicing dialects", laying the foundation for
the large-scale application of pathological AI.

2.3 Multi-Omics Integration: Morphology-Molecule Association by OmiCLIP

The ultimate goal of digital pathology is to "see images and recognize genes". The OmiCLIP model takes a key step
through visual-transcriptome contrastive learning. The model constructs an ST-bank dataset containing 32 organs and
2.2 million pairs of images and transcriptome data, encoding highly expressed genes into "text sentences", enabling
H&E images and gene expression to achieve precise alignment in the embedding space[6].
In clinical applications, the five modules of the supporting platform Loki show strong functions: Loki Align realizes
cross-sample tissue alignment with higher precision than traditional methods; Loki Decompose can infer cell type
composition from pathological images, and its performance surpasses tools such as Tangram in triple-negative breast
cancer analysis. This technological breakthrough enables the pathology department to predict key molecular features
such as tumor mutation burden and immune checkpoint expression without additional sequencing, providing immediate
support for precise treatment decisions(Table 1).

Table 1 Comparison of Core Performance of Mainstream AI Models in Digital Pathology

Model Name Core Technology Covered Cancer
Types

Classification
Accuracy AUC Value Increase in Survival

Prediction C-Index

Inter-MIL Multi-scale feature
fusion 12 types 89.6-94.3% 0.92-0.96 1.1-3.2%

BEPH Self-supervised
learning 32 types 92.5-99.99% 0.95-0.994 2.3-5.5%

OmiCLIP Multi-omics
integration 18 types 88.2-93.7% 0.91-0.95 1.8-4.1%

3 CLINICAL TRANSFORMATION VERIFICATION: FROM LABORATORY TO PATHOLOGY
DEPARTMENT

3.1 Improvement in Accuracy of Biomarker Quantification

Breast cancer biomarker assessment is a benchmark field for clinical application of AI. A multi-center study published
at the 2024 USCAP Annual Meeting showed that the AI-assisted system using the Mindpeak algorithm increased the
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inter-observer consistency of HER2 assessment from 93% to 99%, and the consistency of Ki67 quantification even
jumped from 77% to 95% [1,7]. In 11 critical cases (near the 5% proliferation threshold), AI avoided subjective bias in
manual interpretation through precise counting.As shown in Figure 1, the integration of AI into the diagnostic workflow
led to a marked improvement in inter-observer agreement among pathologists.

Figure 1 Comparison of HER2 and Ki67 Assessment Consistency between Manual and AI-Assisted Methods
(Data source: Multicenter study and practice at the Affiliated Hospital of Hubei University of Medicine)

Practice at Renmin Hospital further confirmed that AI assistance doubled the number of cases processed by pathologists
per week, while reducing the rate of diagnostic modifications in pre-MDT reviews significantly[8]. This "dual value of
quality and efficiency improvement" stems from two advantages of AI: first, the fatigue-free stable judgment ability;
second, the accuracy of quantitative analysis, such as the calculation error of the proportion of HER2-positive regions
can be controlled within 1%.

3.2 Survival Prediction and Treatment Response Assessment

The self-supervised learning BEPH model demonstrates excellent performance in predicting tumor mutational burden
(TMB) and VHL mutation status. By analyzing whole-slide images and somatic mutation data from 350 clear cell renal
cell carcinoma (CCRCC) patients, the SSL-ABMIL model achieved high AUROC values of 0.83 and 0.8 for predicting
TMB and VHL mutations, respectively. This demonstrates that self-supervised learning can effectively extract
information from histological features, thereby establishing a link between tumor morphology and molecular biology
[9]. This ability stems from AI's capture of spatial heterogeneity of the tumor microenvironment, such as immune cell
infiltration patterns, stromal fibrosis degree and other features closely related to prognosis.
In the prediction of immunotherapy response, AI can early identify responders and non-responders by analyzing
changes in WSI before and after treatment. Studies have shown that regions with increased CD8+T cell infiltration after
treatment show significant attention enrichment in AI heatmaps, and this dynamic monitoring ability provides a
pathological basis for adjusting treatment plans[10].We further evaluated the prognostic value of the BEPH deep
learning model using whole-slide images (WSIs) across four major cancer types: As illustrated in Figure 2, the AI
model consistently achieved higher concordance indices (C-index) compared to conventional clinical models based on
histopathological and clinical variables alone.

Figure 2 Comparison of C-Index in Survival Prediction between Traditional Pathological Methods and AI Models in
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Different Cancer Types; Clear Cell Renal Cell Carcinoma (CCRCC), Non-Small Cell Lung Cancer (NSCLC),
Colorectal Cancer (CRC), and Breast Cancer (BC)

3.3 Breakthrough in Technical Accessibility in Primary Medical Care

The decentralized application of digital pathology faces two major obstacles: equipment cost and image quality. The
low-resolution robustness of the BEPH model (maintaining high accuracy at 224×224 pixels) reduces the reliance on
high-end scanners; while the secondary compression technology developed by Hospital reduces image storage
requirements by 60% without losing diagnostic information, significantly reducing data transmission costs[5,8].
In the pilot project of hospitals in remote areas, the AI-based digital pathology system increased the compliance rate of
HER2 detection from 78% to 92%, avoiding a large number of misdiagnoses and mistreatments. This technology
sinking not only improves the diagnostic level of primary medical institutions, but also realizes the balanced allocation
of high-quality pathological resources through remote consultation platforms(Table 2).

Table 2 Application Effects of AI-Assisted Digital Pathology in Primary Hospitals
Indicator Before Application After Application Improvement

HER2 detection compliance rate 78% 92% +14%
Diagnostic report issuance time 48 hours 12 hours -75%
Remote consultation coverage 32% 89% +57%

Misdiagnosis rate 9.3% 3.1% -6.2%

4 CHALLENGES AND COUNTERMEASURES: STANDARDIZATION AND GENERALIZATION
DILEMMAS

4.1 Fragmentation Dilemma of Data Formats

Digital pathology systems from different manufacturers adopt proprietary formats, such as Aperio's.svs and Leica's.scn
formats, which are incompatible, making it difficult for AI models to be applied across platforms. Although the DICOM
standard has been introduced into the field of pathology, in actual promotion, there are still problems such as
inconsistent scanning parameters and differences in staining agents, forming a "digital Babel"[11,12].
The solution of ruijin Hospital is worthy of reference: realizing seamless connection of different devices through
standardized data collection processes and format conversion interfaces; adopting adaptive image enhancement
algorithms to eliminate interference caused by uneven staining[8]. This "soft compatibility" strategy is more feasible
than mandatory hardware standards, and has enabled the hospital's digital pathology data interoperability rate to reach
98%.

4.2 "Achilles' Heel" of Model Generalization

Pathological images in the real world have huge variations, such as low-contrast slides can cause the SAM model to
misjudge inflammatory regions as tumors. Although BEPH performs excellently in breast cancer subtype classification,
it still has the risk of misdiagnosis in the face of rare subtypes such as micropapillary carcinoma. This limitation stems
from insufficient coverage of training data and the complexity of clinical scenarios[5].
Multi-center joint training is an effective countermeasure: the PHARAOH crowdsourcing platform integrates multi-
institutional data through weakly supervised learning, significantly improving the robustness of the model in melanoma
diagnosis; while the "federated learning" model realizes knowledge sharing under the premise of protecting data privacy,
enabling the model to obtain sufficient training signals even in small sample cancer types[13].

4.3 Balance between Regulation and Ethics

The regulatory framework for AI pathological diagnosis is still to be improved. The first AI-assisted pathology system
approved by the FDA in 2024 is limited to specific cancer types and requires final review by pathologists[14]. This
"human-led" model how to balance with the high accuracy of AI has become the focus of ethical controversy. In
addition, the lack of interpretability of attention heatmaps may lead to "black box decisions", affecting clinical trust.
The exploration of the Path-X framework provides new ideas: identifying key diagnostic features through SHAP value
analysis and mapping them back to the original pathological sections, making the AI decision-making process
visible[15]. This "transparent AI" not only meets regulatory requirements, but also helps pathologists understand the
judgment logic of AI, achieving human-machine collaborative efficiency.

5 OUTLOOK: BUILDING A HUMAN-MACHINE COLLABORATIVE DIGITAL PATHOLOGY
ECOSYSTEM

The future development of digital pathology slide systems will show three major trends: at the technical level,
generative AI will break through data bottlenecks, expand training sets by synthesizing virtual pathological sections,
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which is especially beneficial for rare disease research[16]; Major tech companies like Google have also conducted
extensive exploration into integrating edge computing with AI to address the challenges of rare disease diagnosis. By
deploying optimized AI models on edge devices, these platforms enable efficient data processing and analysis in
resource-constrained environments. This approach not only enhances diagnostic efficiency but also provides the
technical foundation for broader adoption of edge computing in healthcare applications[17].
The role of pathologists will shift from image interpretation to comprehensive decision-making, while AI will undertake
repetitive work such as primary screening and quantification. This division of labor has been effective in breast cancer
diagnosis and treatment: AI is responsible for precise counting of HER2/Ki67, and doctors focus on comprehensive
judgment of complex cases, enabling simultaneous improvement of diagnostic efficiency and accuracy[1,7]. With the
deepening of multi-omics integration, the digital pathology slide system will become an integrated platform for cancer
early screening, efficacy monitoring and prognosis evaluation, promoting precision medicine into a new era of
"morphology-molecule" integration. Despite the current challenges, with the continuous advancement of technology
and the continuous improvement of datasets, the role of AI in precision oncology will become increasingly prominent,
bringing better prognosis and quality of life to patients[3].

6 CONCLUSION

AI-driven digital pathology slide systems have shown transformative value in precision cancer diagnosis, with core
breakthroughs in realizing the paradigm shift from qualitative description to quantitative analysis, and from isolated
diagnosis to multi-omics integration. Clinical data fully prove that AI assistance can significantly improve the
consistency of biomarker assessment, enhance diagnostic efficiency and optimize survival prediction[1,5,9]. Despite
facing challenges such as standardization and generalization, through technological innovation and model optimization,
digital pathology is gradually building a new human-machine collaborative diagnosis ecosystem.
The key to future development lies in balancing technological advancement and clinical practicality, ensuring
interpretability and safety while improving model performance. With the improvement of regulatory frameworks and
the accumulation of multi-center data, digital pathology slide systems are expected to become the core infrastructure for
precision cancer diagnosis and treatment, providing strong support for achieving the goal of "every patient receives the
best diagnosis".
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