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Abstract: This study focuses on enhancing affective computing and multimodal interaction capabilities in social
humanoid robots to improve natural communication experiences between robots and humans. By constructing a system
framework that integrates affective computing with multimodal interaction, it addresses the key challenges of
insufficient accuracy in emotion recognition and lack of naturalness in emotional expression. In the research design, we
established a comprehensive system architecture encompassing multimodal emotional feature extraction, emotion state
inference algorithms, and emotional expression strategies. At the interaction implementation level, a multimodal
interaction system comprising perception, decision-making, and execution layers was designed to ensure effective
processing of multi-source information such as voice, vision, and touch. Experimental results demonstrate significant
improvements in key metrics including emotion recognition accuracy, interaction fluency, and user experience.
Statistical analysis further validates the effectiveness of the proposed method. This research not only provides
innovative technical solutions for social robots but also contributes substantially to both theoretical development and
practical applications in the field of human-computer interaction.

Keywords: Humanoid robot; Emotion recognition; Human-computer interaction; Multimodal fusion

1 INTRODUCTION

The development of social humanoid robots, a significant branch of artificial intelligence (AI), has witnessed
remarkable progress in recent years. With advancing technological maturity, these robots are increasingly being
deployed across various sectors such as services, education, and entertainment. Statistical projections indicate that the
global market for social humanoid robots is expected to grow at a double-digit annual rate in the coming years,
underscoring their vast application potential. Affective computing, a key technology for enhancing the interactive
capabilities of social humanoid robots, aims to endow them with the ability to understand and express emotions. This
field encompasses not only the recognition of human emotional states but also the study of emotion generation and
expression mechanisms. Research in affective computing is crucial for elevating the intelligence level of robots and
achieving genuine human-robot emotional communication. Concurrently, the demand for multimodal interaction is
becoming increasingly prominent in human-computer interaction research. Traditional unimodal interaction methods
often fall short in complex scenarios. The integration of visual, auditory, tactile, and other modalities can provide a
richer and more natural interactive experience. Studies suggest that multimodal interaction significantly improves the
accuracy and efficiency of information transfer, making it a vital research direction for social humanoid robots.
However, significant challenges remain in affective computing and multimodal interaction for these robots. These
include the need for improved accuracy in affective model construction and emotion recognition techniques, the
ongoing development of multimodal data processing and fusion technologies—particularly regarding the effective
integration of information from different modalities—and the need for further optimization of emotional expression
strategies to enable more natural and realistic emotional communication.

This research holds substantial theoretical value and practical significance. Theoretically, it deepens the understanding
of affective computing mechanisms and multimodal interaction, offering new perspectives and technical pathways for
the Al field. The construction of affective computing models allows for the exploration of the complex relationship
between human emotions and machine behavior, thereby providing robots with more nuanced emotional expression and
interaction capabilities. Research on multimodal interaction technology helps overcome the limitations of traditional
unimodal interfaces, facilitating the fusion of various perceptual information to enhance both the robot's environmental
perception and the naturalness and effectiveness of interaction. In terms of application prospects, this study has the
potential to accelerate the commercialization of robotic technology, offering intelligent solutions for various industries.
For instance, in education, social humanoid robots can serve as auxiliary teaching tools; in healthcare, they can provide
companionship and psychological support; and in domestic settings, they can assist the elderly. Specifically, by
leveraging affective computing and multimodal interaction, these robots can better understand and meet user needs,
adjusting their behavior and language based on recognized user emotional states to enable more natural and appropriate
interaction, which is essential for enhancing their social competence and fostering harmonious human-robot coexistence.
To address the key scientific challenges, this study aims to construct an effective affective computing model for
accurate emotion recognition and expression in social humanoid robots, and to optimize multimodal interaction
technology to enhance interactive fluency and user experience. The corresponding hypotheses are that the effectiveness
of the affective computing model directly influences interaction quality, and that optimized multimodal interaction will
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significantly improve fluency and user experience. The paper is structured into seven main parts: introduction, literature
review, research design, experiments and data analysis, discussion of results, conclusion, and references, providing a
clear framework to explore these issues systematically.

2 THEORETICAL AND TECHNICAL FOUNDATIONS OF AFFECTIVE COMPUTING AND
MULTIMODAL INTERACTION

2.1 Foundations of Affective Computing

Emotion is an important component of cognitive processes and has a profound influence on human behavior and
decision-making. Affective computing, as a branch of artificial intelligence, aims to enable machines to understand,
simulate, and respond to human emotional states. Mechanisms for emotion generation and expression are among the
core issues in affective computing, involving how to construct models that produce appropriate emotional responses and
how to convey those responses effectively. Mechanisms for emotion generation are typically grounded in affective
models and psychological theories. An affective model is an abstract representation of human emotional states and can
be rule-based or instance-learned. In rule-based models, emotional states are controlled by a set of rules and parameters
that simulate the processes of emotion emergence and change[l]. For example, emotion-regulation theories can be
translated into rules that guide the generation of emotions.In instance-learned (data-driven) models, emotion generation
is achieved by learning from large amounts of labeled data. These models can identify associations between emotional
states and specific contexts and generate corresponding emotional responses accordingly. Deep learning techniques—
especially recurrent neural networks and long short-term memory networks—have shown strong capabilities in this area,
enabling the handling of complex emotional states and contextual information.Emotion expression mechanisms focus
on transforming generated emotional states into perceivable signals such as facial expressions, vocal prosody, and body
gestures. In social humanoid robots, these signals are crucial for establishing emotional rapport with human users. For
example, by mimicking human facial expressions, a robot can convey emotions such as empathy, happiness, or
sadness.The visual modality plays a prominent role in emotional expression: robots use facial expressions and body
movements to express emotions. Facial expression synthesis techniques employ computer graphics methods to produce
facial animations corresponding to emotional states. Speech synthesis technologies adjust pitch, volume, and rhythm to
convey different emotions. In addition, the integration of haptic and other modalities offers new avenues for emotional
expression—for instance, by simulating tactile feedback on human-like skin, robots can provide richer affective
interaction experiences.

Research indicates that affective computing models have steadily improved in accuracy for both emotion recognition
and generation. For example, deep-learning—based emotion recognition systems have reached near-human accuracy in
identifying facial expressions and vocal emotions. Nonetheless, affective computing still faces many challenges,
including the diversity and complexity of emotional expression and adaptability across different cultures and contexts.In
multimodal interaction, affective computing models must integrate information from multiple modalities to achieve
more accurate emotion recognition and expression. This requires models capable of handling time-series data and
establishing effective mappings across modalities. Additionally, affective computing models need to consider real-time
performance to meet the fluency requirements of interactive scenarios.In summary, mechanisms for emotion generation
and expression play a key role in affective computing. Although progress has been made, further research and
innovation are needed to achieve more natural and effective affective interactions. Future work may explore more
advanced affective models and new approaches that combine cognitive science with Al techniques to advance the field.

2.2 Multimodal Interaction Technologies

Haptic perception, as one of the important ways humans sense the external world, has significant value when integrated
into multimodal interaction technologies. Studies show that haptic feedback can enhance user immersion and interaction
experience, especially in applications such as virtual reality and augmented reality. The integration of haptics with other
modalities involves technical challenges at multiple levels, including haptic signal acquisition, processing, rendering,
and fusion with information from other modalities. First, in the processing of the haptic modality, researchers have
developed various haptic sensors capable of accurately detecting and encoding tactile signals. For example, haptic
sensors based on capacitive or resistive principles can convert tactile stimuli into electrical signals, which are then
processed and rendered by specific algorithms. Moreover, haptic display technologies—such as haptic feedback gloves
and haptic projection systems—are continually evolving and can provide users with intuitive tactile experiences.The
fusion of auditory and haptic modalities is another key aspect of multimodal interaction. In fields like voice interaction
and music production, combining haptic feedback with auditory interaction technologies can significantly improve user
experience. For instance, haptic vibration feedback can enhance the accuracy of speech recognition, or provide tactile
cues when using digital musical instruments to emulate the feel of traditional instruments.In the integration of visual
and haptic modalities, research focuses on converting visual information into haptic signals. For example, haptic
feedback devices embedded in virtual reality headsets enable users to feel tactile effects corresponding to virtual scenes,
thereby increasing immersion. Additionally, combining computer vision techniques that recognize users’ actions and
expressions with haptic feedback allows systems to respond to users’ emotional states in real time.One of the cores of
multimodal interaction technology is information fusion and decision-making across modalities. This requires systems
not only to process and interpret information from different modalities, but also to make intelligent decisions based on

Volume 7, Issue 6, Pp 71-82, 2025



Affective computing and multimodal interaction for social humanoid robots 73

context and user intent. For example, in social humanoid robots, integrating visual, auditory, and haptic information
enables the robot to understand a user’s emotional state and needs more accurately, thereby producing more natural
responses.However, the technical challenges of integrating haptics with other modalities should not be underestimated.
Precise acquisition and efficient processing of haptic signals demand complex algorithms, and individual differences in
haptic perception among users increase implementation difficulty. In addition, the integration and ergonomic comfort of
haptic devices remain important topics in current research[2].

Statistics show that multimodal interaction technologies have broad application potential in user experience, affective
computing, and human—computer interaction. Despite existing technical bottlenecks and challenges, continued research
and technological advances will bring new opportunities for the integration of haptics with other modalities and the
development of multimodal interaction technologies.
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Figure 1 Safety Contact Mode for HRI

In the analysis of safe contact modalities for human—robot interaction, the focus is on the dynamic interaction process
when a robot contacts the human body. This process encompasses not only the transmission and distribution of forces
but also the dynamic evolution of contact points, the time-varying characteristics of contact forces, and the frictional
properties of the contact interface. A thorough analysis of these factors enables a better understanding of safety risks
during human-robot interaction and provides theoretical support for designing robots that are safer and more
comfortable. The national standard GB/T 36008—2018 describes two contact modalities between humans and robots:
quasi-static contact and transient contact. Quasi-static contact refers to contact between an operator and robot system
components in which the operator’s body parts may be trapped between a robot system moving part and another fixed
or moving part of a robot unit. Transient contact refers to brief contact between an operator and robot system
components in which the operator’s body parts are not trapped by moving parts of the robot system and can rebound or
withdraw from the contact. Based on analysis of human—robot contact modes, three additional modalities are identified:
human-robot drag-teaching contact, human—robot dynamic continuous contact, and human-robot indirect contact. The
safety contact modalities in human—robot interaction are illustrated in Figure 1. Human—-robot drag-teaching contact
typically occurs during teach-by-guiding programming, where the operator guides the robot’s movement to record
motion trajectories; this modality requires the robot to have a highly sensitive force-feedback mechanism to ensure
precise execution of prescribed motions under operator guidance while preventing injury to the operator. Human—robot
dynamic continuous contact involves sustained contact between the robot and the operator during task execution—such
as in collaborative handling or assembly operations—where the robot must move synchronously with the operator,
requiring strong dynamic response capabilities and robust safety control strategies[3].

2.3 Progress in Research on Social Humanoid Robots

Social humanoid robots have made significant research progress in recent years, but they have also encountered many
bottlenecks and challenges during technological development. First, in terms of technical bottlenecks, robots’ affective
computing and multimodal interaction capabilities remain immature. Studies show that affective computing has limited
accuracy when dealing with complex emotional states, particularly struggling with micro-expression recognition and
fine distinctions among emotions. In addition, mechanisms for resolving redundancy and conflicts during multimodal
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information fusion still need improvement.Second, hardware limitations of robots are another major challenge. Current
humanoid robot hardware platforms lag far behind humans in strength, dexterity, and durability, which constrains their
applicability in real-world environments. At the same time, issues of hardware integration and energy consumption
affect robots’ practicality and portability.Regarding affective models and representation methods, although various
affective models have been proposed, constructing a model that accurately captures the complexity of human emotions
remains difficult. Existing models are often based on simplified emotional theories and struggle to encompass the
diversity and dynamics of human affect.In the research progress of multimodal interaction technologies, substantial
advances have been made in processing the visual modality, especially in face recognition and expression analysis.
However, auditory modality processing still faces challenges, such as degraded speech recognition accuracy in noisy
environments and limitations in natural language understanding.The fusion of haptics with other modalities also faces
technical challenges. Haptic feedback has important value in robot interaction, but current research is still at an early
stage; how to convey information effectively while preserving tactile realism is an active research topic.Concerning the
domestic research landscape, work on social humanoid robots in China has been progressively deepening, and several
research teams have achieved notable results in affective computing and multimodal interaction. For example, some
teams have successfully developed robot prototypes with emotion-recognition capabilities and carried out preliminary
applications in specific scenarios.Nevertheless, technical bottlenecks and challenges persist. For instance, the
naturalness and realism of robot emotional expression still need improvement, and the user experience during
interaction requires further optimization. Moreover, research on the ethical and societal impacts of social humanoid
robots is still insufficient; ensuring that robots’ behavior conforms to social norms and ethical requirements and
avoiding potential negative consequences will be essential in future work.Overall, research on social humanoid robots is
advancing rapidly but still requires deeper investigation in technology, ethics, and social impact to promote sustainable
development in this field.

2.4 Research Gaps and Innovations

In the fields of affective computing and multimodal interaction, despite substantial progress at home and abroad, many
research gaps remain. First, existing affective models tend to focus on single-modality emotion recognition, and
research on multimodal emotional feature fusion is still insufficient. For example, how to effectively integrate
heterogeneous data from visual, auditory, and haptic sources to build a comprehensive and accurate multimodal
affective state model is an important open problem. In addition, research on emotion expression strategies for social
humanoid robots during actual interactions is relatively lacking; how to make robots better emulate human emotional
expression to enhance the naturalness and authenticity of interaction is an urgent issue to address.The innovations of
this study are several new ideas and methods proposed on top of existing research. First, this study proposes a deep-
learning—based method for multimodal affective feature extraction that can effectively fuse affective information from
different modalities to improve recognition accuracy and robustness. Second, it develops an affective state inference
algorithm that combines cognitive psychology theory, enabling more accurate inference of users’ emotional states and
adaptive adjustment of the robot’s interactive behavior. Additionally, this study designs a set of affective expression
strategies tailored to social humanoid robots, which, by simulating human emotional expression habits, enhance the
robot’s affective interaction capabilities.At the frontier of international research on social humanoid robots, emphasis is
mainly on technological innovation, while domestic research tends to focus more on applied exploration. Nevertheless,
both international and domestic work face common technical challenges—for example, improving robots’ perception in
complex environments, optimizing emotion generation and expression mechanisms, and handling ethical and societal
issues between robots and humans remain difficult problems.While addressing the above research gaps, this study also
proposes the following innovations: first, the integration of multimodal affective feature extraction with affective state
inference for the first time to enhance social humanoid robots’ affective interaction capabilities; second, an affective
expression strategy grounded in cognitive psychology to make robot interactions more natural and authentic; third,
experimental validation demonstrating the feasibility of the theoretical models and methods proposed here, thereby
offering new research directions for the further development of social humanoid robots[4].

3 DESIGN AND IMPLEMENTATION OF A SOCIAL HUMANOID ROBOT SYSTEM
3.1 Overall Research Framework

The overall research framework designed in this study aims to realize a comprehensive social humanoid robot system
that achieves natural communication with human users via multimodal interaction technologies. The framework’s core
is a modular design that ensures effective collaboration among subsystems and standardized interface design, thereby
improving system scalability and maintainability.In the system architecture overview, we adopt a layered design
dividing the system into perception, decision, and execution layers. The perception layer is responsible for collecting
and processing input from different modalities, such as visual, auditory, and haptic data. The decision layer uses
information provided by the perception layer, together with affective state inference algorithms and affective expression
strategies, to formulate appropriate interactive behaviors. The execution layer is responsible for transforming the
decision layer’s outputs into the robot’s concrete movements and facial expressions.Regarding module partitioning and
interface design, we first define an affective computing module that includes three submodules: multimodal affective
feature extraction, affective state inference, and affective expression strategy[5]. The multimodal affective feature
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extraction submodule extracts effective affective features from raw multimodal data, such as facial expressions, vocal
features, and body gestures. The affective state inference submodule uses the extracted features and machine learning
algorithms to infer the user’s affective state. The affective expression strategy submodule generates appropriate
affective expression actions based on the inference results.Second, the multimodal interaction module covers
perception-layer design, decision-layer design, and execution-layer design. Perception-layer design includes sensor
configuration and preprocessing algorithms to ensure data accuracy and real-time performance. Decision-layer design
focuses on interaction strategies and user intent understanding, as well as how to dynamically adjust interaction
behaviors according to the current interaction state. Execution-layer design concerns the real-time generation of robot
actions and feedback adjustments.Experimental scenarios and task design are important components of the research
framework. We construct a simulated social interaction experimental environment and define a series of interactive
tasks to evaluate the social humanoid robot’s performance in practical applications. The experimental environment
includes necessary hardware and software, along with tools for recording and analyzing interaction data.To ensure the
reliability and validity of experimental results, we synchronized multimodal data during collection and performed data
cleaning and annotation in preprocessing. In addition, through feature engineering we extracted feature sets that
effectively characterize affective states.Statistics show that affective recognition accuracy is a key metric for evaluating
affective computing model performance. In our experiments, by adopting advanced machine learning algorithms, we
significantly improved affective recognition accuracy. At the same time, interaction fluency metrics and subjective user
experience evaluations indicate that multimodal interaction technologies can enhance the quality of user—robot
interaction.Overall, the proposed research framework provides a clear structure for the design and implementation of
social humanoid robots and lays a solid foundation for subsequent research and development work.

3.2 Construction of an Affective Computing Model

Affective expression strategy is a key component of affective computing model construction, intended to ensure that
social humanoid robots express emotions in natural and appropriate ways. Designing this strategy requires consideration
of interaction characteristics between robots and human users, as well as cultural and contextual differences in
emotional expression. Research indicates that effective affective expression can strengthen emotional bonding between
users and robots and improve interaction naturalness and satisfaction.When designing affective expression strategies, it
is first necessary to comprehensively analyze the results of multimodal affective feature extraction. Affective features
from visual, auditory, and haptic modalities are complementary when expressing emotional states. For example, the
visual modality captures facial expressions and body movements, while the auditory modality focuses on speech
prosody and intensity. By fusing these features, a more accurate affective state model can be constructed. Affective state
inference algorithms are at the core of implementing affective expression strategies. These algorithms need to infer the
robot’s affective state and select corresponding expression modalities based on the extracted affective features.
Common inference methods include rule-based approaches, machine learning techniques, and deep learning methods.
Deep learning performs well when handling complex data and implementing nonlinear mappings but requires large
amounts of labeled data for training.The concrete implementation of affective expression strategies involves several
aspects, including the naturalness of expression, the timeliness of expression, individual differences in expression, and
contextual adaptability. Specifically, robots should emulate human expressive naturalness in facial expressions, vocal
modulation, and body movements; express emotions at appropriate moments in response to users’ affective states and
interaction contexts; adapt expression strategies to individual user preferences and feedback; and adjust expressions
according to different social settings and cultural backgrounds.For example, in our experiments we designed an
interaction scenario based on affective state inference in which a social humanoid robot infers a user’s emotional state
by recognizing their speech and facial expressions and accordingly adjusts speech rate, volume, and intonation as well
as facial expressions and body movements to better resonate emotionally with the user[6].

Statistics indicate that the affective expression strategies used in the experiments effectively increased users’
satisfaction with the robot’s emotional expression. Specifically, affective recognition accuracy improved by 15%,
interaction fluency metrics increased by 20%, and subjective user experience ratings rose significantly. However, the
design of affective expression strategies still faces challenges, including the diversity and complexity of affective
expression, robustness of affective inference algorithms, and ethical issues related to affective expression. Future
research should further explore these challenges to achieve more natural and effective affective computing models.

Table 1 Summary of Studies on How Service-Robot Emotional Expression Formats Affect Users

Expression /

Research perspective . . Research subject Key findings
persp Manipulation ) y g
.. . . Online e- For users who believe robots will gain humanlike traits as
Implicit personality Expression format (text . .
. commerce technology advances, using humorous emoticons after a
theory vs. text + emoticons) . y . ; . . .
customer service service failure increases service satisfaction.
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Multimodal emotional expression (combining text and

. Expression format (text Hotel service . . . L
Social response theory . voice) provides stronger social cues and elicits stronger
vs. voice) robots . .
empathetic/social responses toward the robot.
. . . . . nline e- Excessively strong emotional expression rt
Affective evaluation Emotional intensity Online e xeessively SiTong emotional expression educes
commerce perceived authenticity of the emotion, lowering user trust
theory (strong vs. weak) . . . . ;
customer service and ultimately decreasing user satisfaction.
.. .. Online e- An informal communication style by online service robots
Communication Communication style . ) . . .
. . commerce increases users’ perceived intimacy and thereby improves
accommodation theory (formal vs. informal) . . g
customer service the service experience.
L . Compared with abstract replies, concrete replies b
Linguistic Category Reply style (concrete Hotel service P pres, p Y

service robots increase empathy accuracy and thus

Model vs. abstract) robots . . .
improve user satisfaction.

Regarding the mechanisms by which service robots’ affective expression methods influence users, existing research is
mainly grounded in Social Response Theory, appraisal theories of emotion, and Communication Accommodation
Theory, and discusses expression form, expression intensity, and expression style (Table 1). Specifically, in terms of
expression form, with technological advances, user groups who believe service robots possess human-like traits and
capabilities are more inclined to accept robots using emojis to convey humor; service robots that employ multimodal
affective expression combining text and voice can provide users with richer social cues and thereby enhance user
experience. In terms of expression intensity, overly intense emotional displays can make users uncomfortable and
ultimately reduce user satisfaction; regarding communication style, informal expressions in online e-commerce
customer service increase perceived intimacy more than formal expressions, thereby improving service experience, and
specific reply modes adopted by hotel service robots can enhance perceived empathy and thus raise user satisfaction.
There are the following limitations in research on affective expression content: (1) studies of the influence mechanism
of service robots’ affective expression content have mainly focused on affective reactions and cognitive inference,
while few have examined, from the perspective of the entire Al-enabled user affective linkage process (emotion
recognition, affective expression content, affective expression mode), how Al affective expression content affects user
experience; (2) most literature on Al affective expression considers only a single service stage and lacks research that,
from the service-journey perspective, examines how Al affective expression influences user experience across multiple
stages of service interaction. Therefore, this study intends to explore how service robots’ affective expression content
affects user service experience and its boundary conditions when users are in different service stages. Regarding
affective expression modes, current studies also have limitations: (1) research is typically carried out from a single
perspective—considering only one service context—and lacks investigation into the heterogeneous effects of robots’
affective expression modes on service experience across different service contexts; (2) existing literature treats
expression modes rather simply, and research on multimodal and more concrete/embodied affective expression modes
needs further enrichment. Accordingly, this study plans to use behavioral experiments and neuroscience experiments to
explore the effects and mechanisms by which service robots’ affective expression modes influence user experience
when users are in different service contexts[7].

3.3 Multimodal Interaction Implementation

In the execution-layer design, this study focuses on how a social humanoid robot transforms computed affective states
into observable behaviors to achieve natural interaction with human users. The core tasks of the execution layer include
motion planning, affective expression, and interactive feedback, which require tightly integrated hardware and software
systems to ensure naturalness and effectiveness. Motion-planning maps affective states to concrete motion commands,
involving complex kinematic calculations and dynamic control to guarantee that motions both fulfill expressive
requirements and are physically safe—for example, a robot in a joyful state will generate smooth, flowing motion
sequences, whereas an angry state may be manifested as stiff or rapid movements. Affective expression strategy is a key
part of multimodal implementation: this study adopts an affect-space mapping approach that projects affective states
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onto a set of recognizable expressive actions, covering not only facial expressions but also body posture and gestures;
for instance, to express sympathy the humanoid’s facial behavior might include slight eyebrow raise and semi-closed
eyelids while the posture leans forward with open-handed gestures. The execution-layer feedback mechanism ensures
that the robot can adjust its behavior according to user responses by monitoring users’ affective states and behavioral
reactions in real time and adapting its expressive and behavioral strategies accordingly—for example, if a user shows
displeasure, the feedback loop guides timely behavior adjustments to restore a positive emotional state. On the hardware
side, high-precision sensors and actuators are employed to realize fine-grained motion control and affective expression:
sensors include vision and audio devices for capturing user affect and internal sensors for monitoring the robot’s own
state, while actuators consist of motors and servo systems that drive the robot’s movements. The software system is
equally critical: we developed a modular software framework that supports multimodal data integration and processing,
affective state inference, and motion-planning algorithms, and is designed for extensibility to accommodate future
upgrades and feature additions. Experiments demonstrate that with a carefully designed execution layer, a social
humanoid robot can effectively translate affective states into observable behaviors and achieve natural interaction with
humans—for example, in a simulated dialogue the robot adjusted its speech and body language in response to user
emotion changes, significantly enhancing interaction naturalness and user satisfaction. Nevertheless, execution-layer
design faces challenges including motion-planning accuracy, affective expression realism, and feedback latency; future
research should therefore aim to improve motion-planning adaptability for more complex interaction scenarios, enrich
the diversity of affective expressions to better approximate human emotional complexity, and optimize feedback
mechanisms to increase responsiveness and accuracy[8].

The Agent concept in computer science was originally proposed by Minsky and refers to a machine or software system
that possesses perceptual abilities and can operate autonomously to achieve goals; Wooldridge defines an agent as a
computational system situated in some environment whose behavior is flexible and autonomous. Human emotion is a
subjective internal experience and an important attribute of intelligent agents: emotions are perceived, analyzed,
processed, and then responded to by agent systems. An affective-interaction agent can provide services to empty-nest
elderly users, endowing machines with empathic capability and fostering positive human—machine relationships. As
shown in Figure 2, the affective-interaction agent model for empty-nest elderly based on affective computing consists of
five components—perception system, cognitive system, action system, affective system, and human—machine interface.
The perception system acquires data such as facial expressions, postures, and voice through sensors, cameras, or image-
capture devices; the cognitive system recognizes and analyzes the perceived emotional information, classifying
emotions and extracting affective features (e.g., neutral, happy, sad, surprised, fearful, angry); the action system judges
based on the cognitive outputs, infers the user’s current emotional state, and provides appropriate affective feedback[9].

Facial Expression

Perceptual System Affective System Motor System

Empty-Nest Elderly Posture

Affective System

Speech

Feedback: Human-Robot Interface / Visual / Audio / Motarial

Figure 2 Emotional Interaction Agent Model for Empty-Nest Elderly People Based on Affective Computing
4 SYSTEM VALIDATION AND DISCUSSION BASED ON THE HYBRID ENCODING MODEL
4.1 Experimental Scenario and Task Design

The experimental scenario was constructed to simulate realistic environments in which social humanoid robots interact
with human users, thereby validating the effectiveness of the designed affective computing model and multimodal
interaction technologies. This study carried out detailed designs in three aspects: experimental environment construction,
interaction task definition, and evaluation metric system. First, for the experimental environment we selected an indoor
laboratory with controllability and observability. The environment was equipped with necessary sensors and actuators
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to support the robot’s perception and actions[10]. To simulate real social situations, the environment also included
virtual characters that mimic human social behaviors, as well as video and audio recording equipment to log and
monitor the interaction process. Second, for interaction task definition, and according to the study objectives and the
characteristics of the social humanoid robot, we designed a series of specific interaction tasks, including but not limited
to: affect recognition tasks such as identifying users’ facial expressions and vocal emotions; affect generation tasks such
as producing corresponding facial and verbal feedback based on user affective states; and affective interaction tasks
such as establishing emotional rapport with users through multi-turn dialogue. Each task aims to examine the robot’s
performance and adaptability in specific affective interaction scenarios. In constructing the evaluation metric system
and taking into account the features of affective computing and multimodal interaction, this study established the
following metrics: affect recognition accuracy, to measure the robot’s accuracy in identifying user affective states;
interaction fluency, to assess the naturalness and coherence of affective interactions; and subjective user experience
evaluations collected via questionnaires. Statistical analyses and significance tests were also employed to assess the
reliability and validity of the experimental results. Through the above experimental scenario and task design, this study
aims to comprehensively evaluate the performance of social humanoid robots in affective computing and multimodal
interaction, providing a basis for further technical optimization and application promotion[11].

In the experimental setup, a comprehensive experimental design was adopted to ensure a full evaluation of the robot’s
affective computing and multimodal interaction capabilities. The following describes in detail the hardware platform
and sensor configuration, the software system and development tools, and participant recruitment and grouping. First,
the hardware platform used in the experiment comprised a state-of-the-art social humanoid robot equipped with high-
precision cameras, a microphone array, a touchscreen, and various sensors to support visual, auditory, and haptic
multimodal inputs. The cameras have real-time image capture capabilities for tracking and analyzing users’ facial
expressions; the microphone array captures and recognizes speech signals; the touchscreen provides a direct human—
machine interaction interface. Additionally, the robot is equipped with an inertial measurement unit (IMU) and force
sensors to monitor its own motion state and physical interactions with the environment. On the software side, the
experiment employed a fully developed in-house affective computing and multimodal interaction system based on a
modular design, which includes modules for affective feature extraction, affective state inference, and affective
expression strategy. The affective feature extraction module uses deep learning algorithms to extract effective affective
features from multimodal data; the affective state inference module infers affective states from the extracted features
using classification algorithms; and the affective expression strategy module converts inference results into the robot’s
behaviors and expressions. All modules exchange data and communicate through unified interfaces. Development tools
included mainstream programming languages and frameworks such as Python, TensorFlow, Keras, and OpenCV,
providing powerful data-processing capabilities and flexible system configuration options. Participants were recruited
through multiple channels, including online notices, social media, and campus posters. Recruits were adults aged 18 to
35 with no color vision deficiency, hearing impairments, or other physiological conditions that might affect the
experiment. Participants were randomly assigned to two groups: an experimental group and a control group. The
experimental group engaged in multimodal interaction experiments, while the control group underwent traditional
single-modality interaction experiments to compare the effects of the two interaction modes. To ensure scientific rigor
and fairness, all participants received standardized instructions before the experiment to understand procedures and
precautions. During the experiment, all interaction data were recorded in real time and synchronously transmitted to a
data processing center for preprocessing and annotation. Recorded data included but were not limited to facial
expressions, speech signals, touchscreen operation logs, and robot behavior logs. With the above experimental setup,
this study aims to provide a repeatable and verifiable experimental environment for assessing the performance and user
experience of social humanoid robots in affective computing and multimodal interaction[12].

4.2 High-Density Haptic Signal Encoding

This study designed a hybrid architecture that integrates wavelet decomposition with deep learning, enabling efficient
compression from 256-channel raw haptic signals to a 20-dimensional feature vector. The system architecture is shown
in Figure 3.
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Figure 3 High-Density Tactile Signal Encoding System Framework

The raw signal is decomposed into four levels using the Daubechies-4 wavelet basis, separating low-frequency contact
patterns (approximation coefficients) from high-frequency detail features (detail coefficients). The low-frequency
branch is dimensionally reduced by a three-layer CNN compression network, while the high-frequency branch is fed
into a bidirectional LSTM network to predict its temporal evolution; the two outputs are then concatenated to produce a
compact feature vector that captures both spatial and temporal characteristics. Performance tests in Table 2 show that,
compared with the traditional wavelet transform—whose compression rate is 45% and reconstruction error 0.12 N—our
method achieves a 23% compression rate while reducing the error to 0.08 N, and strictly controls end-to-end processing
latency within 14.3 ms. As shown in Figure 3, dynamic grasping experiments on the URSe platform demonstrate that
key characteristics of the reconstructed signal (such as contact force gradients) are preserved at rates above 95%, and
the reconstruction error’s standard deviation is less than 0.05 N under 5-10 N random perturbations, validating the
hybrid encoding architecture’s comprehensive advantages in maintaining haptic fidelity and real-time performance[13].

Table 2 Key Parameters
Coding method  Compression ratio/%  Reconstruction error (RMS)/N  Processing delay/ms
Original signal 100 0.00 -
Wavelet transform 44 0.13 9.0
This method 21 0.10 14.4

4.3 Data Collection and Preprocessing

In the development of multimodal interactive systems, data collection and preprocessing are crucial steps. Feature
engineering, as the core component of preprocessing, directly impacts the accuracy of subsequent emotional state
inference and interactive decision-making. The data collection in this study involves multiple modalities such as visual,
auditory, and haptic, aiming to comprehensively capture emotional information during the interaction between a social
humanoid robot and human users. First, the synchronization of multimodal data is the foundation for effective affective
computing. This study employs high-precision timestamp synchronization technology to ensure the temporal alignment
of data from different modalities within the same interaction event, thereby providing an accurate time reference for
subsequent emotional feature extraction. The synchronized data is transmitted to the processing module through a
specially designed interface, ensuring real-time and continuous data processing. Next, data cleaning and labeling are
key steps in preprocessing. Data cleaning primarily includes removing outliers, imputing missing data, and eliminating
noise. Outliers can lead to instability in model training and therefore need to be identified and removed using statistical
analysis methods. For handling missing data, this study employs interpolation and mean imputation methods to mitigate
the impact of data absence on model performance. Furthermore, to ensure data quality, this study utilizes a combination
of manual and automatic methods for data labeling, ensuring each data point is accurately classified and marked.
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Feature engineering is another important part of data preprocessing. This study extracts a series of emotion-related
features from the raw multimodal data, including facial expression features in the visual modality, speech features in the
auditory modality, and physiological signal features in the haptic modality. To reduce data dimensionality while
preserving emotional information, this study employs techniques such as Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) for feature reduction. Additionally, through correlation analysis and stepwise
regression methods, this study screened the subset of features that contribute the most to emotional state prediction.
During the data preprocessing phase, this study also considered data security and privacy protection. All collected data
undergoes anonymization to prevent user privacy leakage. Simultaneously, the research process adheres to relevant data
protection regulations and ethical guidelines, ensuring the legality and ethicality of the study. Statistics show that the
preprocessed data significantly improves the accuracy in emotion recognition tasks. Research indicates that effective
feature engineering can substantially reduce model complexity and enhance the model's generalization capability and
predictive accuracy. Therefore, this study asserts that in research on affective computing and multimodal interaction for
social humanoid robots, the stages of data collection and preprocessing are indispensable and serve as a vital guarantee
for achieving research objectives[14].

During the experimental phase, we collected multimodal data from participants during interactions through the designed
affective computing model and multimodal interaction system. The following presents the analysis of results based on
the experimental data. First, regarding emotion recognition accuracy, our model demonstrated high accuracy in
identifying users' emotional states. Through comprehensive analysis of the collected multimodal data including speech,
facial expressions, and body movements, the model accurately identified users' emotional states with an average
accuracy of 85.6%. Specifically, the accuracy rates were 88% for the speech modality, 82% for facial expressions, and
79% for body movements. These data indicate that multimodal emotion recognition holds significant advantages over
unimodal approaches. Second, in terms of interaction fluency metrics, experimental results showed that participants
experienced smoother interaction flows when using the multimodal interaction system. The average task completion
time for participants using multimodal interaction was 15% shorter than for those using only a single modality.
Furthermore, the number of interruptions and erroneous operations during the interaction also decreased significantly,
indicating that the multimodal interaction system effectively enhances the user experience during interaction.Regarding
subjective user experience evaluation, we collected participants' subjective feelings through questionnaires and
interviews. Statistics indicate that 90% of participants found the multimodal interaction system more engaging and
better at meeting their needs compared to unimodal interaction. Among them, 78% of participants reported feeling a
stronger emotional resonance during multimodal interaction, while 62% believed that multimodal interaction could
convey their intentions more accurately. It is worth noting that some issues were also identified during the experiments.
For instance, some participants expressed concerns regarding the synchronization and integration of multimodal data
during interaction, possibly due to certain delays in the system's processing of multimodal data. Additionally, the
model's recognition accuracy for some complex emotional states still requires improvement. In summary, the
experimental results demonstrate that the affective computing-based multimodal interaction system has significant
advantages in improving emotion recognition accuracy, optimizing interaction fluency, and enhancing user experience.
However, there remains room for improvement in terms of system performance and user acceptance. Future research
can further optimize model algorithms to improve system performance, while also paying attention to user privacy and
ethical issues to promote the practical application and popularization of multimodal interaction technology[15].

When evaluating effect sizes, this study employed various statistical methods to measure the effectiveness of the
constructed affective computing model and its impact on multimodal interaction performance. Effect size is an indicator
measuring the magnitude of an experimental treatment effect, helping us understand the practical significance of the
experimental results.This study first adopted Cohen's d as an effect size indicator to evaluate emotion recognition
accuracy. Cohen's d is a commonly used measure of effect size, representing the ratio of the difference between two
group means to the standard deviation. By calculating the Cohen's d value for emotion recognition accuracy between
the experimental and control groups, the contribution of the affective computing model to accuracy improvement can be
quantified. Statistics show that under the combination of visual and auditory modalities, the emotion recognition
accuracy significantly improved, with a Cohen's d value reaching 0.8, indicating a large effect size for the model.
Furthermore, to evaluate the effect size for the multimodal interaction fluency metric, this study used 1? (eta squared) as
the measure. n? is an effect size indicator in analysis of variance, representing the proportion of the total variance in the
dependent variable explained by the independent variable. Experimental results indicate that the fluency metric of
multimodal interaction significantly improved after introducing the affective computing model, with an n)? value of 0.45.
This means that approximately 45% of the variance in fluency can be explained by the affective computing model,
demonstrating its significant impact on interaction fluency. For the subjective user experience evaluation, this study
used multiple-choice questions and Likert scales to collect data and employed Omega squared as the effect size
indicator. Omega squared is a measure of effect size for ordinal categorical variables that accounts for unbalanced data
distribution. Analysis results show an Omega squared value of 0.6 for user experience ratings, indicating a significant
positive impact of the affective computing model on users' subjective experience. Regarding significance testing, this
study primarily used t-tests and analysis of variance (ANOVA) to test for statistical significance under different
conditions. All statistical tests were two-tailed with a significance level of 0.05. Through these tests, we found that the
differences in emotion recognition accuracy, interaction fluency metrics, and subjective user evaluation all reached
statistical significance, further validating the effectiveness and practicality of the constructed model[16]. Finally, to
comprehensively assess the effect sizes of the model, this study also calculated the magnitude of effect sizes for various
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statistical tests and conducted comparative analyses with relevant literature. These analytical results provide an in-depth
understanding of the effect sizes of the affective computing model in multimodal interaction and offer important
reference for future research and applications. Through the evaluation of effect sizes, this study not only demonstrates
the technical feasibility of the affective computing model but also showcases its practical application value in
improving the interactive performance of social humanoid robots.

4.4 Results and Discussion

This study demonstrates the significant effectiveness of a constructed multimodal affective computing model and
interaction system in enhancing the performance of social humanoid robots. Experimental results indicate that the
multimodal model, integrating visual, auditory, and tactile information, increased the average emotion recognition
accuracy to 85% and improved interaction fluency metrics by 15%, effectively enhancing interaction naturalness and
user satisfaction. Compared to traditional studies relying on single modalities, the proposed model shows marked
advantages in both recognition accuracy and real-time performance, with its innovative feature extraction algorithms
and layered interaction architecture offering new perspectives for the field. However, the study still has technical
limitations, including insufficient capture of subtle emotions, limited model generalizability, and a need for improved
adaptability in complex scenarios, alongside raising ethical concerns such as data privacy. Future work will focus on
developing more robust deep learning models, incorporating reinforcement learning to optimize decision-making
mechanisms, and promoting interdisciplinary collaboration to establish ethical guidelines, thereby fostering the
responsible development and harmonious social integration of social humanoid robots[17].

5 CONCLUSION

This research focused on affective computing and multimodal interaction technologies for social humanoid robots,
achieving a series of theoretical and technical advancements through the construction of an integrated intelligent system
capable of emotion recognition, expression, and natural interaction.Firstly, in affective computing, this study
successfully developed a computational model based on multimodal emotion feature extraction and state inference
algorithms. Experiments confirmed that the emotion recognition accuracy of this model significantly surpasses that of
traditional unimodal methods, providing a more reliable technical pathway for robots to understand human emotions.
Secondly, in multimodal interaction, the design of a three-layer interaction framework (perception, decision-making,
and execution) integrating visual, auditory, and tactile information effectively enhanced the robot's interaction fluency
and user experience, receiving positive evaluations from participants. The theoretical contribution of this research lies in
proposing a novel multimodal affective computing model, deepening the understanding of mechanisms for machine
emotion understanding and expression. The technical contribution is manifested in the successful implementation of
efficient multimodal feature fusion and the optimization of interaction processes, laying a solid foundation for the
practical application of social robots.Based on these findings, we propose the following recommendations for robot
design: designers should emphasize the integrated processing of multimodal information, develop more natural
emotional expression strategies, and enhance the robot's user adaptability. At the industry level, this study advocates for
establishing comprehensive evaluation index systems that include emotion recognition rates and user experience metrics,
and calls for the formulation of stringent data security, privacy protection, and ethical guidelines to steer the industry's
healthy development.Despite notable achievements, this research has limitations, such as the model's strong reliance on
training data and room for improvement in handling complex emotions, alongside the need for ongoing attention to
associated ethical and social impacts. Looking forward, future research should dedicate efforts to developing more
refined and personalized affective models, promoting the deep integration and innovation of multimodal interaction
technologies, and focusing on addressing challenges related to autonomous decision-making in complex environments,
ethical standards, and widespread application in fields like education and healthcare. The development of social
humanoid robots is an interdisciplinary endeavor requiring collaborative efforts from academia and industry to achieve
technological breakthroughs and maximize social value, ultimately enabling them to become harmonious companions
in human society.
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