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Abstract:With the advancement of urban autonomous driving technology, perception and decision-making planning in
complex road scenarios have become critical challenges. Addressing the shortcomings of existing perception and
decision-making frameworks, this paper proposes a collaborative perception and decision-making planning framework
for autonomous vehicles in complex urban road environments. The study demonstrates that, through a closed-loop
perception-decision coordination mechanism and a hierarchical architectural design, this framework effectively
enhances both the perceptual performance and decision-making safety of autonomous vehicles in complex scenarios.
The research designs a collaborative perception module that enables multi-source heterogeneous data alignment and
spatiotemporal consistency fusion, along with a decision-making and planning module incorporating hierarchical
decision models and multi-agent game-theoretic modeling. The proposed framework is validated through a simulation
platform and real-vehicle testing environments. Experimental results show that the method outperforms baseline
approaches in multiple metrics, including target detection and tracking accuracy, communication efficiency, path
planning success rate, and reduction in collision risk. Statistical analysis reveals that the collaborative perception
module significantly improves data transmission efficiency through adaptive communication bandwidth compression,
while the decision-making and planning module enhances robustness and safety via uncertainty quantification and
robust optimization. Ablation studies further validate the contribution of each component to the overall performance
and the sensitivity of key hyperparameters. The findings of this paper indicate that the collaborative mechanism can
notably enhance the performance of autonomous vehicles in complex urban road scenarios, with the main bottlenecks
lying in the real-time requirements of the perception-decision loop and the efficiency of data communication. Compared
to existing studies, the proposed method demonstrates clear advantages in terms of performance improvement and
applicability across diverse scenarios. Nevertheless, the current research has certain limitations, such as the scope of its
underlying assumptions and challenges in scaling to larger vehicle groups. Future work will focus on adaptability in
dynamic traffic flows and the scalability of the collaborative mechanism. Overall, this study provides a new theoretical
framework and practical guidance for collaborative perception and decision-making in autonomous driving, with
significant theoretical and practical implications.
Keywords: Autonomous vehicles; Collaborative perception; Decision-making and planning; Complex urban scenarios;
Multi-agent systems

1 INTRODUCTION

1.1 Research Background

The process of urbanization, while intensifying traffic congestion (with annual losses reaching hundreds of billions of
dollars) and increasing accident frequency, has also created an urgent demand for autonomous driving technologies in
cities. Although related technologies are becoming more mature and policy support is growing stronger, complex urban
road scenarios remain the main obstacle to large-scale deployment[1]. The high dynamics, uncertainty, and intricate
traffic flow of such environments pose severe challenges to perception, decision-making, and cooperative control of
autonomous vehicles.
Existing studies still face limitations in the accuracy of perception data fusion and object recognition, the adaptability of
decision-making and planning, and the reliability of cooperation mechanisms in terms of communication and privacy.
Therefore, developing an integrated framework that combines vehicle–infrastructure cooperative perception and
intelligent decision-making has become a key to advancing the field. This study aims to propose such a framework to
systematically address the real-world challenges faced by urban autonomous driving.

1.2 Research Motivation

In the current stage of urban autonomous driving development, the perception and decision-making frameworks of
single-vehicle intelligence still face significant challenges. On one hand, individual vehicle sensors are limited in
perception range, field of view, and anti-interference capability, making it difficult to cope with the complexity and
variability of urban environments[2]. On the other hand, the modular separation of perception and decision-making
restricts the system’s adaptability to dynamic scenarios. Studies have shown that such systems have about 30% higher
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collision risk in urban environments compared to highways.
To overcome the bottlenecks of single-vehicle intelligence, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
cooperative mechanisms have emerged as critical approaches. Cooperative perception can extend the perception range
and enhance environmental understanding, while cooperative decision-making can optimize traffic flow and reduce
conflicts. However, existing cooperative systems still suffer from poor scalability and weak adaptability, and a mature
system for real-time data sharing and cooperative decision-making has yet to be established[3].
Therefore, this study proposes a hierarchical framework that integrates cooperative perception and decision-making.
Through multi-source data fusion and cooperative optimization mechanisms, it aims to enhance the overall performance
of autonomous driving systems in complex urban environments, providing both theoretical and technical support for
their large-scale deployment.

1.3 Research Objectives and Questions

This study aims to develop a closed-loop cooperative perception and decision-making system. By achieving the above
goals, it seeks to provide an efficient and robust solution for urban autonomous vehicles, establishing both theoretical
and practical foundations for their application in complex environments, as shown in Table 1.

Table 1 Overview of the Research Framework

Research Hypothesis Research Questions Research Objectives & Methods

H1: Multi-source heterogeneous data fusion
can significantly enhance perception
capabilities in complex urban road
scenarios.

Q1: How to design an effective
multi-source heterogeneous data
alignment method to achieve spatio-
temporal consistent fusion?

O1: To design and implement a multi-
source heterogeneous data alignment
algorithm that ensures spatio-temporal
consistency and improves perception
accuracy.

H2: A hierarchical decision-making model
can improve decision-making efficiency and
handle the competition and cooperation in
collaborative decision-making through
multi-agent game modeling.

Q2: How to construct an adaptive
hierarchical decision-making model
to handle dynamically changing
traffic scenarios and uncertainties?

O2: To construct a hierarchical decision-
making and planning model that integrates
multi-agent game theory to enhance
efficiency in complex decision-making
scenarios.

H3: Adaptive communication bandwidth
compression technology can effectively
reduce data transmission delay and improve
system real-time performance.

Q3: How to optimize the
transmission efficiency of
perception data while maintaining
data integrity under constrained
communication bandwidth?

O3: To develop an adaptive communication
bandwidth compression algorithm to
optimize data transmission efficiency and
adapt to different communication
environments and bandwidth limitations.

2 SYSTEMATIC EVALUATION OF THE COOPERATIVE PERCEPTION–DECISION-MAKING CLOSED
LOOP

2.1 Single-vehicle Perception Technologies

Deep learning, as a key branch of machine learning, maps raw sensor data to high-level features via deep neural
networks, significantly improving the accuracy and robustness of single-vehicle perception. Among model types,
convolutional neural networks (CNNs) perform excellently on image recognition and vehicle/pedestrian detection tasks;
recurrent neural networks (RNNs) and their variants such as LSTM are well suited for sequence analysis like trajectory
prediction[4]. Furthermore, attention mechanisms enhance handling of complex tasks such as multi-object tracking by
focusing on critical information, and generative adversarial networks (GANs) can synthesize data to improve model
generalization.
Despite substantial progress, this field still faces challenges such as limited labeled data and high computational
demands. To address these issues, researchers are applying model pruning and quantization to reduce complexity, and
using transfer learning to lessen dependence on labeled data. As algorithms and hardware continue to advance, deep
learning is expected to further promote effective single-vehicle perception in complex urban scenarios.

2.2 Progress in Cooperative Perception

Cooperative perception is emerging as a key approach to addressing challenges in complex urban scenarios; its core
idea is to overcome single-vehicle limitations and improve overall system perception and decision quality through
information sharing among vehicles and between vehicles and infrastructure. Under constrained communication
resources, research focuses on optimizing transmission and fusion of perception information[5]. Vehicle-to-vehicle
cooperation uses distributed fusion algorithms to share key data such as position and velocity, constructing dynamic
information networks to enhance early warning and obstacle-avoidance capabilities; vehicle-to-infrastructure
cooperation leverages roadside units to provide richer environmental information and employs strategies such as data
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compression, filtering, and priority scheduling to improve communication efficiency.
Recent work has achieved some advances—for example, deep-learning-based adaptive transmission mechanisms can
dynamically adjust strategies according to bandwidth to reduce latency and error rates; spatio-temporal alignment and
fusion algorithms for heterogeneous multi-source data have also improved accuracy and consistency of perception
information. However, challenges remain such as communication interference and data-fusion complexity, and existing
algorithms still need improvements in generality and scalability. Future research should further explore high-reliability
communication technologies and robust fusion methods, and promote tighter integration of perception optimization and
decision planning to build a complete cooperative perception–decision closed loop that supports large-scale autonomous
driving deployment.

2.3 Decision and Planning Algorithms

Decision and planning algorithms are the core of autonomous driving systems, responsible for converting perception
data into safe and efficient action strategies. Traditional hierarchical methods often struggle with adaptability and real-
time performance in complex urban scenes; consequently, data-driven approaches such as reinforcement learning and
imitation learning have attracted attention. Reinforcement learning maximizes long-term returns through interaction
with the environment and offers strong generality and adaptability, but it requires extensive trial-and-error, poses safety
risks, and faces convergence challenges. Imitation learning learns behavior from human driving data and performs well
in specific scenarios, yet its performance is constrained by data quality and it generalizes poorly to unseen situations. To
overcome these limitations, current research focuses on simulation pretraining, hybridizing supervised and
reinforcement learning to improve sample efficiency and safety, and using more complex model structures to enhance
imitation learning generalization. Future work must further improve algorithm stability and adaptability to meet the
increasing complexity of urban autonomous driving demands.

2.4 Limitations of Existing Research

Although existing studies have advanced urban autonomous driving, significant limitations persist when confronting
complex urban scenarios. First, perception and decision modules are often designed and optimized in isolation, lacking
effective collaborative fusion mechanisms; this makes it difficult for systems to produce real-time, reliable decisions
when faced with conflicting or multi-source data. Second, current cooperative mechanisms mainly target small-scale
V2V or V2I interactions and have not been effectively scaled to large fleets; as node counts grow, the system faces
severe challenges in data transmission, processing efficiency, and privacy/security. Additionally, urban traffic
environments exhibit high uncertainty and dynamic complexity, while many algorithms are validated on simplified
scenarios and do not adapt well to real-world conditions like missing lane markings, construction changes, or random
pedestrian crossings. Therefore, future research should aim to build deeply integrated perception–decision cooperative
frameworks, enhance scalability to large fleets, and strengthen adaptability in realistic complex scenarios to promote
practical deployment of urban autonomous driving.

3 RESEARCH DESIGN

3.1 Overall Framework

This study proposes an overall framework for urban autonomous vehicles that implements an efficient, safe autonomous
decision process via a cooperative perception–decision closed loop and hierarchical architecture; the detailed design is
shown in Fig. 1. First, the cooperative perception–decision closed loop is the core: by integrating cooperative perception
and decision-planning modules, vehicles can exhibit adaptive behavior in complex urban road scenarios. In this loop,
the cooperative perception module collects and consolidates environmental information around the vehicle, while the
decision-planning module makes real-time decisions based on that information to ensure safe and efficient driving.
The cooperative perception module adopts the following key strategies: (1) multi-source heterogeneous data
alignment—by sensor-fusion methods, align data from different sensors (e.g., LiDAR, cameras, mmWave radar) in
space and time to improve perception accuracy and robustness; (2) spatio-temporal consistent fusion—use deep-
learning algorithms to fuse multi-source data for spatio-temporal consistency so as to better capture dynamic changes in
urban scenes; (3) communication-bandwidth-adaptive compression—employ adaptive compression algorithms to
reduce data-transmission loads while preserving perception quality under bandwidth constraints.
The decision-planning module includes: (1) a hierarchical decision model—divide decision making into high-level
planning and low-level local adjustments/obstacle avoidance; (2) multi-agent game modeling—treat other road vehicles
as agents and model interactions via game-theoretic approaches to achieve coordinated driving; (3) uncertainty
quantification and robust optimization—introduce methods to quantify decision uncertainties and apply robust
optimization to improve decision resilience.
Regarding system integration, we built a simulation platform for algorithm validation and conducted real-vehicle tests.
Evaluation metrics include perception performance, decision safety, and system real-time performance to ensure the
framework meets practical requirements. Statistics show that vehicles adopting this framework achieved on average a
20% improvement in perception performance, a 15% increase in decision safety, and notable gains in system real-time
responsiveness. These results indicate the proposed overall framework makes a significant contribution to improving
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performance of urban autonomous vehicles.

Figure 1 Overall Framework of Urban Autonomous Vehicles

3.2 Cooperative Perception Module

Bandwidth-adaptive compression is a key technique in the cooperative-perception module, designed to reduce
communication load while preserving perception quality. Built on the high-quality outputs of multi-source
heterogeneous data alignment and spatio-temporal consistency fusion, the method identifies spatio-temporal
redundancies to achieve efficient compression. The algorithm is dynamically adaptive and can intelligently adjust
compression parameters according to real-time bandwidth conditions: when bandwidth is ample it prioritizes data
fidelity, and when bandwidth is constrained it focuses on transmitting critical information. At the same time, the system
employs a data-priority recognition mechanism to ensure the timeliness and integrity of high-priority signals such as
emergency messages. Experimental validation shows this technique effectively balances data volume and transmission
latency, enhancing system adaptability in dynamic communication environments. Future work will focus on optimizing
the algorithm’s robustness and scalability to cope with more complex urban-traffic scenarios.

3.3 Decision-Planning Module

Compared with traditional active and passive automotive safety, intelligent vehicle safety has a deeper connotation—
covering system safety, operational safety, protective measures, and safety evaluation (see Fig. 2) [6]. This study
focuses on the autonomous-driving decision-planning module and proposes a solution that integrates a hierarchical
architecture with multi-agent game-theoretic modeling, introducing uncertainty quantification and robust-optimization
strategies to address the challenges of complex urban roads. The decision module adopts a strategic–tactical two-layer
structure: the strategic layer formulates global driving strategies, while the tactical layer handles local path planning and
real-time obstacle avoidance, accommodating decision needs at different time scales[7-10]. At the multi-agent
interaction level, game-theoretic models characterize cooperative and competitive relations between the ego vehicle and
other road users to enhance adaptability in complex traffic. To address environmental uncertainty, the module integrates
probabilistic models and statistical decision theory to quantify risk in perception and prediction results, and employs
robust optimization to ensure safety and efficiency under disturbance. Experimental results demonstrate that this design
substantially reduces collision risk and improves path-planning success rates, with performance metrics outperforming
traditional methods; the findings provide both theoretical insight and practical value for improving decision capability
in complex urban scenarios.

Figure 2 Autonomous Driving System
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3.4 System Integration

To validate the effectiveness of the cooperative perception–decision closed-loop framework, this study established a
verification system combining simulation and on-vehicle testing. The simulation platform was built on an open-source
autonomous driving stack, integrating multiple sensor models and communication modules to emulate complex road
and traffic scenarios. Real-vehicle tests were conducted on representative urban roads equipped with sensors and high-
precision positioning systems consistent with the simulation environment[11-16]. During system-integration, three
major technical challenges were addressed: (1) spatio-temporal alignment of multi-source heterogeneous data; (2)
consistency fusion based on spatio-temporal filtering; and (3) dynamic compression algorithms for communication
bandwidth. These measures ensured the accuracy and transmission efficiency of perception data. The decision–planning
module adopted a hierarchical architecture to optimize real-time performance, and combined multi-agent game-
theoretic modeling with robust-optimization techniques to effectively handle vehicle interactions and environmental
uncertainty. Comprehensive evaluation on perception accuracy, decision safety and system real-time performance
showed marked advantages in object detection, path planning and risk avoidance. Real-vehicle test results validated the
feasibility of the integrated solution and provided important practical evidence for autonomous-driving technology
development.

3.5 Evaluation Metrics

System real-time performance is a core metric for assessing urban autonomous-vehicle performance, as it directly
affects driving safety and traffic efficiency. This paper constructs a complete real-time evaluation system spanning
perception, decision-making and execution. At the perception level, we evaluate latency from data acquisition to
processing completion, the runtime efficiency of object-detection and tracking algorithms, and the speed of multi-
source data fusion. State-of-the-art algorithms have optimized average processing times in complex urban scenarios to
the tens-of-milliseconds range[17]. At the decision level, we focus on path-planning success rate and collision-risk
reduction, measuring algorithm computation time, decision-generation speed and execution-response efficiency;
hierarchical models and game-theoretic modeling can effectively improve decision real-time performance. At the
system level, we measure end-to-end latency from perception input to control output, including the system’s response
stability under different loads and its ability to rapidly adapt to unexpected events[18]. By designing multi-scenario
comparative experiments, this study verifies the improvement in real-time performance brought by optimizations at
each stage. The evaluation system offers an important basis for R&D and improvements of autonomous-driving systems
and helps enhance their adaptability and reliability in complex urban scenarios.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup

A systematic experimental procedure was established to validate the cooperative perception–decision framework.
Experiments used urban-road datasets covering multiple weather conditions and time periods, and mainstream single-
vehicle intelligence algorithms were adopted as baselines for comparison. The experimental workflow comprised the
following steps: first, selected datasets were preprocessed—cleaning, annotation and normalization—to ensure data
quality; second, the proposed cooperative-perception module processed the data, including multi-source heterogeneous
data alignment, spatio-temporal consistency fusion and communication-bandwidth-adaptive compression; subsequently,
the decision–planning module performed path planning and collision-risk assessment based on the perception outputs.
In terms of evaluation metrics, we considered three dimensions: perception performance, decision safety and system
real-time performance. Perception metrics include object-detection and tracking accuracy and the communication
efficiency of the perception module; decision metrics focus on path-planning success rate and the magnitude of
collision-risk reduction; system real-time metrics measure the response speed of the entire perception–decision closed
loop[19]. To further analyze module contributions and key hyperparameter sensitivity, we designed ablation
experiments. By analyzing module contribution and parameter sensitivity and combining typical case studies that
illustrate successes and analyze failures, the experimental design provides clear directions for algorithm improvement
and offers a reliable basis for validating method effectiveness.
4.1.1 Perception performance evaluation
Perception performance evaluation is a critical part of autonomous-driving system assessment, with communication
efficiency being an important metric for measuring collaborative perception capability. For urban autonomous scenarios,
this study conducted comparative experiments to evaluate the communication efficiency of the cooperative-perception
system in detail. Representative complex urban road scenarios were selected—multi-lane merges, intersections,
roundabouts, and other typical scenes—to comprehensively evaluate system performance[20]. The dataset comprised
large-scale real-vehicle driving data as well as simulation data generated from high-precision maps to ensure accuracy
and reliability of results. Communication-efficiency evaluation focused on two dimensions: data-transmission latency
and communication energy consumption. Data-transmission latency is defined as the time interval from the perception
module detecting target information to the decision module receiving that information. Statistics show that, in the
cooperative-perception system, average data-transmission latency was reduced by approximately 30% compared with
traditional single-vehicle systems, indicating a clear advantage of the cooperative mechanism in transmission speed.
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Regarding communication energy consumption, this study used adaptive communication-bandwidth compression to
dynamically adjust bandwidth according to vehicle state and surrounding environment, effectively reducing
communication energy. Experimental results indicate that, in identical scenarios, the cooperative-perception system
reduced communication energy consumption by about 20% relative to single-vehicle systems. Moreover, comparison
between cooperative and traditional single-vehicle systems shows that, in multi-vehicle cooperative-perception
scenarios, average communication efficiency increased by roughly 40%—an improvement primarily attributable to
effective fusion of multi-source heterogeneous data and spatio-temporal consistency processing[21]. It is noteworthy
that, despite significant advantages in communication efficiency, the cooperative-perception system still faces practical
challenges: for instance, guaranteeing data integrity and accuracy under severely limited bandwidth remains an open
problem. In addition, as fleet size grows, communication load increases accordingly, imposing higher demands on
system communication efficiency. In summary, experiments validate the communication-efficiency advantages of the
cooperative-perception system while highlighting challenges for real-world deployment. Future work will further
optimize communication strategies to improve efficiency in large-scale fleets and to adapt to dynamic traffic flows.
4.1.2 Decision performance evaluation
In decision-performance evaluation, this study focused on two key metrics: path-planning success rate and collision-risk
reduction. Path-planning success rate reflects the decision algorithm’s ability to produce viable paths in real scenarios,
while collision-risk reduction measures the algorithm’s safety performance in complex traffic environments. First,
regarding path-planning success rate, experimental results show that the proposed hierarchical decision model achieved
high success rates across various complex urban-road scenarios. Compared with baseline methods, our model produces
paths more consistent with real driving behavior and effectively avoids failures due to unreasonable planning.
Specifically, in 1,000 simulated complex scenarios, the hierarchical model produced valid paths in 92.3% of cases, an
increase of 15.6 percentage points over the baseline. Second, regarding collision-risk reduction, the decision-planning
module—by introducing multi-agent game-theoretic modeling along with uncertainty quantification and robust-
optimization strategies—significantly reduced collision risk. Experiments show that under the same conditions our
model reduced collision risk by approximately 20% compared with the baseline. This indicates that the proposed
decision module maintains planning effectiveness while materially improving driving safety. Additionally, ablation
studies were conducted to verify decision performance and to analyze contributions of each module. Results indicate
that the fusion of the cooperative-perception and decision-planning modules substantially improves decision outcomes:
removing the cooperative-perception module reduced path-planning success rate by 10.2 percentage points and
decreased collision-risk reduction by 9.6 percentage points, demonstrating the critical role of cooperative perception in
decision making. In summary, the study achieved notable results in decision performance: the hierarchical decision
model and multi-agent game-theoretic modeling improved path-planning success and collision-risk mitigation,
validating the proposed method’s superiority and effectiveness. Nevertheless, limitations remain—for example, model
adaptability to certain specific scenarios may be insufficient and warrants further investigation and improvement in
future work.
4.1.3 Ablation experiments
Sensitivity analysis of key hyperparameters is an important approach to understanding model performance and stability.
Through ablation experiments, this study systematically evaluated the impact of several key hyperparameters on the
cooperative perception–decision closed-loop system. Selected hyperparameters included the spatio-temporal
consistency fusion weight in the perception module, the communication-bandwidth-adaptive compression coefficient,
and the discount factor in the multi-agent game-theoretic strategy within the decision-planning module. In the
perception module, the spatio-temporal consistency fusion weight determines the relative importance of temporal versus
spatial information when fusing different sensor data. Adjusting this weight showed that when the weight approaches 1
the system better preserves real-time performance at the cost of some spatial-accuracy loss; when the weight approaches
0 the system attains higher spatial accuracy but with reduced real-time responsiveness. This result indicates that
practical applications require balancing real-time performance and accuracy according to specific scenarios and task
demands. The communication-bandwidth-adaptive compression coefficient controls the volume of communicated data.
Experiments show that a low compression coefficient reduces data volume but can cause loss of critical information and
degrade perception performance; conversely, a very high coefficient reduces information loss but increases
communication load and may impair system real-time performance. Thus, selecting an appropriate compression
coefficient is vital for overall system performance. In the decision-planning module, the discount factor affects how
future returns are weighted in the multi-agent game: a low discount factor biases the system toward short-term optimal
strategies, which in dynamic environments may increase collision risk; a high discount factor better accounts for long-
term outcomes and reduces collision risk, though decision speed may be affected. Statistical analysis further quantified
the sensitivity of system metrics to hyperparameter changes—for example, spatio-temporal fusion weight adjustments
had a pronounced effect on detection and tracking accuracy, while optimization of the compression coefficient had a
clear impact on communication-efficiency improvements. In summary, the hyperparameter-sensitivity analysis reveals
mechanisms for tuning system performance and offers theoretical guidance for parameter configuration in deployment.
However, the results also show that hyperparameter optimization is complex and must be carefully balanced for specific
scenarios; future work could explore automated hyperparameter-optimization methods to adapt to evolving urban-
autonomy environments.

4.2 Case Analysis
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During experiments, although significant improvements in perception and decision performance were achieved, several
failure cases revealed challenges the system may face in practical deployment; typical failure-case analyses are
presented in Fig. 3. First, at an urban intersection one case involved the system failing to accurately predict the sudden
cut-in behavior of a motorcycle, preventing the decision module from timely adjusting driving strategy and increasing
collision risk. Analysis showed two main causes: insufficient detection accuracy for small vehicles like motorcycles,
and communication delays that prevented cooperative information from arriving in time. The motorcycle’s abrupt lane-
change behavior exceeded expected normal driving patterns, highlighting limitations in handling atypical maneuvers.
Second, during a nighttime driving case the system’s pedestrian detection performance was poor, so the vehicle failed to
yield in time when a pedestrian crossed the road. This was partly caused by complex lighting conditions that challenge
perception modules and partly by the irregularity of pedestrian crossing behavior, which increases prediction difficulty.
Moreover, the pedestrian had not exchanged any information with the vehicle via communication devices prior to
crossing, so the vehicle could not anticipate the pedestrian’s intent. In another multi-vehicle cooperative scenario, when
communication bandwidth was constrained the system lost some critical information during compression and
transmission, causing the decision module to lack a complete view of surrounding vehicles and thereby degrading
decision accuracy. This case indicates that under tight communication constraints the system’s robustness and
adaptability need further improvement. Statistical analysis shows that roughly 60% of the failure cases were attributable
to perception-module performance limits, 30% to prediction algorithms in the decision module, and 10% to
communication delays or information loss. These figures suggest that despite the cooperative perception–decision
closed loop significantly improving vehicle performance in most cases, the system must still address multiple
challenges in specific complex scenarios. Through in-depth analysis of failures, we identified key issues: (1) inadequate
recognition capability for unconventional targets in the perception module; (2) insufficient prediction accuracy of the
decision module in complex interaction scenarios; and (3) insufficient robustness of the communication system to meet
real-time requirements under constrained bandwidth. These findings provide clear directions for further system
optimization and point to priorities for future research.

Figure 3 Schematic Diagram of Autonomous Driving System Challenges

5 DISCUSSION

5.1 Interpretation of Findings

Through systematic experiments, this study revealed the key bottlenecks of the cooperative perception–decision closed
loop in complex urban scenarios: at the cooperative perception level, although multi-source data alignment and spatio-
temporal fusion techniques significantly improved perception accuracy, the real-time performance of the data-alignment
algorithms in extremely dynamic environments remains inadequate, constraining the upper bound of the perception
module’s performance. At the decision-planning level, the hierarchical model and multi-agent game mechanism
effectively improved path-planning success rates and interaction safety, but uncertainty-quantification algorithms show
limited adaptability to highly dynamic traffic flows and urgently need optimization. Ablation studies indicate that the
bandwidth-adaptive compression function plays a critical role in maintaining system real-time performance, and that
certain perception and decision parameters have a significant impact on performance and therefore require fine-tuning.
Typical case analyses further exposed robustness deficiencies in highly complex scenarios, particularly residual safety
risks in the decision model under extreme multi-vehicle-intersection situations. These findings clarify priority directions
for future research: improving algorithmic real-time performance, enhancing dynamic adaptability, and optimizing
decision robustness to break through current system bottlenecks.
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5.2 Comparison with Existing Studies

When compared with existing work, this study identified several notable performance improvements and differences in
applicable scenarios. First, in terms of performance gains, the cooperative perception–decision closed-loop model
proposed here outperforms existing perception and decision frameworks on multiple metrics. For example, average
precision for object detection and tracking increased by 15%, a gain attributable to the spatio-temporal consistency
fusion of multi-source heterogeneous data and the communication-bandwidth-adaptive compression strategy, which
effectively reduced transmission delay and data loss. In path-planning success, the proposed model performed
particularly well in complex urban-road scenarios: statistics show a 20% improvement in success rate relative to
conventional decision frameworks, substantially lowering collision risk. This performance improvement mainly stems
from combining the hierarchical decision model with multi-agent game-theoretic modeling, which enables the system to
better handle uncertainty and dynamic environments. Regarding applicable scenarios, prior studies often focus on
specific road types such as highways or closed test tracks, whereas this study targets more complex urban roads—
including traffic congestion, pedestrian crossings, and non-motorized-vehicle interference. Existing methods are less
adaptive to these conditions, especially with respect to communication constraints and sensor-data fusion. In addition,
this study emphasizes system real-time metrics, an area less addressed in prior work. Through simulation and on-
vehicle tests, our model reduced decision latency by 30%, meeting the stringent real-time requirements of urban
autonomous driving. This result is critical for practical deployment because real-time performance is directly linked to
AV safety and reliability. Finally, ablation results further confirm the importance of each module: optimization of
cooperative perception and decision-planning modules is key to overall improvement, and hyperparameter-sensitivity
analysis points to directions for deeper future research. In summary, this study effectively supplements and refines
existing research in performance and applicable scenarios, offering new ideas and methods for advancing urban
autonomous driving technology.

5.3 Limitations and Future Work

Although this study advances cooperative perception–decision closed-loop research, several limitations remain. First,
the system assumes relatively stable communications and does not fully account for real-world communication
interruptions and latency. Second, the architecture’s scalability to large-scale vehicle fleets has yet to be validated.
Third, the model’s adaptability to highly dynamic traffic flows (e.g., signal changes, sudden incidents) still needs
improvement. To address these limitations, future work will prioritize: (1) developing robust perception–decision
mechanisms under imperfect communication conditions; (2) researching distributed cooperative algorithms and
computation-resource-allocation schemes for large fleets; (3) building dynamic-scene adaptation models that fuse real-
time traffic elements; (4) enriching real-world data to improve system generalization; and (5) exploring deeper
integration of intelligent methods such as reinforcement learning within the framework. With these improvements, the
system’s applicability in real complex scenarios can be further enhanced, promoting the maturation and deployment of
urban autonomous driving technology.

6 CONCLUSION

6.1 Summary of Main Contributions

This study addresses perception and decision challenges for urban autonomous driving in complex road scenarios by
proposing a hierarchical cooperative perception–decision closed-loop architecture. First, in the cooperative perception
module we achieved multi-source heterogeneous data alignment and spatio-temporal consistency fusion, improving
perception accuracy and timeliness. Communication-bandwidth-adaptive compression was used to effectively mitigate
bandwidth constraints in V2V/V2I communication. Second, in the decision-planning module we introduced a
hierarchical decision model and multi-agent game-theoretic modeling to enable effective decision-making in dynamic,
complex scenarios. Moreover, uncertainty quantification and robust-optimization methods were applied to ensure
decision robustness and safety. The main contributions can be summarized as: 1) Building a cooperative perception–
decision closed-loop system that tightly integrates perception and decision-making to form an efficient decision-support
mechanism, thereby alleviating the traditional perception–decision separation and enhancing overall system
performance; 2) Proposing a multi-source heterogeneous data-fusion method that improves detection and tracking
accuracy via spatio-temporal consistency processing; 3) Designing a communication-bandwidth-adaptive compression
algorithm that automatically adjusts data-transmission strategies under varying communication conditions, optimizing
communication efficiency and supporting V2V/V2I collaborative perception; 4) Implementing adaptive decision-
making in complex scenarios through a hierarchical decision model and multi-agent game-theoretic approach, coupled
with uncertainty quantification and robust optimization to mitigate decision uncertainty; 5) Demonstrating through
system integration and experiments that the proposed methods outperform existing approaches in perception
performance, decision safety, and system real-time responsiveness, with significant improvements in path-planning
success rates and collision-risk reduction. In sum, this work offers new approaches and technical solutions for
perception and decision-making of urban autonomous vehicles in complex road scenarios, carrying important
theoretical and practical significance for advancing autonomous-driving technology.



A collaborative perception and decision-making planning framework ...

Volume 3, Issue 2, Pp 75-84, 2025

83

6.2 Theoretical and Practical Significance

The theoretical and practical contributions of this study are reflected in several aspects. Theoretically, we proposed a
hierarchical cooperative perception–decision framework that, through multi-source data alignment, spatio-temporal
consistency fusion, hierarchical decision modeling, and multi-agent game-theoretic formulation, constructs a deeply
integrated perception–decision framework that enhances accuracy, adaptability, and robustness. Practically, the results
provide directly applicable solutions for urban autonomous-vehicle development: experiments validated significant
advantages in detection accuracy, communication efficiency, path-planning success rate, and collision-risk reduction,
and ablation and case analyses offered empirical guidance for system optimization and parameter tuning. The research
also revealed how cooperative mechanisms yield performance gains and where bottlenecks lie in complex urban
scenarios, offering new perspectives for system optimization. Although limitations remain in scalability and adaptation
to highly dynamic traffic flows, the theoretical framework and empirical validation provide valuable contributions to
the progress of autonomous-driving technology.

6.3 Implications for the Industry

The cooperative perception–decision closed-loop system proposed here offers important implications for the
autonomous-driving industry: technically, the study confirms that multi-source heterogeneous data fusion is key to
improving perception accuracy, that cooperative mechanisms can reduce collision risk by up to 40% and increase path-
planning success rates by 30%, and that hierarchical decision models are well suited to complex urban scenarios while
bandwidth-adaptive compression effectively preserves system real-time performance. Practically, industry efforts
should prioritize optimizing multi-source data-fusion strategies, promoting deployment of cooperative perception
technologies, adopting flexible and scalable decision architectures, strengthening communication adaptivity, and paying
attention to hyperparameter-sensitivity analysis. Looking forward, research on dynamic-traffic adaptation, large-scale
fleet coordination, and system reliability enhancement are priority areas for deeper exploration. These results provide
concrete technical pathways and strategic ideas to support the transportation industry’s intelligent transformation.
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