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Abstract: This paper proposes a spatio-temporal context-aware scene classification detection model tailored for
classroom settings, aiming to address detection accuracy limitations arising from complex classroom environments
characterised by fluctuating lighting, frequent occlusions, and the difficulty in capturing small-scale behaviours. By
integrating cross-scale attention mechanisms in the spatial domain with long-term dependency modelling in the
temporal domain, the model effectively captures subtle behavioural features and spatio-temporal contextual
relationships between actions. Experimental results on the SCB-Dataset3 and Classroom-Actions public classroom
datasets demonstrate that the proposed model achieves 85.4% scene classification accuracy and 83.2% action detection
rate, representing significant improvements over mainstream methods such as YOLOv8m, CSSA-YOLO, and TACNet.
Ablation studies further validate the effectiveness of each component: the spatial attention module yields a 2.1% mAP
improvement, the temporal context module contributes a 4.5% mAP gain, while the scene context module delivers an
additional 2.2% performance enhancement. Maintaining real-time processing speed (68.2 FPS), this model effectively
addresses multi-scale detection and temporal dependency modelling challenges in classroom scenarios, providing robust
technical support for smart education.
Keywords: Classroom behaviour recognition; Spatio-temporal context; Attention mechanisms; Scene classification;
Deep learning

1 INTRODUCTION

With the rapid advancement of smart education, the intelligent analysis and assessment of classroom teaching processes
have become a focal point in educational technology research. Guided by student-centred teaching principles,
accurately identifying behavioural patterns among pupils during lessons holds significant importance for evaluating
teaching effectiveness and formulating personalised learning strategies [1]. The proliferation of modern teaching
methods such as project-based learning further emphasises the precise capture and analysis of active learning
behaviours like interaction and collaboration within the classroom [2]. However, behavioural detection in classroom
settings faces numerous technical challenges. Firstly, classroom environments typically exhibit significant variations in
lighting and frequent occlusions, such as students blocking each other's view or environmental objects like desks and
chairs causing obstructions [3]. Secondly, student behaviour exhibits multi-scale characteristics, encompassing both
localised micro-actions like raising hands or writing, and full-body movements such as standing or pacing. Moreover,
recognising small-scale actions within classroom settings proves particularly challenging; subtle gestures like facial
expressions or hand movements often prove difficult to capture due to low resolution. These factors collectively
constrain the performance of existing behaviour detection models in authentic classroom environments [4].
Currently, classroom behaviour detection methods are primarily categorised into two main types: those based on
traditional handcrafted features and those based on deep learning. Traditional approaches typically rely on manually
designed features (such as HOG, Haar, etc.) combined with machine learning classifiers (such as SVM) for behaviour
recognition [5]. While these methods can achieve certain results in constrained environments, they exhibit poor
adaptability in complex classroom scenarios and struggle to capture high-level semantic information. Deep
learning-based approaches, particularly convolutional neural networks (CNNs) and spatio-temporal graph convolutional
networks (ST-GCNs), have become mainstream in behaviour recognition [6]. Among these, single-stage detectors like
the YOLO series have garnered significant attention for their favourable speed-accuracy trade-off [7]. In recent years,
the importance of spatio-temporal contextual information in behaviour recognition has gained recognition. Models such
as TACNet have achieved significant progress on unedited video datasets by incorporating transition-aware mechanisms
and long-term temporal modelling [8]. Concurrently, graph convolutional network-based approaches naturally capture
spatial relationships and temporal evolution of human joints, offering novel perspectives for fine-grained behaviour
recognition [9]. Nevertheless, the application of existing methods within the specific classroom setting remains in its
infancy. Particularly, the effective integration of spatio-temporal contextual information to address the unique
challenges of classroom environments warrants further investigation.
This paper proposes a spatiotemporal context-aware scene classification detection model tailored for classroom
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scenarios, with three core contributions. Firstly, a cross-scale spatial context-aware module is designed, combining the
hierarchical attention mechanism of Swin Transformer with Shuffle Attention to enhance the model's ability to capture
multi-scale behavioural features [10]. Secondly, a temporal context modelling module is introduced, employing
bidirectional ConvLSTM to extract long-term temporal dependencies and identify transitional states between
behavioural segments [11]. Thirdly, a hybrid loss function tailored for classroom scenarios is constructed, integrating
WIoU bounding box regression loss with focus classification loss to optimise training stability under imbalanced data
conditions [12].

2 RELATED RESEARCH

The evolution of classroom behaviour recognition technology has progressed from traditional approaches to deep
learning methods, as detailed in Table 1. Early research primarily relied on conventional computer vision techniques.
Vara Prasad et al. employed Haar cascade classifiers for facial detection, combined with the K-nearest neighbours
(KNN) algorithm, to develop a classroom attendance system [13]. Poudyal et al. employed Support Vector Machines
(SVM) and Haar wavelet classifiers to identify key differences in student attention patterns [14]. Such approaches
heavily relied on manually designed features, exhibiting limited generalisation capabilities in complex classroom
environments.

Table 1 Comparison of Classroom Behaviour Detection Methods
Representative algorithm Type Advantages Limitations

Haar+SVM[15]/HOG+KNN[16] Traditional methods Low computational complexity
and high interpretability

Poor environmental adaptability,
limited capacity for feature

expression

CNN-based[17]/YOLO[18] Deep Learning +
Spatial Features

Automatic feature learning and
high detection accuracy

Ignores temporal information
and sensitive to occlusion

ST-GCN[19]/TACNet[8]
Deep Learning +
Spatiotemporal

Features

Capturing temporal and spatial
context, recognising continuous

behaviour

High computational costs and
substantial annotated data

With breakthroughs in deep learning technology, behaviour recognition methods based on convolutional neural
networks (CNNs) have significantly enhanced recognition performance in classroom settings. Kavitha et al. developed a
CNN-based student behaviour detection framework, constructing feature extraction modules for eye and mouth regions
to achieve fine-grained classification of specific facial behaviours such as nail-biting, sleeping with eyes closed, and
yawning [20]. However, such approaches focus solely on spatial features while neglecting temporal dynamic
information, making it challenging to comprehensively understand classroom behaviour sequences.
Spatio-temporal context awareness represents a core challenge in the field of behaviour recognition, proving
particularly crucial for identifying continuous and interrelated behavioural patterns within classroom settings. In recent
years, researchers have proposed multiple models to capture spatio-temporal contextual information within behaviours.
Spatio-temporal Graph Convolutional Networks (ST-GCN) achieve effective analysis of skeleton sequence data by
modelling the spatial relationships between human body joints and their temporal evolution as a graph structure [21]. Qi
et al. proposed a human skeleton behaviour recognition model integrating global attention mechanisms with
spatio-temporal graph convolutional networks, achieving significant performance improvements on datasets such as
NTU-RGB+D. This approach enhances the model's recognition capability for occluded data by introducing global
attention modules and spatio-temporal pooling operations [22]. The Transition-Aware Contextual Network (TACNet),
proposed by Megvii Research, specifically addresses transitional state challenges in behaviour recognition. Comprising
a temporal context detector and transition-aware classifier, TACNet employs bidirectional ConvLSTM units to extract
long-term temporal context while simultaneously classifying actions and transitional states, substantially improving
behaviour detection accuracy in unedited videos [8]. For classroom-specific applications, the CSSA-YOLO model
employs a cross-scale feature optimisation strategy. Its C2fs module captures spatio-temporal dependencies in
small-scale actions (e.g., raising hands), while integrating a Shuffle Attention mechanism to suppress complex
background interference. These techniques provide crucial reference points for behaviour recognition in classroom
environments [23].
However, existing approaches still exhibit shortcomings when applied to classroom scenarios. Firstly, most models lack
specific design tailored to classroom contexts, such as teacher-student interactions and group collaboration. Secondly,
they are insufficiently optimised for common classroom challenges like dense occlusions and small object detection.
Finally, there is a lack of effective modelling for the long-term sequential dependencies inherent in classroom
behaviours. The model proposed herein addresses these deficiencies through specialised optimisation.

3 MODEL ARCHITECTURE

The proposed classroom scenario classification and detection model, which perceives spatio-temporal contextual
information, adopts a multi-branch encoder-decoder architecture. The overall framework is illustrated in Figure 1. The
model takes classroom video sequences as input, processing spatial features, temporal dynamics, and contextual
information through three parallel branches: the spatial stream, temporal stream, and context-enhanced stream. Finally,
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the fusion module outputs scenario classification results and behaviour detection bounding boxes.

Input representation section. Given a classroom video sequence TfffV ,,,,,, 21 , where T denotes the sequence

length, each frame Tf corresponds to an RGB image of size 3WH . The model first pre-processes input frames
through dimension standardisation and brightness normalisation to mitigate the impact of lighting variations in
classroom environments. The multi-branch feature extraction component comprises a spatial branch module based on
an enhanced YOLOv8 architecture, incorporating cross-scale attention modules to capture spatial features at varying
scales [24]. The temporal branch module employs bidirectional ConvLSTM layers to capture long-term temporal
dependencies between frames. The context branch utilises graph convolutional networks to model semantic contextual
relationships within classroom scenes, such as specific patterns of teacher-student interaction and group collaboration.
In the feature fusion and output section, the features from the three branches are integrated through a weighted fusion
module before being fed into the scene classifier and behaviour detection head. The classifier employs fully connected
layers to output scene category probabilities, while the detection head predicts behaviour bounding boxes and category
labels based on an anchor mechanism.

Figure 1 Schematic Diagram of the Overall Model Architecture

3.1 Spatial Context Awareness Module

The spatial context-aware module is responsible for extracting discriminative spatial features from each image frame
while addressing multi-scale objects and occlusion issues in classroom settings. This module employs a cross-scale
feature pyramid architecture, integrating the hierarchical window attention mechanism of the Swin Transformer with the
Shuffle Attention channel attention mechanism.
Cross-scale feature extraction unit: Addressing the multi-scale characteristics of classroom behaviour, the module
employs a multi-scale feature pyramid network (FPN) [25] to extract features across four distinct scales. For input

frame Tf , multi-scale feature maps lPPP ,,,,,, 21 are extracted via the backbone network (based on CSPDarknet53)

[26], wherein lP denotes the resolution of the input image l2/1 .
Window Attention Mechanism Unit Inspired by CSSA-YOLO, the Swin Transformer's window multi-head
self-attention (W-MSA) mechanism is introduced within the C2f module to enhance the model's feature extraction
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capability for small-scale behaviours. For each feature map lP , it is first partitioned into MM  non-overlapping
windows, where self-attention is then computed within each window as detailed in Equation 1.

VB
d

QKSoftMaxVKQA
k

T

)(),,(ttention  (1)

Where VKQ ,, denotes the query, key, and value matrices respectively, B represents the learnable position

encoding; and kd denotes the dimension of the key vector. Through local self-attention computations within windows,
the model effectively captures spatial dependencies within local regions, rendering it particularly well-suited for
recognising small-scale classroom behaviours such as raising hands or writing.
The Channel Attention Mechanism Unit incorporates a Shuffle Attention (SA) mechanism to mitigate interference from
complex backgrounds. The SA module first partitions the feature map into multiple subgroups along the channel
dimension. Within each subgroup, it concurrently computes both channel attention and spatial attention. Finally, a
shuffle operation facilitates information exchange between subgroups. Given a feature map lP , the computational
process of the SAmodule is expressed in Equation 2.

)))(),.....,(),(((h 2211out GG FSAFSAFSAConcatuffleSFSAF  ）（ (2)

In this context, F is partitioned into G subgroups GFFF ,,,,, 21 , with attention weights computed independently
for each subgroup.

3.2 Time Context Awareness Module

Classroom behaviour exhibits distinct temporal continuity and dynamic evolution characteristics, such as raising one's
hand to answer questions or lowering one's head to take notes, which typically comprise a sequence of consecutive
actions. The temporal context modelling module aims to capture long-term temporal dependencies within behaviours,
addressing issues of momentary occlusion and behavioural fragmentation.
Bidirectional temporal coding unit, employing a bidirectional ConvLSTM architecture that simultaneously leverages
past and future contextual information to enhance the representation of the current frame. For time step t , the forward
computation of the bidirectional ConvLSTM may be referenced in Equations 3 and 4.

)( 1 fthftxft bhWxWf   (3)

ttttt gicfc  1 (4)

Here,  denotes the convolution operation,  represents element-wise multiplication, and  signifies the
sigmoid activation function. The concatenation of the forward and backward hidden states of the ConvLSTM forms the
final temporal augmentation feature.
Transition State Perception Unit, inspired by TACNet, incorporates a transition-aware classifier specifically designed to
distinguish genuine action states from transitional states. Transitional states refer to intermediate phases resembling
genuine actions yet not belonging to action categories, such as the arm-raising motion preceding a completed
hand-raising action. By explicitly modelling these states, the model reduces misclassifications and enhances temporal
boundary accuracy.
Multi-scale Temporal Pyramid Unit: To capture behavioural patterns across different temporal scales, the module
employs a multi-scale temporal pyramid architecture comprising three ConvLSTM layers with distinct time strides (1, 2,
and 4 frames). Features from the pyramid's apex undergo upsampling before merging with lower-level features, thereby
simultaneously capturing both short-term subtle motions and long-term behavioural patterns.

4 FUNCTIONAL TESTING AND DISCUSSION

4.1 Datasets and Evaluation Metrics

To validate the proposed model's effectiveness, experiments were conducted on two publicly available classroom
behaviour datasets: the SCB-Dataset3 [27-28] and the self-constructed Classroom-Actions dataset, as detailed in Table
2. The SCB-Dataset3 comprises annotations for ten categories of student behaviour across three typical classroom
scenarios (lecture, discussion, and self-study), including actions such as raising hands, writing, and reading.

Table 2 Statistical Information of Experimental Dataset
Dataset Scene Category Behavioural categories Video clip Number of students Frame rate annotation

SCB-Dataset3 3 10 1,245 28 56,792
Classroom-Actions 5 15 2,637 52 128,435

Concurrently, this paper will conduct an assessment centred on the aforementioned indicators, as illustrated in Table 3.

Table 3 Performance Evaluation Metrics
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Indicator Name Indicator
Implications

Evaluation
Dimensions In the specific context of this article

Scene
Accuracy

Accuracy rate for
scene category
prediction

Macro-level scene
recognition
capability

The model's overall capability to correctly classify entire video
sequences into distinct classroom types—such as lectures,

discussions, self-study, and collaborative sessions—reflects its
understanding of the global teaching paradigm.

Mean Average
Precision mAP@0.5

Fine-grained
behaviour detection

accuracy

Assess the model's overall performance in locating and
identifying specific student behaviours (such as raising hands,

writing, reading) within individual video frames. mAP@0.5 is the
core evaluation metric in the field of object detection. The higher

the value, the more precise the detection.

Temporal
Localization
Accuracy

Prediction accuracy
for the start and end
times of behaviours

Accuracy of
behavioural time

boundaries

Assess the degree of alignment between the start and end times of
a predicted behaviour in the model and the actual timestamps.

This metric is crucial for analysing the persistence and continuity
of behaviours, such as accurately determining the commencement

and conclusion of a “raising one's hand” action.

FPS

Detection speed,
meeting real-time

processing
requirements

Model
computational
efficiency and

real-time capability

The processing speed of the model is measured by the number of
video frames it can analyse and process per second. A high frame
rate per second (FPS) is a key indicator of whether the model can
be applied to real-time classroom analysis systems, such as online

teaching supervision and real-time feedback.

The table details the four core metrics employed in this paper to evaluate model performance. These metrics
comprehensively assess the proposed spatio-temporal context-aware model's overall capability within classroom
settings, examining its underlying principles, evaluation dimensions, and specific significance.

4.2 Experimental Procedure

The model proposed herein is implemented within the PyTorch framework, with training and inference conducted on an
NVIDIA RTX 3090 GPU environment. The AdamW optimiser is employed, with an initial learning rate of 1e-4 and a
batch size of 8. Training adopts a two-stage strategy: first, the backbone network is initialised using ImageNet
pre-trained weights, focusing on spatial feature extraction. Subsequently, the temporal module is unfrozen and
undergoes end-to-end fine-tuning using complete video sequence data. To enhance the model's generalisation capability,
this study incorporates multiple data augmentation techniques. These encompass spatial augmentations such as random
colour dithering, Gaussian blurring, and occlusion simulation; temporal augmentations including random frame
sampling, temporal scaling, and video jitter; alongside classroom-specific enhancements like simulated lighting
variations and desk-chair occlusion simulation. To address the class imbalance inherent in classroom behaviour
data—where, for instance, ‘listening’ instances vastly outnumber ‘raising hand’ instances—a class-balanced sampling
strategy is implemented. This is combined with a focus loss function to weight the optimisation of losses, thereby
enhancing the model's recognition capability for minority class behaviours.
To comprehensively evaluate the proposed model's performance, five representative state-of-the-art methods were
selected for comparative experiments. These include YOLOv8m, the current benchmark model for classroom behaviour
detection; CSSA-YOLO, which incorporates cross-scale attention mechanisms to optimise multi-scale behaviour
detection; TACNet, a context-aware network specialising in spatio-temporal action detection with transition perception
capabilities; RA-GCNv2-A, a spatio-temporal graph convolutional network enhanced by global attention mechanisms;
and VWE-YOLOv8, a classroom behaviour detection algorithm integrating multiple attention mechanisms. The
aforementioned comparative approaches encompass diverse technical pathways, including detector optimisation,
spatio-temporal context modelling, graph structure learning, and attention mechanism fusion. This multi-faceted
evaluation validates the performance advantages demonstrated by this research.

4.3 Ablation Experiment

To validate the contributions of each module, ablation experiments were designed, with results presented in Table 4.
The baseline model was YOLOv8m, to which spatial attention (SA), temporal context (TCM), and scene context (SCM)
modules were progressively added.

Table 4Ablation Experiment Results (on the SCB-Dataset3 dataset)
Model Configuration Scene Accuracy Rate mAP@0.5 FPS

YOLOv8m (Benchmark)[29] 76.5% 74.8% 82.3
+Spatial Attention(SA) 78.9% (+2.4%) 76.9% (+2.1%) 79.5

+Temporal Context(TCM) 81.2% (+4.7%) 79.3% (+4.5%) 75.8
+Scenario Context(SCM) 83.7% (+7.2%) 81.5% (+6.7%) 71.6

Complete Model 85.4%(+8.9%) 83.2%(+8.4%) 68.2
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Experimental results demonstrate that each module makes a significant contribution to performance enhancement.
Specifically, the spatial attention module improves mAP by 2.1%, primarily enhancing detection capabilities for
small-scale behaviours; the temporal context module further boosts mAP by 4.5%, highlighting the importance of
modelling temporal dependencies; while the scene context module contributes a 2.2% mAP improvement, underscoring
the effectiveness of classroom-specific semantic context. The complete model achieves 8.9% and 8.4% improvements
over the baseline in scene classification accuracy and action detection mAP respectively, confirming the synergistic
effect of all modules.

4.4 Comparative Experiments and Analysis

The comparison results with state-of-the-art methods are presented in Table 5. On the SCB-Dataset3 dataset, our
proposed model outperforms all competing approaches in both scene classification accuracy and action detection mAP,
while maintaining an acceptable inference speed of 68.2 FPS.

Table 5 Comparison Results with State-of-the-Art Methods on the SCB-Dataset3 Dataset
Method Scene Accuracy Rate mAP@0.5 FPS

YOLOv8m[29] 76.5% 74.8% 82.3
CSSA-YOLO[30] 78.8% 76.0% 78.3

TACNet[8] 79.3% 77.2% 45.6
RA-GCNv2-A[31] 81.5% 78.9% 52.7
VWE-YOLOv8[32] 82.7% 80.1% 65.8

Our Method 85.4% 83.2% 68.2

As shown in the table, our model achieves a 2.7% improvement in scene classification accuracy and a 3.1% increase in
mAP for behaviour detection compared to the state-of-the-art method (VWE-YOLOv8). This advancement is primarily
attributable to the model's comprehensive utilisation of spatio-temporal contextual information, particularly its superior
performance in handling complex classroom scenarios. It is noteworthy that although our model possesses a larger
parameter size than YOLOv8m, its efficient attention mechanism and feature fusion strategy enable faster inference
speeds than many complex graph convolutional network-based models (such as RA-GCNv2-A), thereby meeting the
demands of real-time classroom analysis.
Regarding cross-scenario generalisation capability, our model underwent further validation on the Classroom-Actions
dataset, as detailed in Table 6.

Table 6 Generalisation Performance on the Classroom-Actions Dataset
Method Teaching scenario Discussion scenario Experimental Scenario Collaborative Scenarios Average

YOLOv8m 75.3% 70.8% 68.5% 65.2% 70.0%
CSSA-YOLO 77.1% 72.6% 70.3% 67.8% 72.0%
TACNet 78.2% 74.5% 72.1% 69.3% 73.5%

Our Method 81.5% 78.9% 76.7% 74.2% 77.8%

The results demonstrate that our proposed model exhibits outstanding generalisation performance on the more
challenging and diverse Classroom-Actions dataset, achieving a mean average precision (mAP) of 77.8% across four
scenarios—lecturing, discussion, experimentation, and collaboration—that surpasses other comparative models. This
outcome provides robust validation of the model's strong adaptability to complex classroom environments. In-depth
analysis reveals that all models exhibit a performance decline with increasing scene complexity, with the most
pronounced challenges occurring in collaborative scenarios characterised by student grouping, severe occlusions, and
frequent behavioural interactions. Nevertheless, our model maintains an mAP of 74.2% in this scenario, representing a
substantial improvement of nearly 9 percentage points over the baseline YOLOv8m model. This advancement is
primarily attributable to the effectiveness of our spatio-temporal context-aware architecture. Specifically, the spatial
context-aware module enhances the localisation and recognition of individual objects under dense occlusion conditions
through cross-scale attention mechanisms. Meanwhile, temporal context modelling assists in inferring more plausible
behavioural categories from ambiguous single-frame images by analysing long-term dependencies within behavioural
sequences. Together, these approaches address the core challenges inherent in complex scenarios.

4.5 Performance Experiments and Analysis

As shown in Figure2, this paper illustrates the performance trends of different models across four distinct classroom
scenarios, with the primary objective of evaluating their robustness and adaptability to increasingly complex teaching
environments.
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Figure 2 Performance Trends of the Model Across Different Classroom Scenarios

The line graph clearly demonstrates a consistent performance decline for all models as the scenario complexity
escalates from structured Lecture to highly interactive Collaboration settings. This trend validates the inherent
challenges posed by real classroom environments, particularly the issues of severe occlusion and frequent interactions
present in collaborative learning scenarios. Notably, our proposed model (red line) maintains superior performance
across all scenarios, with the performance advantage becoming most pronounced in the most challenging Collaboration
scenario, where it achieves a 74.2% mAP@0.5, nearly 9 percentage points higher than the baseline YOLOv8m. This
significant performance gap underscores the effectiveness of our spatiotemporal context-aware architecture, specifically
the cross-scale spatial attention mechanism in handling severe occlusion and the long-term temporal modeling in
disambiguating complex interactions. The results confirm that our model not only achieves state-of-the-art performance
but also exhibits enhanced robustness in practical educational settings where complex student behaviors and
interactions are prevalent.
Figure 3 presents a comprehensive performance comparison between different models using a grouped bar chart, with
the primary objective of evaluating their overall effectiveness on the SCB-Dataset3 dataset across two critical metrics,
Scene Classification Accuracy and Behavior Detection mAP@0.5.

Figure 3 Overall Performance Comparison Between Models

The chart clearly demonstrates that our proposed model achieves superior performance on both evaluation criteria,
attaining 85.4% in scene accuracy and 83.2% in behavior detection mAP, which represents significant improvements of
8.9% and 8.4% respectively compared to the baseline YOLOv8m model. More importantly, the parallel comparison
reveals that our model exhibits more substantial enhancement in behavior detection capability, which directly validates
the effectiveness of our core innovation—the spatiotemporal context-aware architecture—in precisely localizing and
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recognizing fine-grained student behaviors. The consistent performance advantage across both metrics indicates that our
model successfully addresses the dual challenges of macroscopic scene understanding and microscopic behavior
analysis in educational environments, establishing a new state-of-the-art for classroom behavior analysis systems while
maintaining practical applicability.

5 CONCLUSION

This study proposes a spatiotemporal context-aware scene classification and detection model tailored for classroom
settings. By innovatively integrating cross-scale attention mechanisms in the spatial domain with long-term dependency
modelling in the temporal domain, it effectively addresses key challenges in complex classroom environments,
including lighting variations, frequent occlusions, and small-scale behaviour recognition. Experimental results
demonstrate that the model achieves state-of-the-art performance across multiple datasets, including SCB-Dataset3 and
Classroom-Actions. It attains a scene classification accuracy of 85.4% and an action detection mAP of 83.2%,
significantly outperforming mainstream methods such as YOLOv8m and TACNet. This validates the proposed
architecture's efficacy and superiority in concurrently handling macro-level scene understanding and micro-level
behavioural analysis. Looking ahead, this research may be further deepened in three directions. Firstly, exploring
multimodal data fusion mechanisms by integrating modalities such as speech and text to enhance the completeness of
situational understanding. Secondly, investigating weakly supervised or self-supervised learning strategies to reduce the
model's reliance on large volumes of finely annotated data, thereby enhancing scalability. Thirdly, optimising
computational efficiency through techniques like neural network pruning and quantisation to adapt the model for edge
computing devices, thereby advancing the practical implementation and widespread adoption of intelligent classroom
systems.
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