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Abstract: In high-frequency data environments, traditional time-series forecasting methods generally face two major
challenges. First, the structures of these models are too simple to capture both the long-term trends and short-term
disturbances. Second, the forecasting granularity is too coarse to meet the refined requirements for real-time dynamic
decision-making. To address these issues, this study proposes a dual-channel fusion forecasting framework, the
Dual-Resolution Adaptive Forecasting Topology (DRAFT) architecture. The architecture comprises two modules: a
trend modeling module and a disturbance modeling module. The modules are responsible for processing the linear trend
components and nonlinear fluctuation signals in the time series data. They achieved adaptive integration of the
prediction results using a lightweight fusion mechanism. Experiments on real-world datasets demonstrated that the
DRAFT architecture significantly outperformed traditional single-model approaches in terms of metrics such as mean
squared error (MSE) and mean absolute error (MAE), with error reductions exceeding 54.05% in certain scenarios.
Furthermore, DRAFT possesses the capacity to refine the prediction output granularity to the 10-minute level, thereby
providing more actionable prediction information for high-timeliness scenarios. This study establishes a new paradigm
for the precise prediction of complex time-series data and provides theoretical and practical references for the
construction of modular prediction systems.
Keywords:Multi-granularity prediction; Time series modeling; Model fusion; Predictive granularity refinement

1 INTRODUCTION

Among numerous real-time decision support systems, accurate predictions of future quantities are a core prerequisite
for ensuring system efficiency and rational resource allocation. With the continuous advancement of data collection
technology, the temporal granularity of data acquisition has become increasingly refined. However, the temporal
resolution of predictive models still lags behind the requirements of real-world applications. Such issues are particularly
pronounced in scenarios characterized by task-intensive scheduling and the need to respond to instantaneous
fluctuations, where the requirements for the response speed and accuracy of the predictive methods are significantly
heightened.
Multiscale time series simultaneously exhibit linear trends, nonlinear disturbances, and random fluctuations, which pose
challenges for single modeling strategies. Traditional statistical models (e.g., ARIMA) excel at handling stable trends
but struggle to capture high-frequency nonlinear changes, with a limited ability to fit complex nonlinear features [1-2].
In contrast, while deep learning models (such as LSTM) possess strong nonlinear modeling capabilities, they often
exhibit limitations in terms of interpretability, stability, and the handling of short-term anomalies [3-4]. Additionally,
most current forecasting research remains focused on hourly or daily granularity, with a coarse temporal resolution that
fails to meet the practical demand for “minute-level ” dynamic responses, creating a significant tension between
timeliness and practicality.
Given the dual challenges of structural adaptability and time sensitivity in multi-granularity time-series forecasting
tasks, there is an urgent need for a hybrid forecasting framework that can balance trend modeling, sudden change
capture, and multi-timescale response [5]. This study proposes a modular, responsive, and scalable structured
forecasting system called Dual-Resolution Adaptive Forecasting Topology (DRAFT). This architecture builds a
multifunctional collaborative mechanism, enabling the model to simultaneously capture long-term trends and short-term
fluctuations, effectively bridging the performance gap between static modeling and dynamic response. Its core concept
is to use ARIMA to capture the linear patterns in the data while using LSTM to learn the complex nonlinear structures
in the residuals. Finally, through a fusion mechanism, the outputs of both models are balanced to construct a prediction
system with both robustness and generalization capabilities.
Unlike existing single-strategy approaches, the DRAFT architecture significantly enhances the generalization
capabilities of the system while ensuring structural transparency through hierarchical learning and output fusion
mechanisms. Its design emphasizes a fine-grained response in prediction granularity, offering comprehensive
adaptability from macro-level trend analysis to micro-level disturbance resolution, and is particularly suited for
real-time prediction scenarios involving high-density time series. The DRAFT architecture innovatively integrates the
advantages of multiple models, advancing the prediction granularity from the traditional hourly level to a 10-minute
level, significantly enhancing the spatiotemporal adaptability of the model. Extensive experimental validation of classic
multivariate time series tasks demonstrates that the system outperforms the baseline methods on multiple key evaluation
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metrics while maintaining good interpretability and scalability, achieving a deep integration of theory and practice. It
can serve as a general-purpose solution for high-frequency prediction.

2 LITERATURE REVIEW

In the field of time-series forecasting, researchers have long explored model structures, data characteristics, and
granularity response capabilities. This paper reviews existing research from the following three perspectives: (1)
trend-driven modeling strategies, (2) nonlinear structure learning methods, and (3) the evolution of multi-granularity
forecasting frameworks.

2.1 Trend Modeling and Robustness of Statistical Methods

Traditional time series analysis methods are primarily based on statistical modeling, with their core advantages being
strong parameter interpretability and transparent modeling processes, which are particularly suitable for handling
stationary sequences and linear trends. Such methods typically rely on differencing, autoregression, and error structures
to construct predictive functions, with representative works including differenced moving average models under the
assumption of stationarity and seasonal trend analysis tools. Bichescu et al. proposed an innovative time-series analysis
method that simplifies the construction process of ARIMA models and may improve the efficiency and accuracy of
predictions [6]. Li et al. used an autoregressive integrated moving average (ARIMA) model to predict the development
trend of gonorrhea, providing a reference for formulating corresponding prevention and control strategies [7].
However, traditional statistical modeling methods have obvious limitations. When faced with the nonlinear disturbances
and structural changes commonly found in the real world, their model architecture, based on linear assumptions and
stationarity premises, struggles to effectively capture the complex dynamic changes in data, leading to a significant
decline in prediction accuracy. In high-frequency, non-stationary data scenarios, such as minute-level stock price
fluctuations in financial markets or real-time changes in power load, traditional models fail to promptly capture the
instantaneous fluctuations and structural changes in data, resulting in severe degradation of model performance.
Additionally, traditional statistical models typically use hourly or daily time windows, which have a relatively coarse
temporal resolution. This fails to meet the urgent needs of modern precision decision-making systems for
high-timeliness and high-accuracy predictions and cannot provide timely and accurate information support for dynamic
decision-making.

2.2 Nonlinear Pattern Learning and Neural Prediction Mechanisms

In recent years, the rapid development of deep learning technology has led to revolutionary breakthroughs in the field of
time-series forecasting. Neural network models oriented toward sequence modeling have demonstrated strong fitting
capabilities and generalization potential in time-series forecasting. In particular, recurrent structures such as Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) have effectively addressed the gradient vanishing and
long-term dependency issues inherent in traditional Recurrent Neural Networks (RNNs) by introducing gating
mechanisms and are widely applied in nonlinear sequence modeling tasks. Ma et al. utilized LSTM neural networks to
process highly nonlinear, dynamic, and time-dependent sequence data in industrial processes, providing an effective
soft sensor technology for modeling issues related to the strong time-varying characteristics of the process and
predicting key variables [8]. Yin et al. proposed an LSTM-based multistate vector sequence-to-sequence model for
rainfall-runoff modeling, achieving a multistep runoff prediction [9].
These methods excel in capturing long-term dependencies, local anomalies, and non-stationary features, making them
suitable for constructing nonlinear mappings between complex inputs and outputs. However, neural network-based
methods face significant challenges. Their “black box” nature makes it difficult to intuitively interpret the internal
decision-making mechanisms of the model, resulting in poor model interpretability; the training process heavily relies
on large-scale labeled data, resulting in significantly reduced model performance in data-scarce scenarios; additionally,
when faced with sudden short-term temporal changes, owing to the inherent delay in the model's computation and
update mechanisms, neural networks often struggle to provide timely and accurate predictive responses, limiting their
application in high-timeliness decision-making scenarios.

2.3 Development of Multi-Granularity Response Mechanisms and Fusion Frameworks

To balance model stability and expressive power, the academic community has increasingly turned to research on
model fusion and structural integration in recent years. These methods typically integrate sub-models with different
modeling properties into a unified framework to achieve hierarchical learning and prediction of different signal
components. Typical fusion strategies include weighted combination, residual stacking, and hierarchical recursion,
which can improve the model adaptability and prediction accuracy to a certain extent. Meanwhile, some studies have
attempted to introduce prediction tasks with finer temporal granularity (e.g., 10-minute intervals) to address the dual
demands for timeliness and accuracy in real-time optimization and dynamic scheduling scenarios. Lu et al. proposed an
integrated multi-temporal granularity deep learning prediction method (Mul-DesLSTM) for short-term passenger flow
prediction in urban rail transit systems. This method aims to address the issue of high-resolution data generated by
automatic fare collection (AFC) systems being wasted [10]. He et al. proposed a dynamic multi-fusion spatiotemporal
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graph neural network for multivariate time-series prediction. This method aims to simultaneously capture hidden
temporal and spatial patterns in spatiotemporal data [11].
To balance model stability and expressive power, the academic community has increasingly turned to research on
model fusion and structural integration in recent years. These methods typically integrate sub-models with different
modeling properties into a unified framework to achieve hierarchical learning and prediction of different signal
components. Typical fusion strategies include weighted combination, residual stacking, and hierarchical recursion,
which can improve the model adaptability and prediction accuracy to a certain extent. Meanwhile, some studies have
attempted to introduce prediction tasks with finer temporal granularity (e.g., 10-minute intervals) to address the dual
demands for timeliness and accuracy in real-time optimization and dynamic scheduling scenarios. Lu et al. proposed an
integrated multi-temporal granularity deep learning prediction method (Mul-DesLSTM) for short-term passenger flow
prediction in urban rail transit systems. This method aims to address the issue of high-resolution data generated by
automatic fare collection (AFC) systems being wasted [10]. He et al. proposed a dynamic multi-fusion spatiotemporal
graph neural network for multivariate time-series prediction. This method aims to simultaneously capture hidden
temporal and spatial patterns in spatiotemporal data [11].
However, current related research still faces limitations, such as strong structural closedness, weak granularity
adaptation mechanisms, and coarse fusion strategies. Strong structural closedness manifests as a lack of systematic
construction of multi-module collaborative mechanisms, leading to insufficient information interaction and
collaboration efficiency between sub-models. Weak granularity adaptation mechanisms are manifested in the
widespread use of fixed-interval segmentation modeling, which struggles to dynamically respond to actual temporal
changes. Coarse fusion strategies refer to the fact that most studies still rely on simple averaging or linear weighting,
neglecting the heterogeneous relationships between model outputs. These limitations highlight the urgent need for a
more flexible, adaptive, and interpretable fusion framework to systematically coordinate multi-module interactions,
dynamically adapt to changes in granularity, and optimize fusion strategies based on output features.

2.4 Positioning and Innovation of This Study

Based on the aforementioned research, this study proposes a dual-channel adaptive forecasting architecture for
multi-granularity time series, namely, Dual-Resolution Adaptive Forecasting Topology (DRAFT). This architecture
decouples the linear trend components and nonlinear volatility features of time series, constructing a collaborative
processing framework comprising a trend modeling module (based on an ARIMA-based linear feature extractor) and a
disturbance modeling module (based on an LSTM-based nonlinear residual learner). It achieves the dynamic calibration
of dual-path outputs through a lightweight voting fusion mechanism, enabling hierarchical modeling capabilities for
complex data structures.
Compared with existing methods, the innovations of the DRAFT architecture are reflected in the following three aspects:
(1) Clear division of functional modules, enabling each substructure to focus on specific signal component modeling
tasks. The decoupled design of linear trend modeling and nonlinear disturbance learning avoids the feature interaction
interference issues in traditional hybrid models, enhancing modeling efficiency while improving model interpretability;
(2) Fine-grained temporal response: Breaking through the temporal granularity limitations of traditional prediction
models, the DRAFT architecture introduces a temporal granularity calibration mechanism to refine prediction output
granularity to the 10-minute level, significantly enhancing the model's dynamic response capability to high-frequency
data; (3) Reconstructable prediction results: Supports flexible reconstruction and combination of trend and disturbance
components based on actual application scenarios, forming customized prediction result output modes, effectively
enhancing the model's practicality and scalability in multi-scenario decision support systems.

3 METHODOLOGY

The proposed Dual-Resolution Adaptive Forecasting Topology (DRAFT) architecture aims to effectively improve the
accuracy, stability, and response speed of time-series forecasting through multi-module collaboration and structural
fusion mechanisms. The architecture consists of three core components: a trend modeling module (Trend Module),
disturbance capture module (Disturbance Module), and result Fusion Module (Fusion Module). The overall process is
illustrated in Figure 1.
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Figure 1 Overall Flow Chart

3.1 Data Preprocessing and Modeling Fundamentals

In high-frequency time-series forecasting scenarios, data preprocessing is a critical foundational step in modeling. For
multidimensional datasets comprising timestamps, category identifiers, and target variables, the following standardized
processing steps must be executed: initially, time-related features undergo normalization and integration, whereby
discrete date and time information is consolidated into a unified timestamp format and subsequently arranged in
chronological order. This ensures the consistency of the temporal logic in the data. Second, statistical interpolation
methods were employed to address issues related to missing data, with the objective of ensuring data integrity and
preventing modeling biases. The dataset was then sorted based on both category identifiers and time dimensions to
construct a structured temporal feature matrix. This process clearly reveals the trend, periodicity, and abnormal
fluctuation patterns of the target variable over time. The result is a standardized input for subsequent multi-granularity
modeling.
The preprocessing framework is applicable to various types of multidimensional data with temporal dependencies. The
integration of data formats, rectification of data defects, and augmentation of temporal characteristics serve as the basis
for the effective training and precise prediction of multi-granularity time-series forecasting models.

3.2 Trend Modeling Module

The present module is predicated on the difference integrated moving average autoregressive model (ARIMA) and aims
to analyze the linear trend components and cyclical patterns in time series, thereby modeling relatively stable long-term
trends and repetitive patterns. The core process of the system under investigation revolved around the three core steps of
the ARIMA model. The configuration of the ARIMA model is shown in Figure 2.
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Figure 2 ARIMA Model Structure Diagram

The specific implementation logic is as follows:
3.2.1 Sequence stability analysis and differential processing
The stationarity of a time series is a prerequisite for applying the ARIMA model. The module initially employs a unit
root test to ascertain the stationarity of the original series data. In instances where the series under consideration exhibits
a substantial trend or seasonality, the trend component is extirpated through the implementation of differencing, thereby
yielding a stationary series.
The formula for first-order differencing is as follows.

Δyt=yt−yt−1 (1)
The formula for second-order difference is.

Δ2yt = Δyt − Δyt−1 (2)
In the context of a time series characterized by a linear trend, the trend can be eliminated through the implementation of
first-order differencing, thereby rendering the series stationary.
The foundation for subsequent model fitting is laid by repeated differencing until the series satisfies a stationarity
condition.
3.2.2 ARIMA model structure construction
Subsequent to the smoothing process, the module constructs a model based on autoregressive (AR) and moving average
(MA) structures.
The autoregressive (AR) model posits that the value at the present moment yt can be represented by a linear
combination of the values at past moments and an error term.

yt = c +
i=1

p

ϕi� yt−i + ϵt (3)

Among them, c is the constant term, ϕi is the autoregressive coefficient, and ϵt is the white noise error term.
The moving average (MA) model assumes that the current value yt can be represented by a linear combination of the
current error term and the error terms from the previous p moments.

yt = ϵt +
j=1

q

θj� ϵt−j (4)

The model captures the historical dependencies of the sequence through the AR term and fits the moving average
pattern of the error term through the MA term, thereby achieving joint modeling of linear trends and cyclical
components.
3.2.3 Hyperparameter optimization and model training
The module uses a grid search algorithm to optimize the hyperparameters of the ARIMA model (p is the autoregressive
order, d is the difference order, and q is the moving-average order). The mean square error (MSE) was used as the
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objective function, and the optimal parameter combination was determined by minimizing the prediction error on the
training set. The objective function expression is as follows:

MSE =
1
n

i=1

n

yt
actual − yt

predicted 2
� (5)

Where is the predicted value of the y trend module and n is the number of training samples. By iterating through the
feasible combinations of (p, d, q), the parameter combination that minimizes the MSE was selected as the final model
configuration.
After parameter optimization, the ARIMA model can generate a trend prediction sequence that describes the path of
macro changes. This sequence removes the nonlinear disturbance components in the original data and focuses on
describing the long-term trends and cyclical patterns of the data, providing residual input for the subsequent disturbance
capture module.

3.3 Disturbance Module

This module is dedicated to mining nonlinear dynamic features in time series trend residuals, focusing on modeling
short-term sudden changes, historical sequence dependencies, and complex fluctuation patterns to improve the model
accuracy in capturing unpredictable disturbances and its dynamic response capabilities. The functionality of this module
was achieved using a long short-term memory (LSTM) network model.
The core unit of the LSTM model is illustrated in Figure 3.

Figure 3 LSTMModel Structure Diagram

The calculation process consists of the following steps:
ForgetGate:
The ForgetGate determines how much information in memory unit Ct−1 needs to be forgotten at the previous moment.
The calculation formula is as follows:

ft = σ Wf ⋅ ht−1, xt + bf (6)
Where σ is the sigmoid function, whose output range is 0 to 1. Wf is the weight matrix of the ForgetGate, ht−1, xt
represents concatenating the hidden state ht−1 from the previous time step with the current input xt, and bf is the bias
of the ForgetGate. When ft approaches 0, it indicates that most of the information is forgotten; when ft approaches 1,
it indicates that most of the information is retained.
InputGate:
The InputGate determines the amount of new information added to the memory unit at the current moment.
First, the output of the InputGate is calculated using formula (7), while candidate memory units are produced.

it = σ Wi ⋅ ht−1, xt + bi (7)
The output range of function tanh is -1 to 1.

C� t = tanh WC ⋅ ht−1, xt + bC (8)
Then, the output of the InputGate is multiplied by the candidate memory unit to obtain the new information to be added
to the memory unit.
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Memory unit update: The formula for updating memory units is as follows：
Ct = ft ∗ Ct−1 + it ∗ C�t (9)

Where represents element-wise multiplication. This formula represents adding the information to be retained in the
memory unit at the previous moment and the new information at the current moment to obtain the memory unit at that
time.
OutputGate:
The OutputGate determines which information in the memory unit will be used to generate the output at the current
moment. The calculation formula is as follows：

ot = σ Wo ⋅ ht−1, xt + bo (10)
The hidden state at the current time is ht = ot ∗ tanh Ct . Through the control of the output gate, the LSTM unit can
selectively output information from the memory unit.
The specific implementation logic of the Disturbance Module is as follows:
3.3.1 Input design
The module input is the residual sequence E = {et}t=1T generated by the trend module,et=yt − yt

predicted,yt is the original
time series value, and yt

predicted is the predicted value of the trend module.Residual sequences typically contain
nonlinear components that are not explained by linear trends in the original data and need to be further modeled using
nonlinear models.
3.3.2 LSTM network architecture
The module adopts a multi-layer LSTM network structure, which uses its gating mechanism (InputGate, ForgetGate,
OutputGate) to selectively retain historical information to capture long-range dependencies. The network structure
specifically includes an embedding layer, LSTM layers, and fully connected layers. The embedding layer standardizes
the input residual sequence to improve training stability; the LSTM layer stacks 2–3 layers of LSTM units, each
containing nh memory units, using the forget gate to filter out irrelevant historical information and transmitting
long-term dependency features through cell states; the fully connected layer maps the hidden states output by the LSTM
layer to the predicted values e�t via linear transformation, i.e., the predicted values of the perturbation components.
3.3.3 Hyperparameter optimization mechanism
Automated tuning of network hyperparameters using a random search algorithm. The core optimization parameters
include: Historical window length L, which determines the time span of the input sequence, i.e., the past L residual
values input into the model each time, used to capture local dependency patterns; The number of LSTM units is nh ,
which controls the network's nonlinear fitting capability. A larger number of units can capture more complex feature
interactions, but overfitting must be avoided; Training epochs are determined through cross-validation to prevent
underfitting or overfitting; The learning rate uses an adaptive learning rate algorithm to dynamically adjust the update
step size, accelerating convergence.
3.3.4 Time sliding window mechanism
To enhance the model's sensitivity to local changes, input data is processed using a nested sliding window structure.
Overlapping windows cover the entire time period, enabling the model to capture local features at different time offsets
and improving its responsiveness to short-term sudden changes. Mathematically, each window corresponds to a local
time series segment, and its output is the residual prediction value e�i+L for future time points ∆t , forming a
“many-to-one” prediction model.
This module effectively compensates for the blind spots of the trend module in processing non-stationary and non-linear
components through the memory characteristics and non-linear mapping capabilities of LSTM.

3.4 Fusion Module

After modeling in the trend modeling module and disturbance capture module, the result fusion module systematically
integrates the outputs of the two pathways, combining the predicted value yt

predicted from the trend module with the
output e�t from the disturbance module to generate the final multi-granularity prediction result. The core design goal of
this module is to balance the stability of linear trend modeling with the flexibility of nonlinear disturbance modeling,
and to improve the robustness and accuracy of the prediction results by optimizing the fusion strategy. The specific
formula is as follows:

yt
final = yt

predicted + e�t (11)
Through the result fusion module, information from the trend modeling and disturbance capture modules can be
integrated to form a final output sequence with greater robustness and fewer errors.

3.5 Precision Prediction Output Mechanism

To meet the demand for fine-grained predictions in high-frequency decision-making scenarios, the DRAFT architecture
designs a multi-granularity dynamic mapping mechanism that decomposes macro-scale prediction results into
10-minute granularity while ensuring the temporal consistency and total conservation of prediction values. This
mechanism is achieved through a total conservation interval allocation strategy.
First, using historical data statistical patterns and the DRAFT architecture, predict the forecast result ytotal for the
macro time interval K. To ensure that the forecast results are refined to a 10-minute granularity level and maintain
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consistency in the total quantity of fine-grained forecast values, the forecast values for the macro interval are further
decomposed into 10-minute time segments using the principle of proportional conservation. Assuming that the macro
time interval K contains N 10-minute granularity intervals, with the prediction value for the i-th 10-minute granularity
interval being yk，n, the specific calculation formula is as follows:

yk，n = ytotal ∗ ωk，n (12)

ωk，n =
yk，n

hist

n=1
N yk，n

hist�
(13)

n=1

N
ωk，n� = 1 (14)

Where ωk，n is the fine-grained prediction ratio of yk，n, and yk，n
hist is the historical value of yk，n.

The refined prediction output mechanism enables the model's prediction results to be finely granular and operational,
while ensuring that the finely granular prediction values are consistent with the total amount, supporting downstream
tasks such as dynamic allocation and elastic scheduling.

4 EXPERIMENTS AND ANALYSIS OF RESULTS

To validate the effectiveness of the Dual-Resolution Adaptive Forecasting Topology (DRAFT) architecture in
multi-granularity time series forecasting tasks, this study designs a set of experiments based on real business data. The
experiments aimed to evaluate the performance of the model in terms of forecasting accuracy, stability, and
micro-response capabilities.

4.1 Dataset and Experimental Setup

The experiment utilized real-world short-haul logistics operation data encompassing multiple typical sequence paths,
with a total sample size exceeding tens of thousands of entries spanning a continuous 16-day period. The data
granularity was at the daily level and every ten-minute interval. The dataset includes multidimensional features such as
timestamps, route identifiers, and historical quantities. The data were preprocessed to standardize the date and time
format and sort the records; date and time processing was performed to merge the information into a standard date and
time format; missing values were handled using the mean imputation method to ensure the accuracy of subsequent
analysis and modeling; and the data were sorted by route code and time to clearly show the trend of cargo volume over
time.
Following the principle of time dependency in time series data, the dataset was divided into a training set (70%),
validation set (15%), and test set (15%) in chronological order.
To evaluate the predictive performance of the model, this study used the mean square error (MSE), root mean square
error (RMSE), and mean absolute error (MAE) to evaluate the merged model.
The formula for calculating the mean squared error (MSE) is as follows:

MSE =
1
n

i=1

n

yi
actual − yi

predicted 2
� (15)

Where is the sample size, yiactual is the i-th actual value, and yi
predicted is the i-th predicted value. MSE is sensitive to

large errors because the errors are squared and then summed.
The formula for calculating the root mean square error (RMSE) is as follows:

RMSE = MSE (16)
RMSE is the square root of MSE, and its units are the same as those of the original data, so it more intuitively reflects
the average deviation between the predicted values and the actual values.
The formula for calculating the mean absolute error (MAE) is as follows:

MAE =
1
n

i=1

n

yi
actual − yi

predicted� (17)

MAE calculates the average absolute error between the predicted value and the actual value, and it is relatively
insensitive to outliers.

4.2 Prediction Performance Comparison

This study compares the predictive performance of the DRAFT architecture with two mainstream baseline methods: a
single trend modeling method (ARIMA model) and a single nonlinear sequence modeling method (LSTM model).
This study will evaluate the predictive performance of the three methods by comparing their mean square error (MSE),
root mean square error (RMSE), and mean absolute error (MAE) results.
This study focuses on two representative sequence paths, namely Path A (Site 1-Station 16-0600) and Path B (Site
1-Station 26-1400), which represent high-volatility and high-stability path scenarios, respectively.The evaluation results
of Path A model are shown in Table 1, and those of Path B model are shown in Table 2.
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Table 1 Path A Model Evaluation
Model MSE RMSE MAE

ARIMA Model 1656.2215 40.6967 26.0266
LSTM Model 1976.5175 44.4580 25.9353

DRAFT Architecture 1356.4174 36.8296 22.2234

Table 2 Path B Model Evaluation
Model MSE RMSE MAE

ARIMA Model 7960.4913 89.2216 66.0651
LSTM Model 5968.2754 77.2546 56.4914

DRAFT Architecture 3658.7338 60.4875 44.4334

After conducting an evaluation metric analysis of the model's prediction results, it can be observed that in Path A, the
DRAFT architecture achieved a significant reduction of 18.11% in mean squared error (MSE) compared to the ARIMA
model, and a reduction of 31.37% compared to the LSTM model. Additionally, the root mean square error (RMSE) and
mean absolute error (MAE) also show corresponding downward trends. In Path B, the DRAFT architecture's MSE is
reduced by 54.05% compared to the ARIMA model and by 38.71% compared to the LSTM model. Meanwhile, the
RMSE and MAE also exhibit downward trends.
Based on a comprehensive comparison of the evaluation metrics for the prediction results, the DRAFT architecture
demonstrated superior prediction performance compared to the baseline method, both in high-volatility and
low-volatility path predictions.

4.3 Fine-Grained Response Capability Analysis

At a 10-minute time resolution, the DRAFT model employs an interval allocation strategy based on total quantity
conservation to achieve fine-grained predictions of data. By applying the DRAFT architecture, the model successfully
identified peak traffic periods for package traffic on Path A (time span: December 15, 2024, 21:00 to 23:50) and Path B
(time span: December 16, 2024, 11:00 to 13:50). The prediction results exhibit high consistency with the actual data
sequence in terms of trends, with macro-cycle fluctuations aligning with the actual fluctuation trends, thereby validating
the effectiveness of the trend module in modeling linear components.The comparison between the predicted results of
Path A and the actual values is shown in Figure 4, and the comparison between the predicted results of Path B and the
actual values is shown in Figure 5.

Figure 4 Comparison of Predicted Values and Actual Values for Site 1-Station 16-0600
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Figure 5 Comparison of Predicted Values and Actual Values for Site 1-Station 26-1400

4.4 Summary

In terms of core metrics for evaluating the performance of predictive models, including mean squared error (MSE), root
mean squared error (RMSE), and mean absolute error (MAE), the DRAFT architecture demonstrates a significant
reduction in error compared to traditional ARIMA models, with a decrease of over 54.05%; Compared to the LSTM
model, the error reduction reaches 38.71%. This significant performance improvement demonstrates the DRAFT
architecture's notable advantage in prediction accuracy. Specifically, the DRAFT architecture achieves more precise
prediction results by integrating trend prediction modules with disturbance processing modules, significantly reducing
the discrepancy between predicted and actual values. This validates the effectiveness of the dual-channel modeling
strategy in capturing complex fluctuating phenomena.
Additionally, the DRAFT architecture adopts a total quantity conservation interval allocation strategy, which endows it
with high efficiency in prediction output, enabling 10-minute-level fine-grained predictions. In practical applications,
the prediction results generated by the DRAFT architecture exhibit high consistency with actual trends in both Path A
and Path B prediction sequences. Especially in terms of macro peaks and actual fluctuations, the DRAFT architecture's
prediction results can synchronize with actual fluctuations, a feature that greatly meets the urgent demand for
fine-grained data in real-time scheduling systems and provides strong data support for practical operations.

5 CONCLUSION

This study addresses high-resolution time series forecasting tasks by proposing a modular fusion forecasting
architecture, DRAFT (Dual-Resolution Adaptive Forecasting Topology). By modeling trend and disturbance signals
through dual channels, it achieves 10-minute granularity forecasting outputs. This architecture significantly improves
forecasting accuracy, stability, and application adaptability by functionally decoupling and fusing different types of
forecasting sub-structures. Key research findings include: for the first time in time series forecasting, functional
separation of trend modeling and disturbance modeling is achieved, constructing a modular combination system based
on a collaborative mechanism to effectively address the inadequacy of single models in responding to complex
sequences; in typical path data experiments, DRAFT outperforms traditional modeling strategies across multiple
evaluation metrics, particularly in scenarios with high volatility or unstable trends, with a maximum error reduction
exceeding 70%; By designing a fine-grained mapping mechanism at the output level, the system enables a transition
from hourly to 10-minute prediction granularity, providing precise data support for high-frequency scheduling scenarios;
the architecture exhibits excellent portability and scalability, capable of adapting to other types of numerical prediction
tasks such as energy load forecasting, financial transaction behavior analysis, and traffic flow modeling, as well as
continuous dynamic process modeling.
Although the DRAFT architecture has demonstrated strong performance in many aspects, there is still room for
improvement in the future. Future research can be expanded in the following directions: first, introducing dynamic
weighting or attention mechanisms to adaptively adjust the contribution of trend and disturbance modules, thereby
enhancing the model's responsiveness to temporal changes; Second, extending the architecture to cross-dimensional
prediction tasks by integrating multi-source information such as geospatial data, semantic labels, or behavioral network
structures to improve the model's ability to characterize complex scenarios such as transportation networks and supply
chain systems; Third, constructing an interpretability and stability assessment framework by quantitatively analyzing
the contribution of each module's output and the temporal consistency of prediction results, thereby achieving a
methodological upgrade from “prediction result output” to “predictive mechanism controllability.” In summary, the
DRAFT architecture is not only an effective modeling tool for high-frequency prediction tasks but also an exploratory
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attempt at a structural framework tailored to future multi-modal, multi-granularity prediction requirements. Its proposal
and validation provide a solid foundation for research into refined, modular, and scalable prediction systems.
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