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Abstract: As one of the most critical power devices in industrial systems, the operational status of centrifugal pumps
directly affects system safety, reliability, and economic efficiency. To address the limitations of traditional diagnostic
methods—such as reliance on manual feature extraction and poor generalization—this paper provides a comprehensive
review of recent advances in deep learning-based fault diagnosis and intelligent operation and maintenance (O&M) of
centrifugal pumps. It first outlines the theoretical foundations and representative deep learning models, including
convolutional neural networks (CNN), recurrent neural networks (RNN/LSTM/GRU), residual networks (ResNet),
graph neural networks (GCN), and Transformers, and discusses their applications in cross-condition diagnosis,
remaining useful life (RUL) prediction, and intelligent O&M. Furthermore, it summarizes the progress in key enabling
technologies such as multi-sensor data fusion, transfer learning, self-supervised and meta-learning, physics-informed
feature alignment, and digital twins, which significantly enhance diagnostic accuracy, robustness, and generalization.
Studies indicate that deep learning-based approaches outperform traditional methods in automatic feature extraction,
domain adaptation, and decision optimization, thus enabling the shift from passive monitoring to proactive maintenance.
Nevertheless, challenges remain regarding data scarcity and labeling difficulty, limited model interpretability and
generalization, and real-time computational constraints. Future research directions include: developing few-shot and
self-supervised learning to alleviate data dependency; integrating physical knowledge with deep learning to improve
interpretability and trustworthiness; designing lightweight models suitable for edge deployment; and advancing digital
twin-driven lifecycle management and predictive maintenance. This review provides a systematic reference and future
outlook for research and industrial applications of intelligent fault diagnosis and maintenance of centrifugal pumps.
Keywords: Deep learning; Centrifugal pump fault diagnosis; Transfer learning; Multi-source data fusion; Intelligent
operation and maintenance; Digital twin

1 INTRODUCTION

Centrifugal pumps are critical power equipment widely used across industrial systems, serving as essential components
for fluid transportation and energy conversion in sectors such as energy, chemical engineering, manufacturing,
aerospace, and petroleum extraction. Their operational status is directly related to the safety, stability, and efficiency of
the entire industrial system. However, under complex operating conditions, prolonged continuous service, and the
influence of external environmental factors, centrifugal pumps are prone to various failures, including bearing wear,
cavitation, and seal degradation. These failures not only reduce operational efficiency but, in severe cases, may lead to
unplanned shutdowns or even safety accidents. Therefore, achieving efficient and accurate fault diagnosis and
intelligent maintenance of centrifugal pumps is of great theoretical and engineering significance for ensuring the safe
and reliable operation of industrial systems.
Traditional fault diagnosis methods for centrifugal pumps primarily rely on expert knowledge, signal processing
techniques, and feature analysis methods [1]. Typically, these approaches extract fault features through time-domain,
frequency-domain, or time–frequency-domain analysis and employ machine learning algorithms for classification and
identification. However, such methods face notable limitations: the feature extraction process depends heavily on
manual expertise, the models often lack generalization capability, and the diagnostic accuracy is constrained.
Consequently, they fail to meet the increasing demands of modern industry for intelligent and automated systems [2-3].
With the rapid advancement of artificial intelligence, particularly deep learning, data-driven intelligent fault diagnosis
methods have become a major research focus [2-4]. Deep learning achieves hierarchical feature learning through
multilayer neural networks, enabling the automatic extraction of high-dimensional representations directly from raw
signals. This end-to-end mapping from data to fault types significantly enhances the automation level and accuracy of
fault diagnosis [5-9].
In recent years, deep learning architectures such as convolutional neural networks (CNNs), recurrent neural networks
(RNNs) and their variants, residual networks (ResNets), graph neural networks (GNNs), and Transformer models have
been widely applied to centrifugal pump fault diagnosis. These models demonstrate remarkable performance in feature
extraction and classification, showing great potential in tasks such as cross-condition diagnosis, remaining useful life
(RUL) prediction, and intelligent maintenance. Furthermore, the integration of multi-source information fusion and
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transfer learning technologies has further improved the flexibility and comprehensiveness of deep learning applications
in centrifugal pump fault diagnosis, offering new perspectives for addressing practical challenges such as data scarcity
and variable operating conditions.
In the field of intelligent operation and maintenance (O&M), the application of deep reinforcement learning and
adaptive optimization algorithms is driving a paradigm shift from traditional “passive monitoring” to “active
decision-making.” By integrating real-time monitoring, condition assessment, and decision optimization, intelligent
O&M systems can effectively extend equipment lifespan, reduce energy consumption, and improve operational
efficiency—thereby providing crucial support for the intelligent management of industrial equipment [10].
In this context, this paper systematically reviews the fundamental theories and key methodologies of deep learning in
centrifugal pump fault diagnosis. It further summarizes the fault characteristics and diagnostic strategies of various
centrifugal pump types and explores recent advances in multimodal signal processing, transfer learning, and intelligent
O&M. The objective is to provide a comprehensive theoretical reference and technical outlook for future research in
this field.

2 DEEP LEARNING FOUNDATIONS FOR CENTRIFUGAL PUMPFAULT DIAGNOSIS

2.1 Convolutional Neural Networks and Variants

With its hierarchical architecture, deep learning technology is capable of simulating the information-processing
mechanisms of the human brain, enabling automatic learning and extraction of high-level features from raw data. This
capability has demonstrated significant advantages in the field of centrifugal pump fault diagnosis. Compared with
traditional diagnostic methods, deep learning eliminates the need for complex manual signal processing and feature
engineering. Through an end-to-end learning approach, it directly establishes complex nonlinear mappings between
monitoring data and fault categories [11]. This automated feature learning ability substantially enhances both the
accuracy and robustness of fault diagnosis [12].
Among various deep learning models, convolutional neural networks (CNNs) are among the most widely applied
architectures in centrifugal pump fault diagnosis. The core strengths of CNNs—namely local connectivity, weight
sharing, and subsampling—enable them to efficiently capture spatial correlations within signals. In centrifugal pump
diagnostics, CNNs are frequently used to process time–frequency representations of vibration or acoustic signals for
recognition and classification tasks [13]. Studies have shown that CNNs can simultaneously perform feature extraction
and classification when dealing with high-dimensional mechanical monitoring data, thereby improving diagnostic
efficiency. To further optimize model performance, researchers have introduced adaptive learning rate strategies that
dynamically adjust network parameters, leading to enhanced fault classification accuracy [22].
As an advanced evolution of CNNs, the residual network (ResNet) effectively addresses the problems of gradient
vanishing and model degradation encountered in deep network training through the introduction of residual learning
mechanisms. ResNet has demonstrated superior performance in centrifugal pump fault diagnosis. Zheng et al. proposed
a two-stage multi-channel deep learning model based on Robust-ResNet, which incorporates a step-size factor to
improve model robustness and adaptability for mechanical fault detection tasks. The enhanced model achieved accuracy
rates of 99.96% and 99.53% in fault detection and remaining useful life (RUL) prediction tasks,
respectively—significantly outperforming other state-of-the-art methods [14]. Through its deep network architecture,
ResNet is capable of learning more complex fault feature representations, offering new insights for the in-depth
application of deep learning in centrifugal pump fault diagnosis [15].

2.2 Recurrent Neural Networks and Variants

Recurrent Neural Networks (RNNs) and their variants, such as Long Short-Term Memory (LSTM) networks and Gated
Recurrent Units (GRUs), possess distinctive advantages in time-series data analysis, making them particularly suitable
for temporal signal modeling in centrifugal pump fault diagnosis. These models can effectively capture temporal
dependencies within signals, enabling precise modeling of fault evolution processes. For instance, LSTM and GRU
networks have demonstrated higher accuracy than traditional RNNs in Remaining Useful Life (RUL) prediction tasks,
allowing for more reliable estimation of equipment lifespan.
Furthermore, researchers have developed hybrid deep learning architectures that integrate the strengths of
Convolutional Neural Networks (CNNs) and LSTMs. In such models, CNNs are employed to extract spatial features,
while LSTMs are used to capture temporal characteristics. This synergistic combination significantly enhances the
overall performance of centrifugal pump fault diagnosis and prognostics, improving both detection precision and
predictive capability [16-17].

2.3 Transformers and Self-Attention Mechanisms

The Transformer model, which initially achieved remarkable success in the field of natural language processing (NLP),
has in recent years been increasingly applied to centrifugal pump fault diagnosis. Its core innovation lies in the
self-attention mechanism, which enables the dynamic capture of long-range dependencies within sequential data and
demonstrates clear advantages when processing complex and non-stationary signals. Unlike Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), the Transformer does not rely on fixed receptive fields or
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recursive structures, allowing it to process sequence data in parallel and thereby greatly improving computational
efficiency.
In centrifugal pump fault diagnosis, the Transformer effectively captures global dependencies within monitoring signals
and exhibits outstanding performance under varying operating conditions and rotational speeds. When combined with
physics-informed feature alignment methods, the Transformer can better adapt to distributional shifts across different
operating regimes, thereby enhancing the model’s generalization capability and robustness in real-world diagnostic
applications [18].

2.4 Hybrid Deep Learning Models

In recent years, hybrid deep learning models have emerged as an effective strategy for enhancing the performance of
centrifugal pump fault diagnosis. Such models integrate different deep learning architectures—such as Convolutional
Neural Networks (CNNs) combined with Long Short-Term Memory (LSTM) networks or Transformers—to achieve
complementary advantages and improve diagnostic accuracy. For instance, in centrifugal pump fault diagnosis tasks,
CNNs are capable of efficiently extracting spatial features from time–frequency representations, while LSTM networks
or Transformers focus on capturing the temporal dependencies of the signals. Through this synergistic design, hybrid
models provide more robust diagnostic and prognostic capabilities under multi-condition and multimodal environments
[19]. Notably, the careful design of hybrid architectures also strengthens model generalization, enabling greater
adaptability in complex and dynamic industrial scenarios [20], see Table 1.

Table 1 Comparison of Major Deep Learning Models for Centrifugal Pump Fault Diagnosis

Model Type Core Features Applicable Data
Types

Typical
Applications Advantages Limitations

Convolutional
Neural Network

(CNN)

Local connectivity,
weight sharing,
spatial feature
extraction

Time–frequency
images, 2D
signals

Fault type
classification,

automatic feature
extraction

Automated feature
learning; robust to

translational
variations

Difficult to directly
process long sequential

time-series data

Recurrent
Neural Network

(RNN)

Memory capability,
captures temporal
dependencies

Time-series data
RUL prediction,
dynamic process

modeling

Effective for
sequential data;
models dynamic

processes

Susceptible to
vanishing/exploding

gradients; high training
complexity

Transformer

Self-attention
mechanism,

captures long-range
dependencies

Time-series,
sequential data

Cross-condition
diagnosis,

long-sequence
signal processing

High parallel
computing

efficiency; strong
global dependency

modeling

High computational
resource consumption;
large data requirements

Residual
Network
(ResNet)

Residual blocks,
mitigates network

degradation

Deep network
structures,

images/signals

Complex fault
pattern

recognition, deep
feature learning

Enables very deep
networks; alleviates
gradient vanishing

Relatively large
number of model

parameters

Hybrid Models
Combines strengths

of multiple
architectures

Multimodal,
spatiotemporal

data

Comprehensive
fault diagnosis and

prediction

Simultaneously
extracts spatial and
temporal features;

improved
performance

Complex architecture;
challenging training
and hyperparameter

tuning

In summary, the theoretical framework of deep learning–based centrifugal pump fault diagnosis has evolved from
single-model approaches toward multi-architecture integration, exhibiting both contrasting and complementary
characteristics, as illustrated in Table 1. CNNs excel at extracting spatial features and efficiently identifying signal
structures in the time–frequency domain; Recurrent Neural Networks (RNNs), including LSTMs and Gated Recurrent
Units (GRUs), emphasize temporal sequence modeling and effectively capture the dynamic evolution of faults;
Transformers, empowered by self-attention mechanisms, overcome the limitations of RNNs in long-sequence modeling,
offering stronger capabilities in global dependency representation and parallel processing. Hybrid models, through the
collaborative fusion of CNNs, LSTMs, and Transformers, enable complementary extraction of spatial and temporal
features, thereby significantly improving robustness and generalization across varying operating conditions and
multimodal scenarios.
Overall, the development trend of deep learning in centrifugal pump fault diagnosis is shifting from single-structure
feature learning toward multi-model collaborative intelligence [17] [19]. This transition provides a more comprehensive,
efficient, and adaptive solution for fault identification and prognostics in centrifugal pump systems [21].

3 KEYTECHNICALAPPROACHES FOR CENTRIFUGAL PUMP FAULT DIAGNOSIS

3.1 Advanced Signal Preprocessing and Feature Extraction Methods

Time–frequency analysis methods serve as essential techniques in signal processing and feature extraction, playing a
crucial role in centrifugal pump fault diagnosis. These methods can effectively capture time-varying characteristics in
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non-stationary signals by transforming one-dimensional time-domain data into two-dimensional time–frequency
representations. This transformation provides deep learning models with richer feature information and significantly
enhances diagnostic accuracy.
Among various time–frequency analysis techniques, the Continuous Wavelet Transform (CWT) is one of the most
widely applied in centrifugal pump fault diagnosis. By employing scalable mother wavelet functions for
multi-resolution analysis, CWT simultaneously provides localized information in both the time and frequency domains.
In fault diagnosis, CWT is commonly used to convert raw vibration signals into time–frequency representations for
subsequent image-based feature extraction [22]. This approach effectively preserves transient and periodic
characteristics of the signal, making it particularly suitable for identifying complex mechanical fault patterns. Studies
have demonstrated that converting vibration, pressure, and acoustic signals into two-dimensional time–frequency
images and feeding them into improved deep Convolutional Neural Networks (CNNs) enables accurate identification of
multiple fault types in centrifugal pumps [23]. Moreover, CWT can be combined with methods such as the Stockwell
Transform (ST) to generate detailed time–frequency scale maps, where Sobel filtering enhances feature visibility and
provides higher-quality inputs for downstream deep learning models [22].
The Hilbert–Huang Transform (HHT) is another powerful time–frequency analysis technique that has shown excellent
performance in centrifugal pump fault diagnosis. Based on Empirical Mode Decomposition (EMD) and Hilbert spectral
analysis, HHT adaptively decomposes nonlinear and non-stationary signals, making it particularly suitable for complex
mechanical vibration data. In monoblock centrifugal pump fault detection, HHT has been employed to convert vibration
signals into HHT-based images, which are then classified using pre-trained deep networks with high accuracy.
Compared with the traditional Fourier Transform, HHT provides superior capability in capturing localized signal
characteristics, offering unique advantages for detecting early-stage faults and weak signals. In drilling pump
diagnostics, HHT has been applied to extract time–frequency features from denoised strain signals, which are then fed
into parallel Deep Neural Networks (DNNs) and fused with other features to improve diagnostic precision [24].
Essentially, time–frequency analysis methods perform a secondary level of signal feature representation by
transforming one-dimensional signals into two-dimensional time–frequency images. Taking CWT as an example, it
computes wavelet coefficients across different scales and positions to generate an energy distribution map on the
time–frequency plane, where the horizontal axis represents time, the vertical axis denotes frequency, and color or
grayscale encodes energy intensity. This two-dimensional representation not only preserves temporal characteristics of
the original signal but also reveals its frequency components and their temporal evolution. Similarly, HHT decomposes
the signal into a series of Intrinsic Mode Functions (IMFs) via EMD and then performs Hilbert Transform on each IMF
to obtain instantaneous frequency and amplitude, ultimately constructing a Hilbert spectrum. These time–frequency
images provide deep learning models with richer and more intuitive feature representations, enabling more effective
learning and discrimination between subtle fault patterns [24].
Case studies have shown that the integration of time–frequency analysis with deep learning significantly improves fault
diagnosis accuracy in centrifugal pumps. For example, one study proposed a dual-scale image approach that combines
convolutional autoencoders with Artificial Neural Networks (ANNs), achieving accuracies of 100%, 99.2%, and 98.8%
across three datasets—substantially outperforming traditional methods [4]. Similarly, applying HHT to transform
vibration signals into images and incorporating transfer learning techniques has successfully enabled accurate diagnosis
of monoblock centrifugal pump faults, providing new insights for equipment condition monitoring and maintenance
strategies.
In centrifugal pump fault diagnosis, feature selection and dimensionality reduction play a pivotal role in enhancing both
diagnostic efficiency and accuracy. With the rapid advancement of sensor technologies and the proliferation of
monitoring data, high-dimensional features often contain redundant information. Thus, extracting the most effective
subset of features has become an important research focus.
Principal Component Analysis (PCA), as a classical dimensionality reduction technique, is widely used in centrifugal
pump fault diagnosis. PCA performs linear transformation to convert original data into a set of uncorrelated
representations, effectively extracting dominant feature components. It is often employed as an initial dimensionality
reduction tool prior to deep learning model training. For instance, in the t-distributed Stochastic Neighbor Embedding
(t-SNE) algorithm, PCA is first used to reduce high-dimensional features to a lower dimension before nonlinear
mapping and visualization.
t-SNE, a nonlinear dimensionality reduction technique, is particularly effective for visualizing high-dimensional data.
Unlike PCA, t-SNE preserves local structures within the data, ensuring that similar samples remain close in the
low-dimensional space. In centrifugal pump fault diagnosis, t-SNE is widely used to visualize the feature distributions
learned at different layers of deep neural networks, thereby helping to reveal the internal learning mechanisms of the
models. Studies have shown that as network depth increases, features progressively evolve from mixed states to
well-separated clusters, vividly illustrating the CNN’s ability to automatically extract and optimize features.
Convolutional Autoencoders (CAEs) also serve as important tools for feature selection and dimensionality reduction in
centrifugal pump fault diagnosis. One approach employs dual CAEs to process different types of time–frequency
images, providing comprehensive and discriminative feature representations for each input modality. Through the
encoder–decoder architecture, autoencoders learn the most efficient data representations while effectively removing
noise and redundancy.
Feature selection and dimensionality reduction techniques significantly enhance both the efficiency and accuracy of
centrifugal pump fault diagnosis. By eliminating redundant information and focusing on the most discriminative
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features, these techniques reduce computational costs and improve model generalization under varying operating
conditions. Experimental results indicate that adopting appropriate feature selection and dimensionality reduction
strategies can substantially improve diagnostic accuracy, with some approaches achieving near-perfect performance on
specific datasets [4]. Looking forward, as deep learning technologies continue to advance, feature selection and
dimensionality reduction will remain key areas of innovation, offering more efficient and accurate solutions for
centrifugal pump fault diagnosis.

3.2 Diagnostic Enhancement via Multi-Source Data Fusion

In centrifugal pump fault diagnosis, multi-sensor data fusion techniques have been demonstrated to significantly
enhance diagnostic accuracy and reliability by integrating information from diverse sensor types. Fault-related
information generated during pump operation is often distributed across multiple physical signals, and single sensors
are typically only capable of capturing local features, making it difficult to comprehensively reflect the operational state
of the equipment. Multi-sensor data fusion effectively consolidates signals from vibration, pressure, acoustic, and
current sensors, leveraging the complementary characteristics of different sensor modalities to achieve a more complete
representation of fault features.
Commonly employed sensors in centrifugal pump diagnostics include accelerometers, pressure sensors, acoustic
sensors, and current sensors. Accelerometers effectively capture vibration signals, exhibiting high sensitivity to
mechanical faults such as bearing damage and rotor imbalance. Pressure sensors monitor variations in hydraulic
systems or fluid pipelines, offering good detectability for blockages and leaks. Acoustic sensors capture sound signals
generated during operation, providing unique advantages for identifying friction, cavitation, and other acoustic-related
faults. Current sensors reflect variations in motor load, indirectly indicating pump operational conditions [25]. The
distinct physical characteristics and complementary information provided by these sensors form the foundation for
multi-source data fusion.
Multimodal feature fusion constitutes a core technique in multi-sensor data integration, aiming to combine features
from different sensors or feature extraction methods into more discriminative representations. Studies have shown that
fusing graphical features from indicator diagrams with Fourier descriptor features can substantially improve feature
robustness. This approach first extracts features from single-modal inputs using two separate backbone networks, then
employs an interactive fusion module to jointly learn from both indicator diagram and Fourier descriptor information.
The fused features are subsequently used for classification, achieving an accuracy of 97.24%, which is significantly
higher than using only graphical features (82.33%) or only Fourier descriptor features (94.22%).
Weighted fusion is another effective strategy for multi-sensor data integration. By assigning appropriate weights to
different sensor signals, it allows for dynamic adjustment and optimization of the information. For axial piston
centrifugal pumps under varying operating conditions, researchers have designed a multi-signal fusion module that
dynamically allocates weights to vibration and acoustic signals, enhancing the method’s adaptability [26]. The module
embeds a residual network (ResNet) within a shared feature generation framework to extract rich representations and
achieved an average accuracy of 98.5% across nine transfer scenarios, demonstrating excellent cross-domain fault
detection performance. Compared with single-sensor signals, weighted fusion provides richer fault information and
reduces the stochastic variability of diagnostic outcomes.
A representative application of multi-sensor data fusion is the diagnosis of inlet pipeline blockage in centrifugal pumps.
Research indicates that combining accelerometer, pressure, and motor current signals significantly improves the
accuracy of blockage level identification. Experiments show that diagnostic models using multi-sensor combinations
can achieve near-100% accuracy, far exceeding single-sensor approaches. Notably, the combination of accelerometers
and current sensors achieves very high precision across all blockage levels. The study also indicates that increasing the
number of sensors further enhances classification accuracy; for instance, using two accelerometers and one pressure
sensor outperforms a configuration using only two accelerometers, highlighting the importance of multi-source data
collection in centrifugal pump diagnostics.
For drilling pumps operating under variable-speed conditions, an innovative method combining physics-driven feature
alignment with dynamic distribution adaptation has been proposed. This approach aligns signal amplitude, angular
sampling frequency, and pulse phase, effectively reducing discrepancies between samples collected under different
rotational speeds. Furthermore, Dynamic Distribution Adaptation (DDA) dynamically adjusts marginal and conditional
distributions during domain adaptation, improving cross-domain feature matching. Experimental results demonstrate
that this method outperforms existing state-of-the-art approaches in fault diagnosis under variable-speed conditions
[27].
Overall, multi-sensor data fusion offers significant advantages in enhancing the accuracy and robustness of centrifugal
pump fault diagnosis. By integrating data from diverse sensors, it provides a more comprehensive depiction of fault
information, compensating for the limitations of individual sensors. Additionally, multi-sensor fusion enhances model
adaptability to environmental variations and operational fluctuations, improving generalization performance. It also
reduces the impact of noise and interference, increasing the reliability of fault feature extraction. By employing
appropriate fusion strategies and weight allocation, the complementary strengths of different sensors can be fully
exploited, achieving a synergistic “1+1>2” effect and significantly improving diagnostic accuracy. In summary,
multi-sensor data fusion provides powerful technical support for intelligent centrifugal pump fault diagnosis and is a
key approach for enhancing equipment operational reliability and safety.
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3.3 Transfer Learning and Domain Adaptation for Real-World Operating Conditions

In centrifugal pump fault diagnosis, variations in operating conditions—such as changes in rotational speed, load
fluctuations, and temperature or pressure variations—often lead to significant differences in the data distributions
collected by sensors. Such variations can substantially degrade the performance of conventional deep learning models
when applied across different operating conditions. The distributional differences induced by changing conditions are
primarily reflected in the signal features; for example, vibration signal amplitude, frequency, and phase characteristics
vary significantly at different rotational speeds, making models trained under one condition difficult to directly apply to
new conditions.
To address the problem of cross-condition fault diagnosis, various transfer learning–based approaches have been
proposed, with domain adaptation and adversarial training being two primary strategies. Domain adaptation methods
improve model generalization by reducing the distribution discrepancy between the source domain (existing conditions)
and the target domain (new conditions). Physics-driven feature alignment is an effective domain adaptation strategy that
leverages the physical properties of the equipment to align signal features, such as amplitude, angular sampling
frequency, and pulse phase, thereby reducing physical distribution differences across operating conditions. Dynamic
distribution adaptation (DDA) further improves domain adaptation by dynamically adjusting the weights of marginal
and conditional distributions, avoiding over-reliance on a single distribution and extracting more robust
domain-invariant features [28].
Adversarial training constitutes another important transfer learning strategy for cross-condition diagnosis. Typically,
adversarial-based transfer learning frameworks comprise a feature extractor, a classifier, and a domain discriminator.
The domain discriminator’s task is to distinguish whether features originate from the source or target domain, while the
feature extractor aims to generate features that “fool” the discriminator, thereby learning domain-invariant
representations. By combining transfer learning with residual networks (ResNets), researchers have proposed
multi-signal fusion adversarial models that dynamically assign weights to vibration and acoustic signals, enhancing
model adaptability across operating conditions. Experimental results indicate that this approach achieves an average
accuracy of 98.5% across nine transfer scenarios for axial piston centrifugal pumps, demonstrating excellent
cross-domain fault detection performance.
Beyond these methods, additional transfer learning strategies have been explored to improve cross-condition
adaptability. Frequency-aware networks, which employ frequency-sensitive convolutional architectures, simultaneously
consider time-domain and frequency-domain features, overcoming the limitations of conventional convolution
operations under variable conditions. Self-supervised learning approaches, particularly those based on CutMix, have
also been applied to cross-condition fault diagnosis, effectively enhancing model robustness and generalization under
varying conditions and equipment variations. The overarching goal of these methods is to leverage knowledge and
models from existing conditions to rapidly construct high-performance diagnostic models for new conditions, reducing
reliance on large volumes of labeled data.
Feature representation learning is a critical component in cross-condition fault diagnosis. Studies indicate that
appropriate signal processing and feature extraction methods can substantially enhance model adaptability to condition
changes. For example, Continuous Wavelet Transform (CWT) can convert one-dimensional time-domain signals into
two-dimensional time–frequency representations, better capturing the time–frequency characteristics of the signals and
improving feature extraction performance under varying conditions. Furthermore, attention mechanisms can enable
models to automatically focus on domain-invariant, fault-relevant features while filtering out condition-specific noise,
further improving cross-condition diagnostic performance, see Table 2.

Table 2 Summary of Transfer Learning and Domain Adaptation Methods for Practical Operating Conditions
Method Category Core Idea Key Techniques Primary Function

Domain Adaptation
Reduce the data distribution
discrepancy between source

and target domains

Physics-driven feature
alignment, Dynamic

Distribution Adaptation
(DDA)

Align signal features under different operating
conditions to improve model generalization

Adversarial Training Learn domain-invariant
features

Domain discriminator,
Gradient Reversal

Layer

Ensure extracted features are unaffected by
changes in operating conditions, enhancing

robustness

Self-Supervised
Learning

Learn general
representations from

unlabeled data

CutMix-based
pretraining, Contrastive

Learning

Reduce dependence on labeled data and learn
transferable, robust features

Frequency-Enhanced
Network

Perform feature alignment
and enhancement in the
frequency domain

Frequency-aware
convolutional
architecture

Overcome the limitations of traditional
convolution in extracting frequency-domain

features and improve cross-condition
performance

Extensive experimental studies have validated the effectiveness of transfer learning for cross-condition centrifugal
pump fault diagnosis. For instance, under variable-speed conditions in three-cylinder drilling pumps, methods
combining physics-driven feature alignment with dynamic distribution adaptation significantly outperformed traditional
deep learning and other transfer learning approaches. These results confirm that transfer learning methods can
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effectively enhance model generalization and adaptability.
Despite the significant progress achieved, several challenges remain. First, the design of more efficient domain
adaptation strategies to handle complex distributional shifts under varying operating conditions requires further research.
Second, incorporating domain knowledge to guide the transfer learning process for improved model interpretability and
reliability remains an important direction. Finally, achieving effective cross-condition transfer under few-shot or
zero-shot scenarios represents a core challenge for future research. Overall, transfer learning provides an effective
pathway for addressing cross-condition fault diagnosis in centrifugal pump systems. By leveraging domain adaptation,
adversarial training, and related techniques, it enables rapid construction of high-performance diagnostic models
suitable for new operating conditions, reduces dependency on large labeled datasets, and substantially enhances model
generalization and adaptability. As research continues, transfer learning is expected to play an increasingly critical role
in intelligent centrifugal pump fault diagnosis.

4 FROM DIAGNOSIS TO PROGNOSIS: REMAINING USEFUL LIFE ESTIMATION AND INTELLIGENT
MAINTENANCE OF CENTRIFUGAL PUMPS

4.1 Remaining Useful Life Prediction Techniques

In recent years, significant progress has been made in deep learning–based remaining useful life (RUL) prediction for
centrifugal pumps, with the CNN-CBAM-Transformer parallel channel method representing a state-of-the-art approach.
This method employs a dual-channel parallel architecture to extract degradation-related features from both time-domain
and time–frequency-domain signals, thereby significantly improving prediction accuracy.
During signal preprocessing, the raw strain signals are first denoised using a wavelet thresholding algorithm.
Specifically, a sym10 wavelet is selected for three-level wavelet decomposition, and the wavelet coefficients are
estimated using a soft-threshold function before reconstructing the signal, effectively removing noise. The denoised
signal is then split into two streams for the extraction of time-domain and time–frequency-domain features.
For time-domain feature extraction, twelve commonly used features—including standard deviation, root mean square,
peak value, maximum value, and kurtosis—are extracted from the denoised strain signal. These features are serialized
with a time-series step length of 10 to address input requirements for the Transformer model in RUL prediction.
Time-domain features capture the direct variations during pump operation and serve as important indicators for
assessing equipment degradation.
In the time–frequency domain, Hilbert-Huang Transform (HHT) is applied to the denoised signal. Notably, Ensemble
Empirical Mode Decomposition (EEMD) replaces conventional EMD to better handle nonlinear and non-stationary
signals. Time–frequency features reveal the temporal evolution of energy distribution across frequencies, which is
critical for detecting early signs of centrifugal pump degradation.
Following feature extraction, the proposed CA-Transformer model employs a parallel structure to process time-domain
and time–frequency features independently. One channel utilizes a CNN-CBAM architecture, while the other leverages
a Transformer. This parallel design effectively mitigates information interference and enhances overall model
performance.
The CNN-CBAM channel primarily extracts spatial features. In conventional CNNs, all features are often treated
equally, which may lead to the inclusion of redundant or irrelevant features. To address this, a convolutional block
attention module (CBAM) is incorporated to weight deep features according to their importance, enabling the model to
focus on key degradation-related characteristics [29].
In contrast, the Transformer channel is dedicated to temporal feature extraction. Traditional RNNs and LSTMs perform
poorly on long sequences and cannot process time series in parallel, increasing computational complexity. The
Transformer, leveraging a self-attention mechanism, independently captures both long-term and short-term
dependencies in sequence data, efficiently extracting relevant temporal features regardless of the distance between data
points.
The Transformer model consists of four main components: positional encoding, encoder, decoder, and fully connected
layers. For RUL prediction, only positional encoding and the encoder are required. Positional encoding captures
intrinsic sequential information, while the multi-head attention mechanism extracts temporal dependencies [30].
After feature extraction and sequence modeling, the deep features independently learned by the two channels are fused
through a merging layer and passed to fully connected layers, where the mean squared error (MSE) is used to evaluate
discrepancies between predicted and actual RUL values. Model training is optimized using backpropagation combined
with the Adam optimizer.
During training, RUL percentages are used as regression labels. For example, if a drilling pump has a total lifespan of
240,000 seconds and has operated for 192,000 seconds, its normalized RUL is 0.24. This normalization improves
prediction precision.
The method has demonstrated excellent performance in practice. Validation using operational data from four drilling
pumps shows that this approach outperforms several state-of-the-art methods, providing reliable support for safe pump
operation and cost reduction.
For pumps operating under different conditions, transfer learning–based improvements have also been proposed.
Frequency standardization via resampling, phase identification using short-term autocorrelation, and segmentation into
uniform-phase intervals effectively reduce distribution differences between source and target domains, addressing the
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generalization limitations of single models across multiple operating conditions.
In internal gear pumps, a two-stage multi-channel method based on Robust-ResNet has been proposed for RUL
prediction. This method improves prediction performance by integrating pressure pulsation and vibration signals. The
first stage identifies the pump’s fault type, while the second stage predicts RUL, offering a novel framework for health
assessment in complex systems.
Furthermore, combining signal demodulation with deep learning has yielded promising results in centrifugal pump
monitoring. By extracting characteristic frequencies of modulation components and inputting the preprocessed data into
an integrated MBConv-based deep learning model, cavitation state recognition rates of 89.44% have been achieved [31].
This approach provides a new pathway for early fault detection and RUL prediction.
In summary, deep learning–based RUL prediction methods for centrifugal pumps leverage multiple signal processing
techniques and neural network models to effectively extract key degradation-related features from both time-domain
and time–frequency-domain signals. The CNN-CBAM-Transformer parallel channel method, with its dual-channel
architecture, significantly enhances prediction accuracy and represents the forefront of technological development in
this field, offering critical support for intelligent pump maintenance and operational decision-making.

4.2 Intelligent Maintenance Decision-Making and Optimization

In the field of intelligent operation and maintenance (O&M) and optimization decision-making for centrifugal pump
systems, deep reinforcement learning (DRL) has demonstrated significant potential. Traditional O&M approaches often
rely on fixed rules and human expertise, which are insufficient to cope with complex and dynamic operating conditions.
In contrast, DRL–based intelligent O&M systems can autonomously learn optimal strategies through environment
interaction and trial-and-error learning, enabling adaptive control and optimization of centrifugal pump operations.
The core advantage of DRL in intelligent O&M lies in its ability to construct self-optimizing control systems. These
systems interact continuously with the pump operating environment, learning the mapping between state-action pairs
and long-term rewards to gradually develop efficient decision-making policies.
The development of an intelligent O&M system typically involves several key steps. First, the state space, action space,
and reward function must be defined to form a complete reinforcement learning framework. The state space should
include operational parameters of the pump (e.g., pressure, flow rate, temperature, vibration), historical states, and
environmental factors. The action space encompasses potential maintenance operations (e.g., start/stop control,
parameter adjustments, maintenance scheduling). The reward function should integrate multiple objectives, such as
efficiency improvement, energy consumption reduction, and extended equipment lifespan. A carefully designed reward
mechanism enables the system to balance short-term gains with long-term benefits, thereby learning optimal operational
strategies.
From a model architecture perspective, deep neural networks are widely used for value function approximation and
policy optimization in DRL. Studies have shown that adaptive convolutional neural networks combined with Bayesian
optimization (CNN-BO) can effectively handle complex pump operating conditions. By autonomously optimizing
network hyperparameters, CNN-BO significantly enhances fault diagnosis accuracy and robustness. Similarly,
semi-supervised graph learning models leverage large amounts of unlabeled data for pretraining and fine-tune on
limited labeled samples, reducing dependence on annotated data while providing higher interpretability, which is crucial
for engineering O&M decisions [32].
The trial-and-error learning process of intelligent O&M systems typically integrates offline training with online
optimization. In the offline phase, the system is pretrained on historical operational data to learn basic maintenance
patterns. In the online phase, real-time states guide strategy adjustments, with experience replay mechanisms
continually refining the decision network. For example, in submersible pump performance prediction, researchers
successfully captured the nonlinear relationships between input parameters—such as flow rate, viscosity, and gas–liquid
ratio—and pump output performance (e.g., pressure differential) using machine learning, enabling accurate performance
predictions under complex conditions [33-34].
Application of intelligent O&M systems brings substantial economic benefits and safety improvements. In terms of
efficiency, the system dynamically adjusts operational parameters in real time, ensuring pumps operate within optimal
efficiency ranges. In cost reduction, predictive maintenance and precise control minimize unnecessary energy
consumption and maintenance expenses. Regarding safety, the system can proactively identify potential faults and
implement preventive measures, effectively preventing severe equipment damage and production interruptions. Studies
indicate that deep learning–based fault diagnosis and performance optimization methods, when applied to single
centrifugal pumps, significantly reduce fault handling time and resource consumption through automated detection and
diagnostic workflows.
Future intelligent O&M systems are expected to evolve toward greater autonomy, collaboration, and interpretability.
Autonomy refers to the system’s capability to independently complete monitoring, diagnosis, and decision-making.
Collaboration involves information sharing and coordinated strategies among multiple pumps, achieving system-level
optimization. Interpretability enhances operator trust and understanding of intelligent decisions, ensuring reliability in
critical applications. With continued advancements in DRL, intelligent O&M and optimization decision-making for
pump systems are poised to achieve broader and more impactful applications.
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5 CHALLENGES AND LIMITATIONS IN CURRENT RESEARCH

5.1 Data-Related Challenges

In the field of industrial centrifugal pump fault diagnosis, deep learning (DL) methods have been increasingly applied;
however, they commonly face significant challenges related to data dependency and annotation difficulty. Traditional
DL models typically require large volumes of labeled data to achieve accurate fault identification and classification. In
practical industrial settings, obtaining sufficient fault samples is both challenging and costly. This is especially true for
critical components such as centrifugal pumps, where faults are often hidden or sudden, making sample acquisition
more complex. Such data scarcity severely limits the practical application of DL models in real-world industrial
environments.
Several factors contribute to the difficulty of obtaining labeled data. First, the enclosed structure of centrifugal pumps
and the unpredictability of faults make direct observation of fault features challenging, hindering the acquisition of
high-quality labeled samples. Second, in real production environments, fault samples are often unevenly distributed,
with some fault types represented by very few instances, making it difficult to meet the balanced data requirements of
traditional machine learning. For example, in a well field of the Daqing Oilfield, 5,053 sets of fault diagnosis data for
pumping units were collected; after data cleaning, only 3,502 valid samples remained, with significant differences in the
number of samples across fault types. Additionally, the accumulation of fault data generally requires a long time, further
exacerbating the difficulty of data acquisition.
Another critical challenge arises from data distribution differences under variable operating conditions. In practice,
centrifugal pumps often operate under different working conditions, such as load fluctuations or changes in fluid
properties, leading to substantial distribution shifts in the collected data. These shifts make it difficult to directly apply
models trained under specific conditions to other conditions, often necessitating the collection of new labeled data for
each operating scenario, which substantially increases the data demand. Studies indicate that under variable operating
conditions, distribution differences between training and test data can significantly degrade the performance of existing
fault diagnosis models, particularly when only limited samples are available.
The inherent data sensitivity of DL models further exacerbates this issue. Although deep neural networks, such as
feedforward networks, can effectively capture complex nonlinear relationships, their performance is highly sensitive to
training data volume and parameter settings. Even minor parameter variations can lead to substantial fluctuations in
model performance, necessitating more labeled data to ensure stability and generalization. Furthermore, DL models
typically require large datasets to avoid overfitting, which, if unaddressed, may result in poor generalization and
potential misdiagnosis, posing safety risks [44].
To address these challenges, various strategies have been proposed. Semi-supervised learning leverages a large amount
of unlabeled data along with limited labeled samples, effectively mitigating the scarcity of labeled data. For instance,
data augmentation–based consistency regularization in semi-supervised learning generates new samples consistent with
the original feature distribution, expanding the labeled feature space across different operating conditions. Transfer
learning strategies transfer rich labeled knowledge from a source domain to a target domain, alleviating insufficient
labeled data in the latter. Few-shot learning and meta-learning techniques aim to achieve effective fault diagnosis with
minimal labeled samples, showing significant potential in industrial scenarios where data are extremely limited.
These approaches offer promising solutions to the challenges of data dependency and annotation in centrifugal pump
fault diagnosis. Nevertheless, practical industrial implementation still faces many obstacles. For example, improving the
robustness of few-shot learning and optimizing the generalization capability of transfer learning models under dynamic
operating conditions remain open research questions. Therefore, while these methods provide strong support for
DL-based centrifugal pump fault diagnosis, further technical advancements are required to enable large-scale
deployment in real-world industrial applications.

5.2 Model-Related Challenges

In the field of centrifugal pump fault diagnosis, although deep learning (DL) models often perform well under the
training data distribution corresponding to specific operating conditions, their performance frequently deteriorates when
faced with new working conditions, equipment variations, or environmental changes. This limited generalization
capability poses a significant constraint on the reliability of DL techniques in practical industrial applications.
Studies indicate that real-time adjustments in centrifugal pump operating conditions, particularly for mud pumps used in
drilling operations, require continuous tuning of operational parameters according to drilling depth. Such variations
make it challenging for conventional DL methods to maintain stable diagnostic performance across different conditions.
Similarly, when centrifugal pumps operate under varying temperature conditions, vibration signal characteristics can
change, leading to fluctuations in the accuracy of cavitation state recognition. For rod pumping systems, performance
diagrams from different oilfields are influenced by geographical conditions, sensor devices, and acquisition software,
exhibiting environment-specific characteristics that single-model diagnostic approaches struggle to accommodate.
In centrifugal pump fault diagnosis, fluctuations in working conditions inevitably introduce distribution differences
between training and testing data. This issue is especially pronounced in scenarios with limited sample sizes, where
distribution shifts can lead to substantial declines in model performance. For instance, when a model trained under one
operating condition is applied to another, significant differences in fault features between conditions can cause a sharp
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drop in diagnostic accuracy.
To address these challenges, several approaches have been proposed to enhance model generalization. Transfer learning
has been shown to be an effective solution, particularly when similar datasets are unavailable or when data must be
transferred across domains. By transferring network parameters, models can maintain robust generalization even after
extensive adaptation to the target task.
Feature fusion is another strategy for improving generalization. Studies demonstrate that combining Fourier descriptor
features with graphical features from performance diagrams enhances feature robustness and improves diagnostic
accuracy. For example, the diagnostic accuracy of a fused-feature model increased from 82.33% to 97.24%,
significantly outperforming models using individual feature sets. This approach leverages the complementary
relationships among features, effectively enhancing the generalization capability of the diagnostic model.
Data augmentation techniques are also widely employed to improve model robustness under variable conditions. By
generating diverse training samples through transformations such as rotation, translation, shear, scaling, and flipping,
models can better adapt to different operating scenarios. For example, in centrifugal pump cavitation state recognition,
augmenting data with rotations of ±20°, translations of ±20%, and shearing of ±20% substantially enhanced the model’s
ability to generalize across varying conditions.
Furthermore, meta-learning methods have been applied to address generalization under limited-sample scenarios. By
embedding prior knowledge into meta-learning strategies, models can simulate diverse operating conditions and
adaptively capture domain-invariant features. For instance, segmenting time-frequency images into grids and utilizing
positional information to construct self-supervised loss functions enables the model to learn cross-domain invariant
representations, thereby improving generalization across different working conditions.
Despite these advances, centrifugal pump fault diagnosis in practical industrial applications still faces significant
challenges. Key research directions include further enhancing model adaptability to unknown conditions, reducing
reliance on extensive labeled datasets, and improving model stability in complex and variable environments.

5.3 System-Level Challenges

Deep learning (DL) models have demonstrated significant potential in centrifugal pump fault diagnosis; however, their
practical application still faces two major challenges: insufficient interpretability and limited real-time performance.
These limitations substantially hinder the widespread adoption of DL techniques in industrial environments and affect
engineers’ trust in these methods.
Insufficient interpretability is the primary issue in applying DL to fault diagnosis. Since DL models are typically
regarded as “black boxes,” their internal decision-making processes are difficult for humans to understand and explain.
This lack of transparency makes it challenging for engineers to trust and rely on model predictions, particularly in
critical equipment monitoring scenarios. Studies have highlighted that conventional DL methods cannot establish a
direct mapping between raw sensor data and corresponding fault modes, making diagnostic performance heavily
dependent on the quality of feature extraction. When misdiagnoses occur, engineers are unable to trace the decision
rationale, which impedes effective fault analysis and system improvement. Moreover, neural network architecture
design and parameter optimization often require extensive manual tuning and expert knowledge, further restricting
model applicability and generalization.
Limited real-time performance constitutes another critical barrier to industrial deployment. Complex DL models
typically incur significant computational overhead, making it difficult to meet the real-time diagnostic requirements of
industrial operations. In centrifugal pump systems, faults must often be detected and identified at an early stage to
prevent severe consequences. However, existing DL algorithms frequently underperform under variable-speed and other
complex operating conditions, with low computational efficiency. Additionally, training such models usually requires
considerable time and computational resources, which is particularly challenging in resource-constrained industrial
environments.
To address these challenges, several strategies have been proposed. One approach introduces an interpretable
semi-supervised graph learning model that incorporates a feature reconstruction module. By fitting and explaining the
learned features with nonlinear surrogate models, this method enhances interpretability during training and accelerates
model convergence. Another approach combines DL with reinforcement learning to construct an end-to-end fault
diagnosis framework, directly mapping raw fault data to corresponding fault modes. Methods integrating physics-driven
feature alignment with dynamic distribution adaptation have also been developed, leveraging physical knowledge to
improve model performance and enhance cross-operating-condition adaptability. Frequency-enhanced networks, which
jointly consider time-domain and frequency-domain features and incorporate CutMix-based self-supervised learning,
have demonstrated robust generalization across varying operating conditions. Transfer learning has been effectively
applied to mitigate issues of insufficient labeled data and imbalanced data distributions, improving model performance
under data-constrained scenarios.
Despite these advances, further research is needed to develop models that maintain high diagnostic accuracy while
simultaneously improving interpretability and computational efficiency. In particular, designing transparent yet efficient
DL models for industrial deployment is critical to promoting the broader adoption of intelligent fault diagnosis
technologies in centrifugal pump systems.
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6 FUTURE RESEARCH DIRECTIONS AND PERSPECTIVES

6.1 Few-Shot and Self-Supervised Learning

Few-shot learning (FSL) and self-supervised learning (SSL) have demonstrated significant potential in centrifugal pump
fault diagnosis, providing effective solutions to the data scarcity problem commonly encountered in industrial settings.
In this domain, obtaining large-scale labeled datasets is often costly and challenging. FSL and SSL can leverage limited
labeled data alongside abundant unlabeled data to enhance model diagnostic performance and generalization ability
[35].
In few-shot learning, model-agnostic meta-learning (MAML) algorithms offer a novel approach for centrifugal pump
fault diagnosis. Through an inner-loop and outer-loop gradient update process, the model can rapidly adapt to new tasks
using only a small number of labeled samples [36]. Specifically, tasks are divided into a support set and a query set. The
support set, typically containing 1–5 samples, is used to quickly adjust model parameters, while the query set evaluates
model performance. This strategy enables the model to learn generalizable feature representations applicable across
varying operating conditions, effectively addressing the performance degradation caused by distribution shifts in
centrifugal pump data under different working conditions [37].
Self-supervised learning exhibits unique advantages in this field. Unlike traditional supervised methods, SSL can learn
meaningful feature representations from unlabeled data, reducing reliance on annotated samples. One effective
approach involves feature-level differential updates in graph convolutional networks (GCNs), ensuring that the feature
extractor preserves maximal fault-related information. Specifically, constructed graph data are fed into a GCN model,
where neighbor information is aggregated and node features are iteratively updated to produce nonlinear feature
matrices. Feature-level loss is then computed to update model parameters. This SSL pretraining process allows the
model to capture intrinsic data structures and relationships, providing high-quality feature representations for
subsequent fault diagnosis tasks.
Data augmentation techniques play a critical role in mitigating data scarcity. Considering that centrifugal pump
monitoring data are typically 1D time-series signals, improved symplectic geometric data augmentation (ISGDA)
methods generate new samples with feature distributions similar to the original data. By introducing controlled
perturbations to time-series signals, these methods enrich the feature space of labeled samples, improving diagnostic
performance under limited data conditions. ISGDA also effectively suppresses overfitting during training and enhances
model robustness. Furthermore, the introduction of consistency regularization further improves model performance. The
supervised loss function ensures consistency between augmented labeled samples and their true labels, while the
unsupervised loss reduces distribution discrepancies between augmented and unlabeled samples [32].
Meta-learning frameworks demonstrate substantial advantages in few-shot scenarios. A prior-knowledge-embedded
meta-learning vision transformer (PKMLVIT) represents an innovative approach for few-shot fault diagnosis. This
method integrates wavelet transform, meta-learning, self-supervised learning, and vision transformer architectures to
extract domain-invariant features transferable across varying operating conditions. Initially, a modified ViT-based
feature extractor captures global–local fused features from time–frequency spectrograms. Subsequently, a meta-learning
strategy incorporating prior knowledge simulates the generalization scenario of centrifugal pump devices under
changing conditions, adaptively learning domain-invariant representations. Experimental results indicate that
PKMLVIT achieves superior robustness and accuracy under limited samples and variable operating conditions,
outperforming existing approaches [42].
Despite the potential of FSL and SSL in centrifugal pump fault diagnosis, several challenges remain. First, the quality of
pseudo-labels directly affects model performance, and pseudo-label generation may be influenced by model errors,
noise, bias, or outliers in the data. Second, distribution shifts across different operating conditions can degrade model
performance, particularly when sample sizes are limited. Finally, careful tuning of model parameters and regularization
strategies is essential to prevent overfitting, requiring a balance between model complexity and generalization ability,
see Table 3.

Table 3 Correspondence between Challenges and Future Directions in Intelligent Fault Diagnosis of Centrifugal Pumps
Challenge Category Core Challenges Corresponding Future Research Directions

Data Level Data scarcity and labeling difficulties; distribution
shifts under varying operating conditions

Few-shot learning, self-supervised learning,
advanced data augmentation techniques

Model Level Limited generalization capability; insufficient
interpretability

Integration of physical mechanisms with deep
learning, explainable AI (XAI), meta-learning

System Level Limited real-time performance; high computational
resource demands; low system integration

Lightweight models, edge computing, digital
twin-based full lifecycle management

In the future, few-shot learning (FSL) and self-supervised learning (SSL) will continue to offer broad research
opportunities in the field of centrifugal pump fault diagnosis. On one hand, more advanced data augmentation
techniques can be explored, particularly those tailored for 1D time-series signals, to generate more representative
samples. On the other hand, improvements and optimizations in meta-learning algorithms will further enhance model
performance in few-shot scenarios, for example, by incorporating additional prior knowledge or designing more
effective task-generation strategies. Moreover, integrating self-supervised learning with explainable methods can
improve model transparency and reliability, providing more valuable support for industrial decision-making.
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In summary, FSL and SSL provide effective solutions to the data scarcity problem in centrifugal pump fault diagnosis.
By leveraging limited labeled data alongside abundant unlabeled data, and combining advanced data augmentation
techniques with meta-learning frameworks, more efficient and robust diagnostic models can be developed. The
integration of these technologies offers strong support for health monitoring and maintenance of industrial centrifugal
pump systems, thereby advancing the development of intelligent operation and maintenance systems.

6.2 Integration of Physical Mechanisms and Deep Learning

The integration of physical information with deep learning represents a cutting-edge research direction in centrifugal
pump fault diagnosis. By combining physical models and mechanistic knowledge with deep learning, the model’s
performance under extreme conditions and its interpretability can be significantly enhanced. This fusion approach not
only leverages the powerful feature extraction capabilities of deep learning but also utilizes physical knowledge to
provide prior constraints, ensuring that the model outputs adhere more closely to actual physical laws.
Physical-driven feature extraction is a key aspect of integrating physical information with deep learning. Studies have
shown that converting raw signals into time-frequency images using continuous wavelet transform can effectively
capture the time-frequency characteristics of centrifugal pump faults. This method simultaneously captures variations in
both time and frequency domains, providing richer input features for deep learning models [38]. Moreover, for fault
diagnosis under varying operating conditions, physical-driven feature alignment methods adjust signal amplitude,
angular sampling frequency, and pulse phase to reduce discrepancies between samples from different conditions. This
physically-informed feature alignment enables deep learning models to better adapt to fault diagnosis tasks under
variable operating conditions.
Physics-informed neural networks (PINNs) exemplify the deep integration of physical models with deep learning. In
centrifugal pump fault diagnosis, researchers have developed frequency-enhanced networks that employ
frequency-aware convolutional architectures to consider both time-domain and frequency-domain features, overcoming
limitations of traditional convolution operations in frequency feature extraction. Additionally, adaptive convolutional
neural network models constructed based on the intrinsic knowledge of centrifugal pumps can automatically optimize
critical hyperparameters through Bayesian optimization. Experimental results indicate that such physics-guided
adaptive models achieve a maximum accuracy of 99.78%, representing a 5.45% improvement over the traditional
LeNet-5 model.
Multi-source information fusion is another effective approach for integrating physical knowledge with deep learning.
By fusing the diagnostic outputs of multiple single models, the accuracy and robustness of fault diagnosis can be
substantially improved. Studies show that after combining multiple deep learning models, the final diagnostic accuracy
can reach 99.98%, which is 9.09% higher than the average accuracy of individual models. Introducing reliable evidence
during the fusion process can further enhance performance. For instance, fusing the 1-DPCA-AE model with other
models (e.g., Models 1, 4, 8, 9) increased accuracy by 13.53%, while combining the AE model with Models 2 and 4
improved accuracy by 10.45%. Such multi-source information fusion methods significantly enhance the recognition
accuracy of diaphragm pump fault types [39].
To improve generalization across varying operating conditions, researchers have developed hybrid methods
incorporating dynamic distribution adaptation. These methods dynamically adjust marginal and conditional distributions
during domain adaptation, improving cross-domain feature matching. Additionally, CutMix-based self-supervised
learning achieves robust generalization under different operating conditions and equipment variations. These
approaches perform well in diagnosing pump faults across varying temperature, pressure, and speed conditions.
Regarding interpretability, integrating physical information with deep learning substantially enhances model
transparency. Visualization techniques such as t-SNE can reveal the feature learning process at different CNN layers,
improving understanding of the model’s decision-making mechanisms. Furthermore, health indicators developed using
Mahalanobis distance and Fisher discriminant ratio contribute to stabilizing high-dimensional latent representations
during model training. Such interpretability methods provide more transparent and reliable support for fault diagnosis,
increasing confidence in diagnostic outcomes.
In the future, research on the integration of physical information and deep learning is expected to deepen further,
particularly in the following areas: first, developing more refined physical models to more accurately embed centrifugal
pump operating mechanisms into deep learning frameworks; second, exploring more effective multi-source information
fusion strategies to further improve diagnostic accuracy; third, investigating adaptive optimization methods to enhance
model performance under complex and variable operating conditions; and finally, strengthening research on model
interpretability to improve transparency and reliability of diagnostic results. These research directions will advance
centrifugal pump fault diagnosis toward more intelligent and precise methodologies.

6.3 Explainable AI and Trustworthy Fault Diagnosis

In the field of industrial pump fault diagnosis, while deep learning techniques have demonstrated remarkable
performance, their “black-box” nature and high computational demands limit practical deployment in industrial
environments. The integration of explainable AI (XAI) and edge computing offers a promising solution to these
challenges.
The primary goal of explainable AI is to render the decision-making process of deep learning models transparent,
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thereby enhancing user trust in diagnostic results. Traditional deep learning models in fault diagnosis face two major
challenges: reliance on large amounts of labeled data and lack of interpretability. To address these issues, researchers
have proposed various explain ability methods, including Class Activation Mapping (CAM), Gradient-weighted CAM
(Grad-CAM), Shapley Additive Explanations (SHAP), and Local Interpretable Model-agnostic Explanations (LIME).
Specifically, LIME generates locally interpretable models to explain how predictions are made, rendering the decision
process of complex models more transparent. An innovative approach involves incorporating an interpretable feature
reconstruction module, which uses nonlinear surrogate models to fit and interpret learned features and embeds
interpretability scores into the feature representations. This method not only enhances model transparency during
training but also accelerates convergence.
On the other hand, edge computing addresses the high computational resource demands of deep learning models. By
deploying data, applications, and computing capabilities closer to the data source, edge computing significantly reduces
latency and meets industrial requirements for real-time processing. In centrifugal pump fault diagnosis, containerized
edge AI inference frameworks have shown excellent performance by deploying Docker container services near sensors,
providing an efficient and low-latency data analysis pipeline.
To enable real-time diagnosis on edge devices, researchers have proposed model compression and lightweight design
techniques. Various lightweight model architectures, such as CNNs tailored for rolling bearing fault diagnosis, have
been developed. For edge deployment, Docker container technology is widely used to encapsulate and deploy AI
models, allowing them to run on resource-constrained devices. Studies indicate that utilizing different container
runtimes (e.g., CRI-O, Docker, Containerd) across platforms (e.g., x64 and ARM) optimizes resource utilization and
improves computational efficiency on edge devices [40].
Looking forward, integrating physical knowledge with deep learning models offers an effective way to enhance both
model performance and interpretability. For example, employing wavelet packet decomposition and information
entropy-based feature extraction to capture physical characteristics of signals, combined with CNN models
incorporating attention mechanisms, can significantly improve diagnostic accuracy. Furthermore, physics-driven feature
alignment methods that adjust signal amplitude, angular sampling frequency, and pulse phase can reduce inter-sample
discrepancies and enhance model generalization across varying operating conditions [41].
In summary, the combination of explainable AI and edge computing is poised to play an increasingly important role in
centrifugal pump fault diagnosis. By developing transparent deep learning models and efficient edge deployment
strategies, it is possible to improve the reliability of diagnostic outcomes while satisfying the stringent real-time
requirements of industrial settings, thereby promoting the widespread adoption of intelligent fault diagnosis
technologies.

6.4 Digital Twin and Full-Life-Cycle Intelligent Management

Digital twin technology provides a revolutionary solution for the full lifecycle management of centrifugal pump
equipment. By creating a virtual replica of the physical pump and integrating deep learning algorithms, digital twin
systems enable a seamless transition from fault diagnosis to remaining useful life (RUL) prediction, laying a solid
foundation for predictive maintenance. These models can reflect the real-time operational status of centrifugal pumps,
and through multi-source data fusion and deep analysis, provide scientific support for maintenance decision-making.
In constructing digital twins for centrifugal pumps, deep learning models have demonstrated outstanding performance.
Studies indicate that neural network models outperform traditional polynomial fitting and mechanical modeling
methods in predicting submersible pump performance, especially under complex flow conditions. Deep learning models
can accurately capture nonlinear relationships and overcome the limitations of traditional approaches in complex
operating environments. To address overfitting during neural network training, researchers have employed early
stopping strategies, effectively avoiding non-physical pump performance curves caused by excessive training. Moreover,
the choice of activation function significantly affects prediction accuracy and must be optimized for specific
applications [33].
In volumetric pump wear-state classification, deep learning methods have also shown strong performance. Research
demonstrates that a neural network with 5 input neurons, 12 hidden neurons, and 3 output neurons can effectively
classify three pump states: normal operation, end-of-life, and wear. By precisely adjusting the number of hidden
neurons, based on empirical formulas and key parameters such as the number of input neurons and constants,
classification performance is significantly enhanced [43].
Significant breakthroughs have been achieved in RUL prediction using deep learning. For example, a parallel-channel
method combining convolutional neural networks (CNNs), convolutional block attention modules (CBAM), and
Transformer networks has been proposed for drilling pump RUL prediction [44]. The model extracts both time-domain
and time-frequency features from strain signals via two parallel channels, followed by feature fusion to predict RUL
accurately. Experimental results indicate that deep learning models consistently outperform traditional machine learning
approaches for monitoring-based RUL prediction. In particular, models incorporating CBAM modules achieve high
accuracy across all drilling pump evaluation metrics, demonstrating their effectiveness in predicting RUL.
Vibration-based intelligent fault diagnosis is a crucial component of digital twin systems. A proposed deep hybrid model
considers frequency, time, and spectral information from vibration signals, including spectrograms obtained via
short-time Fourier transform and scalograms derived from continuous wavelet transform [13]. Experimental evaluations
show that this deep hybrid model significantly outperforms conventional machine learning methods, such as k-nearest
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neighbors, support vector machines, logistic regression, and random forests, enabling automatic detection of
submersible pump faults from operational vibration data [33].
Predictive maintenance strategies rely on accurate fault diagnosis and RUL prediction provided by digital twin systems.
Accurate RUL predictions guide pump operation and maintenance, reducing unplanned downtime and production
interruptions caused by improper maintenance, thereby improving overall operational efficiency [45]. Additionally,
precise fault forecasting enhances safety measures, minimizing risks such as blowouts or worker injuries caused by
pump failures. By optimizing test matrices to balance prediction accuracy with testing cost, the economic benefits of
predictive maintenance can be further improved.
Future research should focus on the real-time updating and adaptive capability of digital twin models, particularly in the
effective fusion of multi-source heterogeneous data. Probabilistic prediction methods, such as Gaussian process
regression, offer advantages in assessing model uncertainty but face high computational costs with large-scale datasets,
necessitating algorithmic efficiency improvements [46]. Furthermore, integrating digital twin systems with the Internet
of Things (IoT) and edge computing will enhance the real-time accuracy of predictive maintenance, supporting a shift
from reactive maintenance to proactive prevention.

7 CONCLUSION

This paper systematically reviews the current research, key technologies, and future development trends of deep
learning in centrifugal pump fault diagnosis and intelligent operation and maintenance (O&M). Studies indicate that
deep learning, with its powerful automatic feature extraction and nonlinear modeling capabilities, provides an effective
solution to the limitations of traditional methods—such as strong feature dependence, limited diagnostic accuracy, and
poor adaptability across operating conditions—thereby significantly advancing both theoretical research and
engineering applications for intelligent pump management.
At the model and methodology level, deep architectures—including convolutional neural networks (CNNs), recurrent
neural networks (RNNs) and their variants, residual networks, graph neural networks (GNNs), and
Transformers—demonstrate notable advantages in feature extraction, temporal modeling, and complex signal
recognition. Techniques such as transfer learning, adversarial training, and dynamic distribution adaptation effectively
mitigate cross-condition data distribution differences, enhancing model generalization. Multi-source information fusion
strategies integrate vibration, acoustic, pressure, and current signals to achieve high-precision sensing and robust
diagnostics of pump operating states. Furthermore, combining deep reinforcement learning with remaining useful life
(RUL) prediction models enables centrifugal pump systems to evolve from “reactive maintenance” toward “proactive
operation,” significantly improving operational safety and economic efficiency.
However, several challenges remain. First, high-quality labeled data in industrial scenarios are scarce, leading to strong
model dependency and pronounced sample imbalance issues. Second, the lack of interpretability and limited
cross-condition generalization of deep learning models constrain their reliable application in complex environments.
Additionally, high model complexity and challenges related to real-time performance and edge deployment remain key
bottlenecks for practical intelligent O&M implementation.
Future research should focus on the following directions:
1.Few-shot and self-supervised learning: Develop methods to alleviate data scarcity and reduce dependence on labeled
samples.
2.Integration of physical mechanisms with deep learning: Construct physically constrained, interpretable models to
enhance transparency and trustworthiness of diagnostic results.
3.Multi-modal fusion and multi-task coordination: Achieve integrated intelligent management combining fault
diagnosis, health assessment, and RUL prediction.
4.Reinforcement learning-based adaptive O&M strategies: Enable systems to transition from “monitoring and
identification” toward “autonomous decision-making.”
5.Edge computing and digital twin integration: Implement real-time diagnosis and full lifecycle management of pump
equipment.
In summary, the introduction of deep learning provides a new theoretical framework and technical support for
centrifugal pump fault diagnosis and intelligent O&M. Its deep integration with physical modeling, industrial IoT, and
intelligent decision-making technologies will be a key driving force for advancing industrial equipment toward
intelligent, autonomous, and trustworthy operation.
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