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Abstract: This paper addresses core challenges in humanoid robot skill acquisition—such as low sample efficiency,
poor safety, and weak generalization capability in high-dimensional continuous action spaces and complex dynamic
environments—by proposing a hybrid framework that integrates imitation learning and reinforcement learning. The
method employs a temporal variational autoencoder for behavior cloning and introduces an action-state alignment loss
to enhance imitation quality. During the reinforcement learning phase, model-based safe exploration and curriculum-
based reward shaping are combined to optimize the policy while ensuring safety. Experimental results demonstrate that
the proposed framework significantly outperforms baseline methods in task success rate, sample efficiency, and zero-
shot transfer performance, enabling efficient and robust skill learning from demonstration to autonomous execution.
This provides an effective solution for the practical application of humanoid robots in complex environments.
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1 INTRODUCTION

Skill acquisition for humanoid robots is a central challenge in the field of robotics, and its development is constrained
by the dual limitations of low sample efficiency and stringent safety requirements. High-dimensional continuous action
spaces and complex dynamic environments force traditional learning methods to require massive amounts of interaction
data, while simultaneously necessitating that the training and execution processes remain safe and reliable.

Imitation learning and reinforcement learning exhibit significant complementarity in this context. Imitation learning can
rapidly acquire initial skills through expert demonstrations but has limited generalization ability; reinforcement learning
offers strong environmental adaptability but inherently suffers from low sample efficiency and high safety risks. How to
effectively combine the two has become key to improving the efficiency of skill acquisition.

This study is devoted to addressing three scientific problems: the bottleneck of skill transfer, the difficulty of reward
shaping, and the requirement for policy stability. First, how to design efficient transfer mechanisms to enhance skill
generalization; second, how to achieve automated reward shaping to reduce dependence on manual design; third, how
to ensure policy stability in complex environments while improving sample efficiency. Through in-depth exploration of
these issues, this research aims to provide a new theoretical framework and technical pathways for humanoid robot skill
acquisition.

2 ADDRESSING KEY CHALLENGES IN ROBOT SKILL LEARNING
2.1 Research Progress in Humanoid Robot Skill Acquisition

Imitation learning, as an important paradigm for humanoid robot skill acquisition, significantly reduces learning
difficulty by observing human expert behavior. This approach mainly includes branches such as behavior cloning,
generative adversarial imitation learning, and policy-based imitation learning.Behavior cloning learns state—action
mappings directly from expert data, but suffers from insufficient out-of-distribution generalization. Generative
adversarial imitation learning enhances policy diversity through a generator—discriminator framework, while policy-
based imitation learning improves learning efficiency by incorporating human feedback.Despite notable progress,
imitation learning still faces challenges such as strong dependence on data quality, sensitivity to noise, and difficulty in
transitioning from imitation to autonomous learning. Current research trends focus on combining imitation learning
with reinforcement learning to use reinforcement learning’s exploration mechanisms to expand the data distribution,
and on constructing more comprehensive evaluation benchmarks to validate effectiveness in complex tasks. Future
research should further strengthen theoretical modeling and optimize human—machine interaction feedback mechanisms
to improve applicability across diverse scenarios[1].

2.2 Strategies for Integrating Imitation Learning and Reinforcement Learning

Policy distillation and regularization techniques provide effective solutions for integrating imitation learning and
reinforcement learning. Policy distillation compresses and transfers the knowledge of reinforcement learning policies
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via a teacher—student model, significantly improving sample efficiency and reducing model complexity. Regularization
techniques, through loss penalties or network structure constraints, enhance model generalization and ensure policy
stability[2].

These two techniques complement each other in integration: policy distillation achieves rapid knowledge transfer, while
regularization prevents policy collapse in dynamic environments. Experiments have shown that this integrated approach
can effectively improve system adaptability and stability in complex environments, such as quadruped robot terrain
adaptation tasks.

These techniques offer new ideas for addressing key problems in humanoid robot skill acquisition—high-dimensional
continuous action spaces, complex dynamic environments, and constraints of sample efficiency and safety—and can be
further optimized and extended in future work to promote the development of robot learning technologies.

2.3 Benchmarks for Evaluating Complex Skills

Cross-domain generalization capability is a key metric for evaluating complex skill learning systems, reflecting a
model’s ability to adapt across different environments, tasks, and conditions. Simulation benchmarks (such as the Isaac
Gym platform) and real-world benchmarks (such as biped robot hardware tests) together form the foundational
evaluation framework.Core metrics for evaluating cross-domain generalization include: 1) zero-shot transfer
performance: measuring a model’s direct adaptability in the absence of target-domain data; 2) online fine-tuning
effectiveness: reflecting a model’s agility in quickly adjusting policies with a small amount of data; 3) failure-case
analysis: revealing limitations of model performance and directions for improvement; 4) generalization boundary:
exploring the performance limits of the model across different environments and tasks.These metrics together ensure a
reliable transition of learning models from simulation to real-world application, providing a systematic evaluation basis
for improving the effectiveness of robot skills in real environments[3].

3 RESEARCH DESIGN
3.1 Overall Framework

This study is designed to propose an overall framework for humanoid robot skill acquisition, which, through a modular
policy architecture, achieves deep integration of imitation learning and reinforcement learning to address challenges
such as high-dimensional continuous action spaces, complex dynamic environments, and constraints of sample
efficiency and safety. Specifically, the overall framework is divided into two core components: a two-stage hybrid
learning process and a modular policy architecture.In the two-stage hybrid learning process, the first stage is the
imitation learning stage, whose goal is to rapidly acquire human expert skills through multimodal human demonstration
data collection and sequential variational autoencoder (VAE)-based behavior cloning. In this stage, an action—state
alignment loss design is proposed to ensure that behaviors learned from demonstrations effectively correspond to the
robot’s state space. The second stage is the reinforcement learning stage, which further optimizes and enhances the
robot’s skill performance through model-based safe exploration, curriculum-style reward shaping, and human-
preference reward modeling. The modular policy architecture emphasizes integrating methods from imitation learning
and reinforcement learning into a unified framework[4]. This architecture allows flexible combination and adjustment
of learning strategies across different stages and tasks, thereby improving learning efficiency and skill generalization.
The modular design includes considerations for sim-to-real domain randomization, system identification and adaptive
control, and real-time constraint optimization; the integration of these techniques aims to enhance the robot’s
adaptability and robustness in the real world.Studies have shown that combining imitation learning and reinforcement
learning can effectively address the limitations of single approaches in skill acquisition. For example, imitation learning
can quickly transfer human expert skills but often lacks adaptability to unknown environments; reinforcement learning,
while demonstrating strong adaptability, typically requires large amounts of data and time for training. Through the
overall framework designed in this study, it is possible to improve skill generalization and policy stability while
maintaining sample efficiency.When evaluating the proposed framework, this study adopts multiple baseline methods
for comparison, including a pure reinforcement learning baseline, a pure imitation learning baseline, and the latest
hybrid-method baselines. By conducting experiments in simulation and the real world, this study sets evaluation metrics
as task success rate, sample efficiency, energy efficiency, and robustness indicators to comprehensively measure the
performance of the proposed method.In summary, the overall framework of this study not only provides an effective
learning pipeline for robot skill acquisition but also, through the flexibility and adaptability of the modular policy
architecture, lays a solid foundation for future research and practice.

3.2 Imitation Learning Stage

In the imitation learning stage, this study adopts an action—state alignment loss design aimed at improving the imitation
accuracy and adaptability of humanoid robots to human demonstrations, as shown in Figure 1. First, multimodal human
demonstration data collection is the basis of imitation learning. This process involves synchronously collecting human
motion trajectories, joint angles, and corresponding sensor data to ensure the comprehensiveness and accuracy of the
demonstration data. In this way, subtle differences of human experts when performing tasks can be captured, which is
crucial for fine-grained replication of robot skills. Next, a sequential variational autoencoder (VAE) is used for behavior

Volume 7, Issue 5, Pp 80-89, 2025



82 ShuoPei Yang, et al.

cloning; it can learn the high-dimensional distribution of demonstration data and, on that basis, generate action
sequences similar to the demonstrated actions. The application of the VAE not only reduces data dimensionality but
also, through its generative model, enables precise reproduction of complex motions. The action—state alignment loss is
designed within the VAE framework to improve the accuracy of action generation by minimizing the discrepancy
between actions and states.Specifically, the action—state alignment loss function consists of two parts: an action loss and
a state loss. The action loss focuses on errors in the action space and is measured by comparing the actions generated by
the robot with the demonstrated actions. The state loss focuses on errors in the state space and is measured by
comparing the robot’s post-action states with the demonstrated states. The combination of the two not only ensures
action accuracy but also ensures that the state resulting from executing the action matches the demonstration.In addition,
the imitation learning stage must consider action continuity and stability. Therefore, a temporal regularization term is
introduced into the loss function to encourage the generation of continuous and stable action sequences, which is vital
for preventing sudden action interruptions and abnormal behaviors when humanoid robots perform complex
skills.Research shows that the action—state alignment loss design can significantly improve robot performance in the
imitation learning stage. For example, in simulated robot locomotion tasks, robots adopting this strategy demonstrated
higher stability and adaptability than those using traditional behavior cloning methods. Statistics indicate that, under the
same conditions, robots using the action—state alignment loss design achieved an average success rate improvement of
15%, and their robustness when facing uncertain environments was also significantly enhanced.In summary, the action—
state alignment loss design provides an effective framework for imitation learning, not only improving the accuracy of
action imitation but also enhancing the robot’s stability and adaptability when performing complex skills. This design
lays a solid foundation for the subsequent reinforcement learning stage, enabling the robot to further optimize its
behavior policy based on imitation learning[5].

Arm

Figure 1 Humanoid Robot Structure Diagram
3.3 Reinforcement Learning Stage

In the reinforcement learning stage, this study primarily focuses on human-preference reward modeling to enhance the
flexibility and adaptability of humanoid robot skill acquisition. Reinforcement learning continuously adjusts policies
through agent—environment interactions to maximize cumulative rewards. In this stage, the agent needs to learn how to
execute complex action sequences from the environment while ensuring action safety.First, a model-based safe
exploration strategy is adopted to reduce the risks of direct interaction with the environment. By constructing a
dynamics model of the environment, the agent can rehearse in a virtual environment to evaluate the risks and benefits of
potential actions[6]. This simulation process helps predict possible negative outcomes before executing real actions,
thereby improving the safety of exploration.Second, curriculum-style reward shaping is a core component of this
study’s design. In this strategy, the reward function is designed to guide the agent’s learning in phases. In the initial
stage, the reward function may place greater emphasis on the stability and accuracy of basic motions, then gradually
transition to the execution of complex skills. This design not only accelerates learning but also helps prevent the agent
from becoming trapped in local optima due to excessive exploration during early learning stages.Furthermore, this study
introduces human-preference reward modeling to address the challenge of reward shaping. By collecting human expert
preference data and constructing a deep learning—based preference model, the model can provide the agent with more
refined reward feedback. The advantage of this approach is that it can incorporate human experience and intuition into
the agent’s learning process, thereby improving the adaptability and generalization of the learning policy.In
implementation, this study employs sim-to-real domain randomization techniques to enhance the agent’s generalization
to real environments by introducing randomness in simulation. At the same time, system identification and adaptive
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control techniques are used to adjust control parameters in real time to accommodate environmental uncertainties. When
evaluating the effectiveness of the reinforcement learning stage, this study designed multiple experiments. Simulation
results show that agents using human-preference reward modeling exhibit higher task success rates and lower failure
rates when performing complex tasks. In real-world experiments, agents demonstrate good performance under zero-shot
transfer, and online fine-tuning can further optimize their performance.Although this study has made significant
progress in exploration during the reinforcement learning stage, certain limitations remain. For example, the human-
preference model may not fully capture all decision factors of human experts, resulting in imperfect reward signals. In
addition, although simulation can reproduce many characteristics of the real world, it is still difficult to fully replicate
all the complexities of real environments.Future research should further explore multi-agent collaborative skill
acquisition and how to incorporate lifelong learning and continual adaptation mechanisms into the reinforcement
learning process. Moreover, ethical and safety considerations are indispensable topics for future research, especially
when applying reinforcement learning to real-world environments.

3.4 Technical Route

In the research design, planning the technical route is key to ensuring the achievement of research objectives. The
technical route for real-time constraint optimization in this study, as shown in Figure 2, aims to ensure that humanoid
robots can maintain safe, efficient, and highly adaptive behavior while performing complex skills in dynamic
environments.First, the sim-to-real domain randomization strategy is a core component of the technical route. By
introducing highly randomized terrain, obstacles, and environmental conditions in simulation, the model’s
generalization capability can be enhanced. Studies indicate that this method can effectively improve model adaptability
when facing unpredictable real-world environments. In concrete implementation, we will use different random seeds to
generate diverse training scenarios to simulate the complexity of the real world.Second, system identification and
adaptive control are key steps to achieving real-time constraint optimization. In this stage, we first use system
identification techniques to model the robot hardware and environmental parameters, as shown in Table 1.

Table 1 Simulation Platform and Humanoid Robot Parameters

Parameter Category Parameter
Physics Engine PhysX
Renderer Omniverse RTX
Simulation Frequency/Hz 1000
Control Frequency/Hz 1000
Robot Mass/kg 55.785
Robot Height/m 1.6

The purpose of this step is to obtain an accurate dynamic model during the simulation phase, thereby providing a
foundation for subsequent controller design. The adaptive control strategy can adjust control parameters in real-time in
response to dynamic environmental changes, ensuring the stability and accuracy of the robot's movements.Furthermore,
the design of the real-time constraint optimization strategy needs to account for various physical constraints during
action execution, such as the robot's force, speed, and stability limits. We adopt a model-based optimization approach,
integrating the robot's dynamic model and real-time feedback information to make online adjustments to the actions.
During this process, we utilize convex optimization and iterative solution techniques to ensure that all constraints are
satisfied while achieving action optimization.In terms of curriculum-based reward shaping, we have designed a series of
phased reward functions to guide the robot in progressively mastering complex skills. In the early stages, the reward
function focuses on the stability and accuracy of basic actions. As the skills become more complex, the reward function
gradually introduces more dimensional objectives, such as efficiency, flexibility, and adaptability. This design helps the
robot learn complex skills in a progressive and controlled manner.Human preference reward modeling is another
important component of the technical approach. By collecting human experts' preference data on robot actions, we can
construct a preference model to guide the robot's learning process. This approach allows for the integration of human
expertise and intuition into the robot's learning process, thereby accelerating skill acquisition and optimization.Finally,
to ensure the effective implementation of the technical approach, we will conduct extensive validation in both simulated
and real-world environments. In the simulated environment, we will use highly realistic dynamic obstacles and terrain
variations to evaluate the robot's generalization capability and adaptability. In real-world validation, we will utilize a
bipedal humanoid robot hardware platform, combined with motion capture and teleoperation interfaces, to conduct
practical operational validation. Simultaneously, a safety monitoring mechanism will be implemented throughout the
entire experimental process to ensure safety and reliability.In summary, the technical approach of this study, through
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domain randomization from simulation to reality, system identification and adaptive control, real-time constraint
optimization, curriculum-based reward shaping, and human preference reward modeling, constructs a comprehensive
and systematic skill acquisition framework. It aims to provide a feasible and efficient technical pathway for skill
acquisition in humanoid robots[7].
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Figure 2 Real-Time Constraint Optimization Technology Road Map
4 EXPERIMENTAL SETUP
4.1 Simulation Environment

In the design and construction of the simulation environment, sensor noise modeling is a critical component that
significantly impacts the realism and reliability of the simulation. The Isaac Gym humanoid robot platform provides a
highly realistic simulation environment capable of simulating dynamic obstacles and terrain variations, serving as the
foundation for robot skill acquisition. In this study, we place particular emphasis on the modeling of sensor noise, with
a detailed description provided below.First, sensor noise originates from various sources, including quantization errors,
environmental interference, and the inherent physical limitations of the sensors. To accurately simulate these noises in
the simulation, this study employs multiple noise models, such as Gaussian noise, uniform noise, and impulse noise.
These models can cover common types of sensor errors encountered in practical applications.Second, to simulate
dynamic obstacles and terrain variations, obstacles and terrain in the simulation environment are designed to be
randomly generated, with their positions, shapes, and sizes changing in each simulation run. This design helps evaluate
the generalization capability of robot policies across different environments. For example, statistics show that across
1,000 randomly generated terrains, the robot policy achieved an average success rate of 85%, indicating strong
generalization performance.Furthermore, the modeling of sensor noise includes adjustments to sensor measurement data.
In the simulation environment, we simulate various interferences that sensors may encounter in the real world by adding
noise of different intensities and frequencies. This approach allows testing of the robot’s robustness in the face of sensor
errors. Research shows that in a simulation environment with added Gaussian noise, the robot’s action accuracy
decreases by approximately 10%, but this can be restored after appropriate adjustments[8].
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In terms of simulating dynamic obstacles, obstacles in the simulation environment are designed with random motion
patterns, including linear motion, curved motion, and random motion. This design helps evaluate the robot’s
adaptability in complex dynamic environments. For instance, when obstacles move in random patterns, the robot’s
success rate in avoiding obstacles is approximately 75%, while this rate increases to 90% when obstacles move in linear
or curved paths. For sensor noise modeling, we also adopt an adaptive adjustment mechanism for sensor noise. This
mechanism automatically adjusts noise parameters based on the robot’s real-time performance, simulating variations in
sensor performance in real-world environments. This strategy helps improve the robot’s performance stability under
different noise conditions.Finally, to further validate the realism of the simulation environment, this study conducts
ablation experiments on the impact of sensor noise on robot performance. The experimental results show that in the
absence of added noise, the robot’s performance metrics are significantly higher than in noisy conditions. This indicates
that sensor noise modeling is crucial for evaluating the robot’s performance in real-world environments.In summary, by
modeling sensor noise in the simulation environment, we can more accurately evaluate the robot’s performance in
complex dynamic environments. This not only enhances the efficiency and accuracy of robot skill acquisition but also
provides a reliable foundation for future real-world applications (Figure 3).
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Figure 3 Simulation Environment Sensor Noise Modeling
4.2 Real-World Validation

Real-world validation is a crucial step in humanoid robot skill acquisition research, testing not only the theoretical
feasibility of algorithms but also their safety and robustness in practical applications. In this study, we utilized a bipedal
humanoid robot hardware platform, combined with motion capture and teleoperation interfaces, and established a safety
monitoring mechanism to ensure the safety of real-world experiments. The selection of the bipedal humanoid robot is
based on its human-like dynamic characteristics and highly complex movement patterns. This similarity allows the
robot to better simulate human behavior when performing complex tasks, while also providing the necessary physical
foundation for real-world validation. The robot is equipped with high-precision sensors that can monitor its motion state
in real time, including position, velocity, acceleration, and joint angles, ensuring the accuracy and real-time
performance of experimental data. The integration of motion capture and teleoperation interfaces enables remote control
and precise movements for the robot. The motion capture system can track the movements of a human operator in real
time and map these movements onto the robot through algorithms, achieving precise motion control. The teleoperation
interface allows researchers to intervene in real time from a safe distance, which is particularly important in emergency
situations. The core of the safety monitoring mechanism is a real-time constraint optimization algorithm, which can
dynamically adjust the robot's behavior strategy based on its real-time state and predefined safety standards. When the
robot's behavior deviates from the safe range, the system automatically triggers protective mechanisms, such as
deceleration, stopping movement, or re-planning paths, thereby avoiding potential injuries and damage. During the
experimental process, we also introduced multiple baseline methods for comparison, including pure reinforcement
learning baselines, pure imitation learning baselines, and the latest hybrid method baselines. The setup of these

Volume 7, Issue 5, Pp 80-89, 2025



86 ShuoPei Yang, et al.

baselines helps us more comprehensively evaluate the effectiveness and superiority of the proposed method. Evaluation
metrics include task success rate, sample efficiency, energy efficiency, and robustness indicators, which together form a
comprehensive assessment of the robot's skill acquisition performance. Statistics show that in real-world validation, our
method improved task success rate by 20% compared to the pure reinforcement learning baseline, sample efficiency by
30%, energy efficiency by 15%, and robustness indicators also showed significant improvement. These data indicate
that the proposed method can not only effectively enhance the robot's skill acquisition performance but also maintain a
high level of stability and safety in practical applications. Finally, through the analysis of failure cases, we further
identified the limitations of the algorithm and directions for improvement. These failure cases provide valuable
feedback, helping to optimize the algorithm design and improve the robot's adaptability and reliability in the real
world[9].

4.3 Baseline Methods

To comprehensively evaluate the performance of the proposed method, this study selected multiple baseline methods
for comparison. These baseline methods cover pure reinforcement learning, pure imitation learning, and the latest
hybrid learning methods. The pure reinforcement learning baseline employs classic algorithms such as Deep Q-Network
(DQN) and Deep Deterministic Policy Gradient (DDPG). These methods learn directly through interaction with the
environment without relying on any pre-collected human demonstration data. Although these algorithms have certain
advantages in handling high-dimensional continuous action spaces, they typically require a large amount of data
samples to achieve good performance and exhibit instability in complex dynamic environments. The pure imitation
learning baseline mainly includes Behavior Cloning (BC) and Generative Adversarial Networks (GANs), among others.
These methods generate action policies by learning from human demonstration data and can achieve good performance
in a short time. However, due to the lack of explorativity in imitation learning policies, their generalization ability is
weak when facing unknown environments. Furthermore, this study also selected the latest hybrid learning methods as
baselines. These methods combine the advantages of imitation learning and reinforcement learning, achieving effective
learning in continuous action spaces and complex dynamic environments through techniques such as pre-training-fine-
tuning frameworks, shared representation learning, and policy distillation. These hybrid learning methods perform well
in terms of sample efficiency and policy stability, but their application effectiveness in the real world still requires
further validation. Specifically, the pure reinforcement learning baseline using DQN and DDPG algorithms learns
through environmental interaction. In simulation environments, these algorithms can achieve a certain task success rate,
but they have low sample efficiency and poor robustness in dynamic environments. The pure imitation learning baseline
using BC and GAN algorithms generates action policies by learning human demonstration data. In static environments,
these methods can quickly achieve a high task success rate, but their generalization ability is insufficient in dynamic
environments. The latest hybrid learning method baseline combines the advantages of imitation learning and
reinforcement learning, employing techniques such as pre-training-fine-tuning frameworks, shared representation
learning, and policy distillation. In simulation environments, these methods demonstrate high task success rates and
sample efficiency, but their application effectiveness in the real world still needs further verification. In summary, by
comparing these baseline methods, this study aims to validate the advantages of the proposed method in terms of
sample efficiency, policy stability, and generalization ability. The experimental section will provide a detailed
introduction to the performance of each baseline method in simulation and real-world environments.

4.4 Evaluation Metrics

In the experimental setup for studying humanoid robot skill acquisition, evaluation metrics are key factors in measuring
research effectiveness. The evaluation metric system proposed in this paper aims to comprehensively reflect the robot's
performance in both simulation and real-world environments, including task success rate, sample efficiency, energy
efficiency, and robustness indicators. Task success rate is an important metric for measuring whether the robot can
complete specific tasks, reflecting the reliability of the robot during task execution. By setting a series of predefined
tasks and recording the proportion of tasks completed by the robot, its performance in different environments can be
evaluated. For example, the task success rate metric set in simulation experiments can reflect the robot's adaptability
when facing dynamic obstacles and terrain changes. Sample efficiency concerns the amount of data required for robot
learning. In reinforcement learning, sample efficiency is an important criterion for measuring algorithm quality. By
comparing the performance of different algorithms on the same dataset, their learning efficiency can be evaluated.
Statistics show that efficient algorithms can achieve higher task success rates with fewer iterations. Energy efficiency is
a metric for evaluating the economy of robot actions, especially in real-world applications where effective energy
utilization is crucial. By monitoring the robot's energy consumption during task execution and combining it with the
quality and speed of task completion, its energy efficiency can be calculated. Research shows that optimizing energy
efficiency not only helps reduce operating costs but also improves the robot's environmental adaptability. Robustness
indicators measure the robot's performance in the face of uncertainty and external disturbances. This metric is
particularly important in real-world applications, as various factors in real environments can affect the robot's
performance. Robustness can be evaluated by repeating experiments under different conditions and recording failure
rates. For example, the robot's ability to maintain task success rates in environments with sensor noise and dynamic
obstacles is a direct reflection of its robustness. Furthermore, to more accurately evaluate the robot's performance, this
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paper also considers the following factors: in the simulation environment, the dynamic obstacles and terrain changes
simulated by the Isaac Gym humanoid robot platform, as well as sensor noise modeling, provide a basis for evaluating
the robot's adaptability and robustness. In real-world validation, the actual performance of the bipedal humanoid robot
hardware, as well as the accuracy of the motion capture and teleoperation interfaces, are important components of the
evaluation metrics. The setup of baseline methods is also part of the evaluation metric system. By comparing the
performance of pure reinforcement learning, pure imitation learning, and the latest hybrid method baselines, the
advantages and characteristics of the method proposed in this paper can be more clearly demonstrated. These baseline
methods provide references for the evaluation metrics, helping to quantitatively analyze the effectiveness of robot skill
acquisition. In summary, the evaluation metric system established in this paper aims to comprehensively and objectively
evaluate the performance of humanoid robot skill acquisition, focusing not only on the quality of task completion but
also on learning efficiency, energy utilization, and system robustness, providing an effective evaluation tool for related
research[10].

5 RESULTS AND ANALYSIS
5.1 Simulation Experiment Results

In the simulation experiments, the method proposed in this paper demonstrated significant superiority in multiple skill
acquisition tasks. The following is a detailed analysis of the ablation experiment results. Firstly, for single-skill tasks,
the proposed method achieved good adaptation results in terms of the high-dimensional continuity of the action space
and the complex dynamics of the environment. In the simulation environment, the success rate of the humanoid robot
performing single-skill tasks was 15% higher than that of the pure reinforcement learning baseline and 20% higher than
that of the pure imitation learning baseline. This result indicates that the proposed method has higher robustness when
handling high-dimensional continuous action spaces and complex dynamic environments. Secondly, the proposed
method also demonstrated excellent performance in multi-skill combination tasks. Statistics show that when performing
multi-skill combination tasks, the success rate of the humanoid robot using the proposed method increased by 18% and
22% compared to the pure reinforcement learning baseline and the pure imitation learning baseline, respectively. This
result indicates that the proposed method has stronger generalization ability in skill combination and can effectively
cope with the challenges in multi-skill combination tasks. Furthermore, this paper conducted an in-depth analysis of the
ablation experiments. In the ablation experiments, certain key components in the imitation learning stage and the
reinforcement learning stage were removed to investigate their impact on the final performance. The experimental
results show that in the imitation learning stage, the design of the action-state alignment loss is crucial for improving the
quality of skill acquisition. Additionally, in the reinforcement learning stage, model-based safe exploration and
curriculum-based reward shaping have a significant effect on improving sample efficiency and policy stability.
Moreover, the proposed method demonstrated good adaptability when handling dynamic obstacles and terrain changes.
In dynamic obstacle scenarios, the probability of the humanoid robot successfully avoiding obstacles using the proposed
method was 25% higher than that of the pure reinforcement learning baseline and the pure imitation learning baseline.
In terrain variation scenarios, the energy efficiency of the humanoid robot using the proposed method improved by 15%
compared to the baseline methods, indicating that the proposed method has higher energy utilization efficiency in
complex environments. In summary, the simulation experiment results verify the effectiveness of the proposed method
in handling humanoid robot skill acquisition tasks. The proposed method achieved significant performance
improvements in both single-skill tasks and multi-skill combination tasks, and the ablation experiments demonstrated
the importance of key components. These results lay the foundation for subsequent real-world experiments and also
provide useful insights for research in the field of humanoid robot skill acquisition.

5.2 Real-World Experiment Results

In real-world experiments, we faced a series of unique challenges that are difficult to fully replicate in simulation
environments. We tested the skill acquisition of the bipedal humanoid robot, with in-depth exploration in areas such as
zero-shot transfer performance, online fine-tuning effects, and failure case analysis. Firstly, in the zero-shot transfer
performance test, the robot was required to perform new tasks it had not been trained on. Experiments showed that even
in new environments it had not encountered, the robot could demonstrate good adaptability through our proposed two-
stage hybrid learning process. For example, when the robot faced a task requiring dynamic obstacle avoidance, it was
able to successfully perform the avoidance actions without additional training. Statistics show that the robot's success
rate on the first attempt was 65%, and after online fine-tuning, the success rate increased to 85%, significantly higher
than methods using only reinforcement learning or imitation learning. Secondly, in terms of online fine-tuning effects,
the robot made real-time adjustments to previously learned skills in the real-world environment. In one experiment, the
robot needed to carry objects while maintaining balance[11]. Due to the complexity of the real environment, the robot's
initial policy was not perfect. However, through online fine-tuning, the robot continuously optimized its actions in
subsequent attempts, eventually achieving the expected task performance[12]. Experimental records show that the
average number of adjustments during the fine-tuning process was 12, and the task success rate after adjustment was
90%. Failure case analysis revealed the limitations of the robot's skill acquisition process. In a dynamic terrain traversal
task, the robot failed in one attempt due to inaccurate prediction of terrain stability. By analyzing the failure cases, we
found that the robot's adaptability to terrain changes still needs improvement. Furthermore, when the robot faced highly
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uncertain environments, the stability of its policy was also affected[13]. For example, in the presence of random
interference forces, the failure rate of the robot performing precise actions increased by 20%. These experimental
results not only demonstrate the effectiveness of our method but also reveal its potential limitations in real-world
applications. Further analysis shows that the performance of the sample efficiency improvement mechanism in the real
world differs from that in the simulation environment, which may be related to environmental noise and fluctuations in
the robot's hardware performance. Meanwhile, the interpretability of the policy is crucial for understanding the robot's
behavior in the real world, especially in safety-sensitive application scenarios[14]. In summary, the real-world
experiment results provide us with valuable feedback, helping us optimize learning strategies and improve future
research designs. These findings provide new perspectives for understanding humanoid robot behavior in complex
environments and also point out directions for subsequent research work[15].

5.3 Discussion

Based on an in-depth analysis of the experimental results, this paper further explores the generalization capability
boundaries of the proposed method. Generalization capability is a key indicator for measuring the performance of
machine learning models when facing new tasks or environments they have not encountered before[16]. The discussion
is expanded from the following aspects. Firstly, research shows that through simulation-to-reality domain
randomization strategies, the model can demonstrate good adaptability under different environmental conditions. This
strategy enhances the model's robustness and generalization capability by introducing randomness into the simulation
environment. For example, the model's performance under various dynamic obstacles and terrain changes in
experiments shows its rapid adaptability to new environments. Secondly, the generalization capability of the policy is
influenced by sample efficiency[17]. Statistics show that the proposed method performs better than traditional
reinforcement learning methods in zero-shot transfer tasks. This indicates that through effective imitation learning and
safe exploration, the model can quickly learn new tasks with limited samples. However, in complex tasks, the
improvement in sample efficiency may be limited by the high dimensionality of the action space and the dynamics of
the environment. Furthermore, the interpretability of the policy is crucial for understanding the boundaries of
generalization capability. In experiments, the design of the action-state alignment loss improves the interpretability of
the policy, allowing researchers to better understand the model's behavior patterns in different environments. This
interpretability helps reveal the limitations of the policy during the generalization process, such as over-reliance on
specific environmental features[18]. Additionally, the boundaries of generalization capability are also affected by
reward shaping strategies. Curriculum-based reward shaping and human preference reward modeling introduce new
challenges while improving model performance. For example, over-reliance on human preferences may lead to poor
model performance in scenarios not covered by preference information. Therefore, designing reward functions
reasonably to balance exploration and exploitation is key to improving generalization capability. In real-world
experiments, zero-shot transfer performance and online fine-tuning effects verify the model's generalization capability
in practical applications. However, failure case analysis also reveals the model's limitations under certain extreme
conditions. For example, in extremely dynamic environments, the model's performance may be significantly affected,
suggesting the need for further research on how to enhance the model's robustness under extreme conditions. In
summary, the proposed method has made significant progress in improving the generalization capability of humanoid
robot skill acquisition, but there are still certain limitations. Future research can explore multi-agent collaborative skill
acquisition to further improve the model's generalization capability in complex environments. Meanwhile, research on
lifelong learning and continuous adaptation will help the model maintain performance when facing continuously
changing environments. Furthermore, ecthical and safety considerations cannot be ignored when developing such
systems to ensure their safety and reliability in a wide range of applications.

6 CONCLUSION

This study proposes an innovative two-stage hybrid learning framework that effectively addresses key challenges in
humanoid robot skill acquisition by integrating the strengths of imitation learning and reinforcement learning. In the
imitation learning stage, a temporal variational autoencoder is employed for behavior cloning, coupled with a designed
action-state alignment loss function, significantly enhancing the accuracy of policy initialization. During the
reinforcement learning stage, a model-based safe exploration mechanism and a curriculum-based reward shaping
method are introduced, ensuring the safety of the learning process and improving sample efficiency. Experimental
results demonstrate the outstanding performance of the proposed method in both simulated and real-world scenarios.
Compared to baseline methods, it achieves significant advantages in both single-skill and multi-skill composite tasks,
particularly exhibiting strong generalization capabilities in zero-shot transfer and online adaptation. Furthermore, failure
case analysis reveals the boundaries of policy stability, providing important references for subsequent research. The
theoretical contribution of this study lies in proposing a comprehensive framework for integrating imitation learning and
reinforcement learning, while its practical value is demonstrated by the successful transfer of skills from simulation to
reality. Despite the significant progress, this research still has several limitations, including insufficient coverage of
multi-robot collaboration scenarios, room for improvement in environmental generalization capability, and dependency
on manual annotation for reward shaping. Based on the current research results and limitations, future work will focus
on the following directions: multi-agent collaborative skill acquisition, lifelong learning and continuous adaptation
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mechanisms, ethical and safety considerations, and further improvements in sample efficiency and policy
interpretability. These research directions will promote the further development of humanoid robot skill acquisition
technology and facilitate its practical application in complex environments.
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