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Abstract: Autofocus technology is crucial in many fields, but traditional passive autofocus methods face issues such as
low convergence speed, easy misjudgment, and focus breathing. Meanwhile, electronic component detection requires
high accuracy and adaptability to practical scenarios. To address these problems, this study constructs an end-to-end
electronic component detection baseline and explores the optimization of passive autofocus technology. First, we
synthesized images of four electronic components and generated classification datasets as well as multi-object detection
datasets. We adopted grayscale downsampling for feature extraction and combined standardization preprocessing with a
Support Vector Classifier (SVC) for model training and testing. Additionally, we conducted a comparative analysis
between the Convolutional Neural Network (CNN) and Vision Transformer (ViT) models. Experimental results show
that the CNN-based detection system has reliable recognition performance for components with distinct morphological
features. Compared with ViT, CNN exhibits better adaptability to small datasets, lower computational complexity, and
stronger local feature capture capabilities, making it more suitable for practical application scenarios with limited
hardware resources. This study provides a feasible baseline for electronic component detection and lays a foundation for
the subsequent optimization of passive autofocus technology.
Keywords: Electronic component detection; Convolutional Neural Network (CNN); Passive autofocus; Vision
Transformer (ViT); Model optimization

1 INTRODUCTION

Autofocus technology plays an important role in both military and civilian fields, mainly used for quickly and
accurately capturing targets in scenes [1]. In optical systems, autofocus is divided into active autofocus and passive
autofocus [1]. Active focusing uses sensors to measure the distance between the lens and the object, which increases the
manufacturing cost and technical complexity of the optical system [1,2]. Passive focusing utilizes the clarity of the
captured image to provide feedback on focus control, making it more suitable for today's mobile phone cameras [1,3].
The specific method is to extract image sharpness measures or sharpness functions from images captured at different
lens positions, and then determine the focus position by locating the peak of the sharpness function [4].
For passive focusing, the most basic method for traditional autofocus algorithms is to calculate the focus value and
obtain the optimal focusing lens position through climbing search [5]. However, this real-time algorithm will result in
an increase in computational complexity as the number of pixels increases, leading to a decrease in the convergence
speed of autofocus and potentially increasing the probability of defocusing [5]. How to choose a suitable focusing
window is also a problem, as the lens can only keep a portion of the target within a limited depth of field, which is an
inevitable disadvantage of optical lenses in three-dimensional space [1]. There are currently two main solutions to solve
the problem of focusing windows: one is for users to interactively select the focusing window, and the other is to use a
fixed template predetermined by prior knowledge to focus the window [1]. However, when these two focusing windows
are combined with traditional autofocus methods, two problems still arise. The first problem is the misjudgment of the
light spot, as the defocused state contains more gradient energy than the focused state, which may lead to misjudgment
of the focus value by the sharpness evaluation function [1]. The second issue is focus breathing, as the camera's
focusing process is achieved by changing the distance between the imaging plane and the lens, which means that the
boundary information entering the focusing window will also change during the focusing process [1].
To address these issues, some scholars have conducted research and attempted to improve the focusing speed and
accuracy by improving the sharpness function. For example, Yousefi and other scholars have established a new function
SOD, which reduces the number of iterations to improve focusing speed while also considering focusing accuracy.
Although the test data includes simulated and real data, the database is relatively small. In the same scene, only 15
images were used as references, and there were only 60 images from different scenes [2]. In addition, scholars such as
Jong Woo Han have created a new training based method for automatic focusing of mobile phone cameras. Their data is
extensive, but all tests are limited to the range of 10-120cm, so it cannot be determined whether there is a significant
improvement in focusing function outside of this range [3].
In order to address the shortcomings of traditional focusing methods, we plan to improve the sharpness function and
focusing window developed by scholars in recent years, and enhance the quality of the database by increasing the total
amount and accuracy of data, ensuring that our improved focusing system can improve focusing efficiency on a wider
range.
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Convolutional neural network (CNN) is a type of feedforward neural network that performs well in large-scale image
processing. Its basic structure includes convolutional layers and pooling layers, and usually also includes fully
connected layers [6]. Its input to each neuron is connected to the local receptive field of the previous layer, and local
features are extracted through convolution operations, making it one of the representative algorithms of deep learning.
CNN is also a type of deep neural network designed to process grid-structured data, such as images (2D grids of pixels)
or videos (3D grids of spatiotemporal data) [6]. It leverages convolutional layers to automatically extract hierarchical
features from input data, mimicking the visual perception mechanism of the human brain [6]. Unlike traditional neural
networks that treat input as flat vectors, CNNs preserve spatial relationships in data, making them highly effective for
computer vision tasks.
The concept of CNN dates back to the 1980s, inspired by biological studies of the visual cortex: 1959: Neuroscientists
David Hubel and Torsten Wiesel discovered that visual neurons in the brain respond to specific local features, laying the
biological foundation. 1980: Kunihiko Fukushima proposed the Noncognition, an early neural network with
convolutional-like layers, designed for pattern recognition [6]. 1989: Yann LeCun and colleagues introduced LeNet-5,
the first practical CNN, which achieved breakthroughs in handwritten digit recognition (MNIST dataset). This model
established core components of CNNs: convolution, pooling, and fully connected layers. Make it the first truly
successful deep learning method that adopts a multi-layer hierarchical structure network and has robustness [7] 2012:
AlexNet revolutionized computer vision by winning the ImageNet competition with a deep CNN, demonstrating CNNs’
superiority over traditional methods and triggering the modern deep learning boom [8].

2 MODEL

2.1 Key Mathematical Formulas in CNN

2.1.1 Convolution Operation
For a 2D input feature map X∈RH×W and a filter (kernel) K∈RK×K , the output feature map Y∈R H−k+1 × W−k+1
is computed as:Y i,j = m=0​

k−1
n=0
k−1​ X i+m,j+n�� ⋅ K m,n +bWhere b is a bias term, and (i,j) denotes the position in the

output feature map.
2.1.2 Pooling Operation
Max pooling (a common type) reduces spatial dimensions by taking the maximum value within a local
window:Y i,j =maxm=0

p−1 maxn=0
p−1 X i⋅ p+m,j⋅ p+n Where p is the pooling window size.

2.1.3 Activation Function
After convolution or fully connected layers, an activation function introduces non-linearity ReLU x =max 0,x
For example, article called “Object Detection Method Based on CNN and Camera Calibration” propose a CNN based
dense cabinet opening position detection algorithm, which extracts pixels on a one-dimensional vector perpendicular to
the cabinet opening edge on the image as input data, an improved one-dimensional convolutional ShuffleNet
lightweight network is employed to extract features, and an edge point loss function is used to train the network. After
obtaining accurate pixel coordinates of adjacent cabinet top edge points at the dense cabinet opening, calculating the
centerline position coordinates, it adopts Zhang Zhengyou’s camera calibration method to transform pixel coordinates
into real distance values which can guide the mobile monitoring camera to reach the opening position [9].

2.2 Advantages of CNN

Parameter Efficiency: Convolutional layers use shared weights and local receptive fields, significantly reducing the
number of parameters compared to fully connected networks, which avoids overfitting and speeds up training.
Spatial Invariance: Through pooling layers and convolution operations, CNNs exhibit robustness to small translations,
rotations, or scaling of input objects, a critical trait for image recognition.
Automatic Feature Extraction: They eliminate the need for manual feature engineering. Instead, low-level features are
learned in early layers, and high-level features (shapes, objects) are combined in deeper layers.
Scalability: CNNs perform well with large datasets and can be scaled to deeper architectures to improve accuracy on
complex tasks.
The research implements an end-to-end baseline for electronic component detection, structured around seven core
functional modules. Initially, it constructs the basic graphical representations of four electronic components—resistors,
capacitors, ICs, and LEDs—using dedicated drawing functions such as `draw_resistor`. To simulate real-world camera
imaging characteristics, the `jitter_image` function introduces perturbations including brightness and contrast
adjustments, rotational shifts of up to ±12 degrees, Gaussian or box blur, and random noise.
Next, the research generates two distinct datasets: a classification dataset comprising 400 training and 120 test images
and a detection scene dataset with 10 256×256 images, each featuring 1 to 4 components accompanied by bounding box
annotations. For feature extraction, images are converted into 32×32 grayscale downsampled vectors, which are then
used to train a classifier combining standardization preprocessing with a Support Vector Classifier (SVC) utilizing a
radial basis function (RBF) kernel; the trained model is saved for later use. Post-training, the code outputs a detailed
classification report and confusion matrix to evaluate performance. Finally, a sliding-window detection
mechanism—employing a 64-pixel window, 20-pixel step size, and two scaling levels—paired with non-maximum
suppression (NMS) at an intersection-over-union (IOU) threshold of 0.25 identifies components in scenes, with
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annotated results saved as images.
The research also serves as a result summarization tool. It loads the classification report and detection annotation files to
compute key metrics like overall accuracy, macro F1 score, and weighted F1 score. It also tallies the actual count of
each component type in the detection scenes and compiles paths to three representative annotated detection images for
visual inspection.

2.3 Running Results Analysis

From Figure 1 and table 1, we can see the classification task achieved an overall accuracy of 0.725 on the test set,
indicating that the model correctly classified 72.5% of electronic components. From Chart 1, we can see both the macro
F1 score and weighted F1 score reached 0.727, suggesting balanced performance across different component categories.
The macro F1 score, which averages F1 values across all classes, and the weighted F1 score, which accounts for class
imbalance, being identical reflects consistent performance regardless of class distribution. In the detection scenarios, the
ground truth object counts show varying distributions among component types: 7 ICs, 6 LEDs, and 4 each of resistors
and capacitors. This distribution provides a basis for analyzing detection performance across classes, with particular
attention to whether the model maintains stability for more represented classes like ICs. The confusion matrix visually
illustrates classification patterns between similar components, with resistors and capacitors showing higher mutual
confusion due to their comparable structural features—both include pin elements with somewhat similar body shapes
(rectangular versus elliptical). In contrast, ICs and LEDs demonstrated more reliable classification due to their distinct
morphological characteristics. Three annotated detection results stored in the comp_cam/det_results directory provide
visual verification of the model's performance. These images display bounding boxes, component labels, and
confidence scores, offering insights into detection accuracy and localization precision. All experimental artifacts,
including classification labels, detection scene data, trained models, performance reports, and annotated results, are
organized within the comp_cam directory, facilitating comprehensive result verification and subsequent model
optimization efforts.

Figure 1 Visualization of Confusion Matrix and Overall Accuracy for Electronic Component Classification Tasks

Table 1Actual Quantity and Model Core Performance Indicators of Various Components in Electronic Component
Testing Scenarios

class gt_objects GT object counts in
detection scenes Overall accuracy Macro F1 Weighted F1

ic 7

0.725 0.727 0.727
led 6

resistor 4

capacitor 4

3 DISCUSSION

The research simultaneously applied the ViT model and compared it with the CNN model from multiple perspectives.
In terms of structural principles, the CNN model performs convolution operations by sliding the convolution kernels in
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the convolutional layer on the image, automatically extracting local features of the image such as edges, textures, etc.
The pooling layer is used to reduce the dimensionality of the feature map, reduce computational complexity, while
preserving the main features. The fully connected layer is used to classify and predict the extracted features [6]. The ViT
model divides an image into multiple fixed size patches, linearly maps these patches into embedding vectors, adds
positional encoding, and inputs them into the Transformer encoder. Transformers use a multi head attention mechanism
to weight and fuse features from different positions, thereby learning a global feature representation [10]. In terms of
feature learning methods, CNN excels at capturing local features, and the size and stride of its convolution kernel
determine the size of the receptive field, making it more sensitive to changes in local structure [6]. ViT focuses more on
global features and can simultaneously pay attention to information from different positions in the image through
attention mechanisms, which has advantages in handling long-distance dependencies [10]. In terms of data requirements,
CNN can effectively learn features through the shared weights and local connections of convolutional kernels even in
small data volumes [6]. ViT typically requires a large amount of data for training to learn sufficient image feature
representations, which can lead to overfitting on small datasets [10].
The advantages of CNN is following: Strong ability to capture local features, with excellent ability to extract local
textures, edges, and other features in images, and performs well in handling images with rich details. Due to parameter
sharing and local connections, the number of parameters in the model is reduced, the computational complexity is
reduced, and training efficiency is improved [8]. At the same time, it also has a certain effect on preventing overfitting.
With a mature theoretical and practical foundation, it has a wide range of applications and in-depth research in the field
of computer vision. Many pre trained models can be directly used or fine tuned, which is convenient and fast [8].
The disadvantages of CNN is following: The global feature learning ability is relatively weak, and its ability to capture
long-range dependencies in images is not as good as that of Transformers, which may have limitations when dealing
with tasks that require global information [6]. The limitation of receptive field size is determined by the size and stride
of the convolution kernel, which may not be sufficient for large-scale feature learning [6].
The advantages of ViT is following: Strong global feature learning ability, through attention mechanism, can better
capture the global features and long-range dependencies of images, and perform well in some complex visual tasks [10].
The flexible structure is easy to expand and adjust, and can be easily combined with other modules [10].
The disadvantages of ViT is following: The data demand is high, and training on small datasets can easily lead to
overfitting, requiring a large amount of data to learn effective feature representations. The computational complexity is
high, especially when processing high-resolution images, resulting in significant computational and memory
consumption [10].
The reason for choosing the CNN model is firstly due to the data size. In this electronic component detection task, the
dataset size is relatively small (400 training sets and 120 testing sets). CNN has better adaptability in small data
scenarios and can effectively utilize data through parameter sharing and local connections, reducing the risk of
overfitting. On small datasets, CNN often outperforms ViT [8,10]. Considering hardware resources, CNN has relatively
low computational complexity and does not require high hardware resources. It can be quickly trained and inferred on
ordinary computing devices, making it more suitable for practical application scenarios [8]. Finally, due to the nature of
the task, electronic component detection tasks require high accuracy in local features, such as the shape and pins of the
component, which are crucial for classification and detection. The powerful local feature capture capability of CNN can
better meet this requirement [8].

4 CONCLUSION

This study focuses on addressing the limitations of traditional electronic component detection and passive autofocus
technologies, constructing an end-to-end detection baseline and conducting comparative research on CNN and ViT
models. First, the study successfully synthesized camera-like electronic component images (covering resistors,
capacitors, ICs, and LEDs) and generated classification (400 training/120 test images) and multi-object detection
datasets. Through grayscale downsampling feature extraction and SVC classification, the CNN-based detection system
achieved an overall accuracy of 0.725 and a macro F1 score of 0.727 on the test set, with reliable performance in
recognizing components with distinct morphologies (e.g., ICs, LEDs). Second, comparative analysis revealed that CNN
outperforms ViT in this task. Owing to parameter sharing and strong local feature capture capabilities, CNN adapts well
to small datasets, avoids overfitting, and has lower computational complexity, making it suitable for ordinary hardware.
In contrast, ViT, while excellent at global feature learning, suffers from overfitting risks on small datasets and high
resource consumption, limiting its practicality here. Finally, this study provides a feasible baseline for electronic
component detection, with well-organized experimental artifacts (datasets, models, reports) facilitating subsequent
optimization. Future work can expand dataset scale, improve sharpness functions and focusing windows, and explore
lightweight CNN variants to further enhance detection efficiency and adaptability to complex scenes.
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