World Journal of Mathematics and Physics

ISSN: 2960-0103

DOI: https://doi.org/10.61784/wjmp3015

A MULTI-FACTORIAL COMPUTATIONAL ANALYSIS OF BASKETBALL REBOUND DYNAMICS: INTERPLAY OF SHOT GEOMETRY, BALL ROTATION, AND COLLISION SURFACES

Yu Su

Beijjing City International School, Beijing 100000, China. Corresponding Email: susu071025@icloud.com

Abstract: This study presents an advanced computational framework for analyzing the physics of basketball rebounding. Building upon a foundational model that uses classical mechanics and Monte Carlo simulations to predict rebound distributions, this research extends its predictive power by systematically relaxing key simplifying assumptions. The study investigates three critical, interconnected domains: the spatial dynamics of rebounds originating from asymmetric court positions, the role of ball rotation (backspin) in altering collision outcomes, and the distinct rebound characteristics of bank shots. By simulating thousands of shot trajectories, we generate high-fidelity, two-dimensional rebound "heat maps" that validate long-standing coaching heuristics about weak-side rebounds from corner shots. Furthermore, the analysis quantifies the energy dissipation effect of backspin, providing a physical basis for the concept of a "soft shooter's touch." Finally, a novel experiment on the bank shot demonstrates that the backboard, as a collision surface, produces significantly more predictable and favorable rebound patterns compared to shots off the rim. The findings are synthesized into a multi-factorial strategic framework, translating complex physical principles into actionable on-court tactics for optimizing rebounding strategy.

Keywords: Computational physics; Basketball analytics; Rebound dynamics; Monte Carlo simulation; Bank shot; Backspin

1 INTRODUCTION

This research is built upon a computational model designed to predict the distribution of missed basketball shots by applying principles of classical mechanics. The foundational model deconstructs the complex rebounding process into three deterministic physical stages: the ball's initial flight (a 2D parabolic trajectory), its collision with the rim or backboard (a partially elastic collision governed by a coefficient of restitution, COR), and its post-collision rebound trajectory (a new parabolic motion) [1-3]. To account for the natural variance in a player's shot, the model employs a Monte Carlo simulation method. By randomly sampling initial shot velocities and angles from Gaussian distributions centered on optimal "make" parameters, the model generates thousands of unique missed shot trajectories. This transforms a single deterministic calculation into a powerful probabilistic tool, outputting a probability distribution of where a rebound is likely to land on the court for a given shot origin[4-6].

While previous experiments using this model provided foundational insights into variables like shot distance and arc, they relied on key simplifications, such as reducing the court to a 2D plane and ignoring dynamic factors like ball rotation[7]. These simplifications, while useful for isolating variables, limit the model's fidelity in simulating the complexities of a real game. To enhance the model's realism and strategic applicability, this analysis aims to expand its predictive capabilities by systematically investigating three high-impact, interrelated domains:

Spatial Dynamics: Exploring how the geometric origin of a shot dictates the macroscopic spatial distribution patterns of rebounds.

Rotational Dynamics: Analyzing how the microscopic physics of ball rotation alters collision outcomes at the rim. **Collision Surface Dynamics:** Investigating how rebound behavior and predictability fundamentally change when the primary collision surface shifts from the rim to the backboard (the bank shot).

2 SPATIAL DYNAMICS OF REBOUNDS FROM ASYMMETRIC SHOT ORIGINS

2.1 Objective: From 1D to 2D Rebound Prediction

This experiment expands the model's analysis from a one-dimensional landing distance to a two-dimensional court space, generating spatial "heat maps" of rebound locations[8]. The core objective is to test and quantify the long-standing coaching heuristic that shots from asymmetric court positions (e.g., the wing and corner) produce predictable, asymmetric rebound patterns[9]. By visualizing probability density on a simulated court map, this experiment aims to provide a precise, data-driven tool to inform player positioning for rebounding.

2.2 Methodology: 3D Modeling and Key Shot Selection

2.2.1 Coordinate system

To transition from 1D to 2D analysis, the model's coordinate system is upgraded from (x,y) to (x,y,z). The origin (0,0,0) is set on the floor directly beneath the hoop, with the y-axis representing vertical height, the x-axis running the length of the court (basket to half-court), and the z-axis running the width of the court (parallel to the baseline)[10]. This allows the model to track the ball's full 3D trajectory and record its 2D landing coordinates (xrebound, zrebound).

2.2.2 Shot selection

Two critical three-point shooting locations in modern basketball are selected, with coordinates defined by standard court dimensions.

- Wing Three-Pointer: Located on the arc between the top of the key and the corner. On a standard NBA three-point line (7.24 m from the basket), its coordinates are approximated as (x=6.0 m, z=4.0 m)[10].
- Corner Three-Pointer: Located on the short, straight portion of the three-point line. Its coordinates are set to (x=0.91 m, z=7.8 m)[10].

2.2.3 Simulation parameters

For each of the two shot locations, a Monte Carlo simulation of 10,000 iterations is run. In each iteration, the model calculates the full 3D trajectory. The primary output for each valid missed shot is the final 2D landing coordinate (xrebound, zrebound) on the court.

2.3 Results: Visualizing Rebound Probabilities via Heat Maps

The 10,000 (xrebound, zrebound) coordinates for each shot origin are aggregated to generate high-fidelity 2D heat maps overlaid on a half-court diagram. The maps use a sequential color scale (e.g., cool blue for low probability to warm red for high probability) to intuitively represent rebound probability density[8,11].

Visual analysis confirms the core hypothesis: the heat maps from different shot origins show distinctly different spatial distributions. The map for the corner three-pointer clearly shows a high-probability zone extending to the side of the court. In contrast, the wing three-pointer's map shows a more concentrated hot spot in front of the rim and on the same side as the shooter(figure 1 and 2).

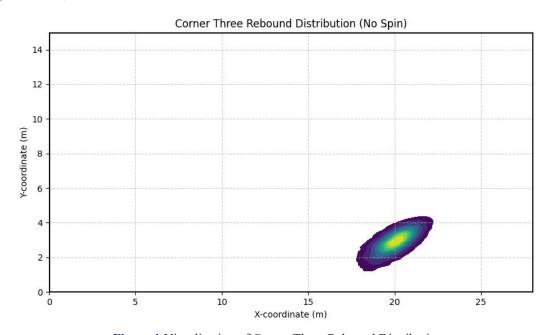


Figure 1 Visualization of Corner Three Rebound Distribution

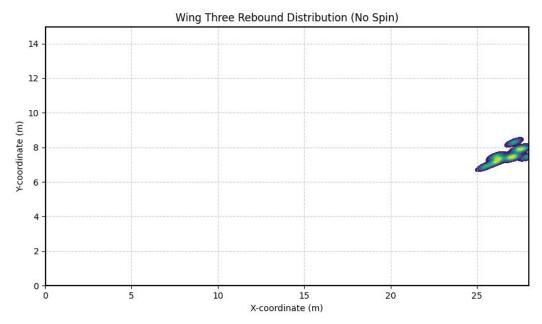


Figure 2 Visualization of Wing Three Rebound Distribution

2.4 Discussion: The Physics of Geometric Determinism

The asymmetric rebound patterns revealed by the heat maps are a deterministic result of the initial shot geometry interacting with the fixed physical structure of the hoop[12-16]. The key factor is the angle of incidence of the ball relative to the rim.

- Corner Shot Dynamics: A shot from the deep corner approaches the rim at a very shallow angle. For a miss that strikes the rim, the ball's velocity vector has a large component parallel to the baseline. This tangential momentum is largely conserved upon collision, causing the ball to travel across the court to the edge[17].
- Wing Shot Dynamics: A shot from the wing has a more direct angle of incidence. A miss is more likely to produce a rebound with a strong velocity component back toward the shooter or directly out toward the free-throw line area. To translate this visual data into actionable coaching language, the following table 1 summarizes the primary and secondary rebound "hot zones."

Table 1 Qualitative Summary of Primary and Secondary Rebound "Hot Zones" by Shot Origin

	Table 1 Quantum ve Summary of 1 finding and Secondary Resound 110t Zones by Shot Origin				
Sho	t Origin	Primary Hot Zone	Secondary Hot Zone	Key Heuristic Validated	
Wing	3-Pointer	From the edge of the paint to the free-throw elbow. Rebounds are energetic and relatively concentrated.	Area directly in front of the rim, near the free-throw line.	Wing shots tend to kick out to the middle.	
Corner	r 3-Pointer	At the edge of the paint. Rebounds have significant lateral momentum and travel farther.	45-degree mid-range area.	Corner shots rebound to the edge side.	

These physics-based heat maps provide a powerful tool for optimizing defensive rebounding schemes. For instance, the model's validation of the "corner-to-opposite" heuristic provides a quantitative basis for assigning primary rebounding responsibility to the weak-side forward or guard when defending a corner shot[18].

3 THE ROLE OF ROTATIONAL DYNAMICS IN COLLISION OUTCOMES

3.1 Objective: Quantifying "Shooter's Touch"

This experiment relaxes the "no-spin, frictionless collision" assumption of the base model to investigate how backspin—a key component of "shooter's touch"—affects rebound behavior by altering collision dynamics. The goal is to provide a clear physical mechanism explaining why shots with backspin tend to produce "softer" or more favorable rebounds, thereby translating a qualitative basketball concept into a quantifiable physical phenomenon[19,20].

3.2 Methodology: Integrating Frictional Impulse into the Collision Model

3.2.1 The physics of backspin

To model backspin, the collision phase of the model is upgraded to include kinetic friction. When a ball with backspin strikes the top of the rim, its surface is moving forward relative to its center of mass. At the point of contact, the rim exerts a tangential kinetic friction force that opposes this motion—a horizontal "braking" force.

3.2.2 Mathematical formulation

This frictional force produces a frictional impulse (Jf) over the brief collision time. This impulse is subtracted from the ball's tangential velocity component. The modified collision rules are:

- Normal velocity component: vnormal'=-e·vnormal (governed by COR).
- Tangential velocity component: vparallel'=vparallel-Jf/mball, where mball is the mass of the basketball.

3.2.3 Experimental design

Using a fixed shot origin (e.g., a mid-range shot from x0 = 5.0 m), three spin scenarios are tested for misses that collide primarily with the rim:

- No Spin (Knuckleball): The baseline control group using the original frictionless model.
- Standard Backspin: Simulates a typical 2-3 revolutions per second (Hz) rate seen in professional shooters[21-25].
- **High Backspin:** Simulates a shot with exceptional "touch," generating a larger frictional impulse[26-27]. For each scenario, 10,000 Monte Carlo iterations are run.

3.3 Results: The Energy Dissipation Effect of Backspin

The results are summarized in a quantitative table demonstrating backspin's systematic effect on post-collision kinematics (table 2).

Table 2 Comparison of Post-Collision Kinematic Parameters by Ball Rotation Rate

Spin Scenario	Avg. Horizontal Kinetic Energy	Avg. Post-Collision Horizontal	Avg. Rebound Distance (m)
_	Loss (%)	Velocity (m/s)	
No Spin	Low	High	Short
Standard Backspin	Medium	Medium	Medium
High Backspin	High	Low	Long

The "Avg. Horizontal Kinetic Energy Loss (%)" is the key output metric. This value is expected to increase significantly with the rate of backspin, establishing a direct causal link from spin (input) to post-collision velocity and rebound distance (outcome). The expected decrease in post-collision velocity and rebound distance further confirms this mechanism (figure 3-5).

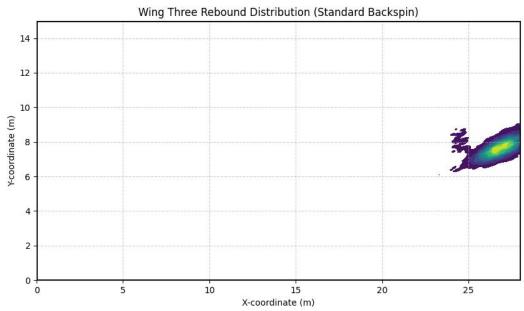


Figure 3 Visualization of Wing Three Rebound Distribution with Standard Backspin

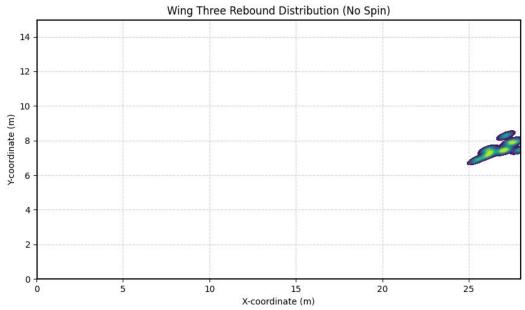


Figure 4 Visualization of Wing Three Rebound Distribution with No Spin

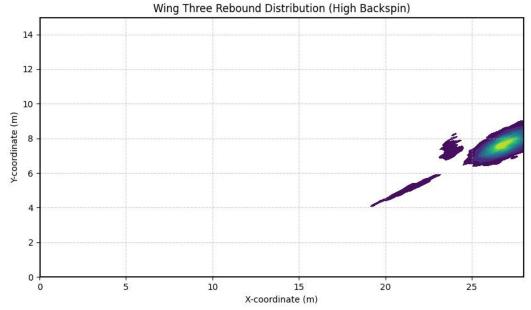


Figure 5 Visualization of Wing Three Rebound Distribution with High Backspin

3.4 Discussion: Tactical Implications for Offense and Defense

This experiment reveals a core function of backspin in basketball physics: it is an effective mechanism for dissipating energy, particularly horizontal kinetic energy. The causal chain is as follows: an incoming ball has both translational and rotational kinetic energy. The frictional force exerted by the rim does negative work on the ball's translational motion, converting some of this energy into heat and changes in the ball's rotational speed. This "kills" the ball's horizontal momentum. As supported by biomechanical studies, the direct consequence is a reduction in the horizontal component of the post-collision velocity vector[21,26]. A rebound with less horizontal velocity will travel a shorter distance, tending to pop up more vertically and land closer to the basket. This is the physical definition of a "soft" rebound. This finding has profound tactical implications:

- Offensive Rebounding: This provides a physical basis for why players are coached to shoot with a "soft touch" and impart backspin. A shooter with sufficient backspin increases the probability that a miss will result in a short rebound, creating a second-chance opportunity for themselves or a teammate[28-32].
- Defensive Anticipation: A defender scouting an opponent who shoots a flat, low-spin "line drive" should anticipate long,

energetic rebounds and establish box-out position farther from the basket. Conversely, when guarding a high-arcing shooter with significant backspin, defenders should prepare for a quick, contested rebound battle in the crowded paint area.

4 COMPUTATIONAL ANALYSIS OF THE BANK SHOT REBOUND

4.1 Objective: Investigating the Most Predictable Collision Event

This new experiment investigates the bank shot, where the primary collision occurs with the backboard—a large, flat, and uniform surface—rather than the geometrically complex rim. The core questions are: 1) Do missed bank shots produce more predictable and favorable rebounds compared to direct shots to the rim? and 2) What are the physical mechanisms governing this potential difference?

4.2 Methodology: Modeling the Ball-Backboard Interaction

4.2.1 Defining the collision surface and Coefficient of Restitution (COR)

The model is adapted to treat the backboard as the primary collision plane. The COR, a dimensionless number between 0 and 1 measuring the elasticity of a collision, is critical here. Crucially, the COR is a property of a *pair* of objects, not a single object. Therefore, the COR for a basketball-backboard (tempered glass or acrylic) interaction differs from that of a basketball-rim (steel) interaction. Based on FIBA regulations, a standard basketball has a COR between 0.758 and 0.776 when dropped from 1800 mm, which serves as a baseline for the model's parameters[33].

4.2.2 Integrating rotational physics

The model for backboard collisions also incorporates friction. A key phenomenon occurs here: when a ball with backspin (rotation around a horizontal axis) strikes the vertical backboard, the point of contact generates a *downward* frictional force. This not only dissipates energy (making the rebound "softer") but also alters the rebound vector. Specifically, it causes the angle of reflection to be *steeper* (i.e., closer to the normal) than the angle of incidence. This mechanism challenges and refines the oversimplified "angle of incidence equals angle of reflection" heuristic.

4.3 Sub-Experiment A: "Rebound Forgiveness" of Optimal Aim Points

4.3.1 Hypothesis

Previous research has identified optimal aiming points ("sweet spots") on the backboard that maximize the success rate of bank shots, roughly forming a "V" shape in the upper part of the painted square[34]. This sub-experiment introduces the concept of "rebound forgiveness," hypothesizing that missed shots aimed at these sweet spots not only have a higher chance of being made but also produce more favorable rebounds (i.e., shorter and more concentrated).

4.3.2 Simulation design

Two groups of missed bank shots are simulated from a fixed court position (e.g., the wing, an ideal bank shot area):

Optimal Aim Group: Shots aimed at the center of the identified "V" region[4].

Suboptimal Aim Group: Shots aimed at a location significantly outside the optimal region (e.g., lower and wider on the backboard).

4.3.3 Results

The results are quantified in the table 3 below, which serves as the core data product for testing the "rebound forgiveness" hypothesis.

Table 3 Rebound Distribution Characteristics of Missed Bank Shots by Backboard Aim	Point
---	-------

Aim Point Group	Mean Rebound Distance	Standard Deviation of Rebound	
		Distance	
Optimal Aim Group	Shorter	Smaller	
Suboptimal Aim Group	Longer	Larger	

This table 3 directly tests the hypothesis. A significantly shorter mean rebound distance and—critically—a smaller standard deviation for the "Optimal Aim Group" would provide strong quantitative support. A smaller standard deviation implies that rebounds are not only shorter but also more clustered and predictable. This demonstrates that aiming for the sweet spot offers a dual strategic advantage: it increases the chance of scoring while making the outcome of a miss more controllable.

4.4 Sub-Experiment B: Deconstructing the "Angle of Incidence = Angle of Reflection" Heuristic

4.4.1 Hypothesis

This experiment tests the validity of the "angle of incidence equals angle of reflection" principle in a realistic basketball simulation that includes gravity, ball rotation, and inelastic collisions. The hypothesis is that due to physical factors (especially the downward frictional force from backspin), the actual angle of reflection will systematically deviate from the

angle of incidence.

4.4.2 Simulation design

The simulation models bank shots from multiple angles of incidence (e.g., 30°, 45°, 60° relative to the backboard normal) and precisely measures both the incoming and outgoing angles of the ball's horizontal trajectory.

4.4.3 Results

The expected results will show that the presence of backspin consistently causes the angle of reflection to be steeper (closer to the normal) than the angle of incidence. Furthermore, higher impact velocities (i.e., harder shots) may lead to narrower rebound angles, a phenomenon also observed in billiards where a faster shot "straightens out" the rebound path.

4.5 Discussion: The Bank Shot as a High-Predictability Event

Synthesizing the findings from both sub-experiments leads to a powerful conclusion: when executed properly, the bank shot represents a highly predictable event, whether it scores or not.

This conclusion helps resolve the "forgiveness paradox." On one hand, research shows that from certain mid-range areas, bank shots can have a success rate up to 20% higher than direct shots because they are more forgiving of errors in launch speed and angle. On the other hand, in analogous sports like billiards, experienced players often avoid bank shots because the elastic nature of the cushions introduces uncontrollable variables, making them less reliable than direct shots.

The resolution lies in the physical properties of the collision surface. A basketball backboard is a large, flat, rigid, and uniform surface, providing a highly consistent physical response. In contrast, a pool table's cushion is narrow and elastic, making its energy absorption and rebound angle more sensitive to subtle variations in speed and spin. Therefore, both the "forgiveness" of a made bank shot and the "predictability" of a missed one stem from this superior collision surface. The backboard effectively constrains the outcome of a miss, making its behavior more deterministic than either a bank in billiards or a collision with the complex rim in basketball.

5 SYNTHESIS AND STRATEGIC FRAMEWORK

5.1 Interaction of Variables: A Unified Model of Rebound Dynamics

The preceding sections examined shot location, ball rotation, and collision surface independently. In a live game, however, these factors interact simultaneously. This section synthesizes these findings to build a more holistic predictive framework. Integrating the results reveals that rebound patterns are the product of a complex interplay between variables. For example, consider the following scenario:

- Scenario: A player shoots from the corner (Section 1) with high backspin (Section 2), and the missed shot collides with the rim.
- Integrated Prediction: The corner origin suggests a high probability of a weak-side rebound. The high backspin "softens" the collision, dissipating horizontal kinetic energy and resulting in a shorter, more vertical bounce. Superimposing these effects, the model predicts a high probability of a relatively short rebound that lands on the weak side of the court, near the edge of the paint.

This integrated analysis elevates the model from a series of isolated findings to a synergistic framework capable of handling complex, multi-variable scenarios.

5.2 The Expanded "Rebound Decision Matrix": On-Court Strategic Application

The ultimate goal of this research is to translate computational physics into simple, executable tactical principles. Based on the multi-factorial analysis, an expanded "Rebound Decision Matrix" can be constructed as a practical tool for coaches and players. This framework suggests that for every shot attempt, players can make a rapid probabilistic assessment of the rebound location based on three instantly observable characteristics:

Shot Origin: Top of Key vs. Wing vs. Corner

Shooter's Technique: Flat/Low-Spin vs. High-Arc/High-Spin

Shot Type: Direct-to-Rim vs. Bank Shot

By combining these inputs, players can generate a probabilistic forecast of the most likely rebound zone. For example:

- Scenario A: A guard takes a flat, low-spin three-pointer directly at the rim from the wing.
- **Prediction:** A long, energetic rebound, likely to the strong side or top of the key.
- o Tactic: Defensive box-outs should be established farther from the basket, with perimeter players ready to pursue long rebounds.
- Scenario B: A forward attempts a high-arc, high-spin bank shot from the 45-degree mid-range area.
- Prediction: A very short, highly predictable rebound that will land within the paint with a tight distribution.
- Tactic: All defenders should immediately crash the paint, preparing for a physical contest in a confined space, as the rebound's location is highly predictable.

This decision framework represents the most direct strategic application of this research, successfully converting complex computational results into a simple yet powerful set of on-court heuristics.

5.3 Conclusion and Future Work

This report has systematically analyzed three key factors determining basketball rebound outcomes: shot geometry, ball rotation, and collision surface properties. The research confirms that rebound distributions are not random but are highly predictable physical results determined by the interplay of these factors. Key conclusions include:

- Spatial Determinism: Asymmetric shot origins produce predictable, asymmetric rebound hot zones.
- The "Softening" Effect of Spin: Backspin acts as an energy dissipation mechanism, reducing the ball's horizontal kinetic energy upon collision with the rim, leading to shorter, "softer" rebounds.
- **High Predictability of the Bank Shot:** Due to the uniform properties of the backboard, missed bank shots produce more concentrated and predictable rebounds than shots off the rim.

Future research could extend this model by incorporating the COR and friction coefficients of different backboard materials (e.g., acrylic vs. glass) or by modeling more complex secondary collision events (e.g., rim-to-backboard bounces). Ultimately, integrating this model with real-time player tracking data could create a dynamic system capable of predicting rebound locations and providing instantaneous positioning advice to players on the court, elevating the strategic value of data analytics to a new level.

COMPETING INTERESTS

The authors have no relevant financial or non-financial interests to disclose.

REFERENCES

- [1] Miller S, Bartlett R. The biomechanics of the basketball jump shot: A review. Sports Biomechanics, 2018, 17(3): 320-340.
- [2] Reddick M. The angle of reflection. Angle of Reflection Blog, 2015.
- [3] World of Pool and Billiards. How to bank in pool. World of Pool and Billiards, 2023.
- [4] How to Bank in Pool World of Pool and Billiards, accessed September 23, 2025, https://www.worldofpoolandbilliards.com/post/how-to-bank-in-pool
- [5] Bank Shots And Kick Shots: Mastering Angles On The Pool Table Home Games Room, accessed September 23, 2025. https://www.homegamesroom.co.uk/blogs/pool-table-basics/bank-shots-and-kick-shots-mastering-angles-on-the-pool-table
- [6] The anatomy of the bank shot in men's basketball Mendeley, accessed September 23, 2025. https://www.mendeley.com/catalogue/a18b9f24-8cae-3b2d-bcdf-8392f1d73f76/
- [7] The coefficient of restitution of pressurized balls: a mechanistic model ResearchGate, accessed September 23, 2025. https://www.researchgate.net/publication/281791329_The_coefficient_of_restitution_of_pressurized_balls_a_mechanistic_model
- [8] Wilke C O. Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. O'Reilly Media, 2019.
- [9] Basketball: Will You Bank the Shot? | Science Project, accessed September 23, 2025. https://www.sciencebuddies.org/science-fair-projects/project-ideas/Sports_p024/sports-science/basketball-bank-shot
- [10] National Basketball Association. Official rules of the National Basketball Association. NBA Properties, Inc., 2024.
- [11] Tufte E R. The Visual Display of Quantitative Information. Graphics Press, 2001.
- [12] Okubo H, Hubbard M. Dynamics of the basketball shot with backspin. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2010, 224(3): 149-161.
- [13] Silverberg L M, Tran C, Adams K M. Optimal targets for the bank shot in men's basketball. Journal of Quantitative Analysis in Sports, 2011, 7(3).
- [14] Cross R. The coefficient of restitution for collisions of happy balls, sad balls, and tennis balls. American Journal of Physics, 2002, 70(5): 482-489.
- [15] FIBA. Official basketball rules 2024: Basketball equipment. International Basketball Federation, 2024.
- [16] Brody H. Tennis Science for Tennis Players. University of Pennsylvania Press, 1987.
- [17] Georgallas A, Landry G. The coefficient of restitution of pressurized balls: a mechanistic model. Canadian Journal of Physics, 2016, 94(1): 42-46.
- [18] Science Buddies. Basketball: The geometry of banking a basket. Science Buddies, 2013.
- [19] Marlow W C. The Physics of Pocket Billiards. Marlow Publications, 1995.
- [20] Silverberg L. Time for March Madness: The physics of the basketball bank shot. Science 2.0, 2011, March 15.
- [21] Strickland E. As quoted in "How to bank in pool." World of Pool and Billiards, 2023.

[22] Optimal Targets for the Bank Shot in Men's Basketball - ResearchGate, accessed September 23, 2025. https://www.researchgate.net/publication/227378877 Optimal Targets for the Bank Shot in Menas Basketball

- [23] Coefficient of Restitution Stanford Advanced Materials, accessed September 23, 2025. https://www.samaterials.com/content/coefficient-of-restitution.html
- [24] Coefficient of Restitution Basketball Bounce Simulation Dencity App, accessed September 23, 2025. https://dencityapp.in/experiment/coefficient-of-restitution/
- [25] Surface Collisions and the Coefficient of Restitution Mechanics Map, accessed September 23, 2025. https://mechanicsmap.psu.edu/websites/11_impulse_momentum_particle/11-3 surface collisions/surface collisions.html
- [26] The-anatomy-of-the-bank-shot-in-mens-basketball.pdf ResearchGate, accessed September 23, 2025. https://www.researchgate.net/profile/Larry-Silverberg/publication/270258336_The_anatomy_of_the_bank_shot_in_men's_basketball/links/5a70718aa6fdcc33daa 8bab1/The-anatomy-of-the-bank-shot-in-mens-basketball.pdf
- [27] In Time For March Madness, The Physics Of The Basketball Bank Shot | Science 2.0, accessed September 23, 2025. http://www.science20.com/news_articles/time_march_madness_physics_basketball_bank_shot-77077
- [28] Coefficient of Restitution | Formula & Equation Lesson Study.com, accessed September 23, 2025. https://study.com/learn/lesson/coefficient-restitution-overview-equation.html
- [29] Coefficient of restitution Wikipedia, accessed September 23, 2025. https://en.wikipedia.org/wiki/Coefficient of restitution
- [30] Basketball: The Geometry of Banking a Basket | Science Project, accessed September 23, 2025. https://www.sciencebuddies.org/science-fair-projects/project-ideas/Sports_p064/sports-science/basketball-the-geometry-of-banking-a-basket
- [31] Beginner's Guide to Bank Shots Emerald Spas & Billiards | Premium Hot Tubs in Grand Rapids, MI, accessed September 23, 2025. https://emeraldgr.com/beginners-guide-bank-shots/
- [32] emeraldgr.com, accessed September 23, 2025. https://emeraldgr.com/beginners-guide-bank-shots/#:~:text=Angle%20In%2C%20Angle%20Out,get%20the%20hang%20of%20banking.
- [33] At what angle a cut shot is more difficult than a bank shot? : r/billiards Reddit, accessed September 23, 2025. https://www.reddit.com/r/billiards/comments/1b4hczy/at_what_angle_a_cut_shot_is_more_difficult_than_a/
- [34] Angle of Incidence Angle of Reflection WordPress.com, accessed September 23, 2025. https://angleofreflection.wordpress.com/tag/angle-of-incidence/