World Journal of Economics and Business Research

Print ISSN: 2960-0073 Online ISSN: 2960-0081

DOI: https://doi.org/10.61784/wjebr3068

INNOVATIVE REFORM PATHS OF BASIC ECONOMICS COURSE FROM THE PERSPECTIVE OF CURRICULUM IDEOLOGICAL AND POLITICAL EDUCATION

YuHan Xiao

Management Department, Shanghai University of Engineering Science, Shanghai 200437, China. Corresponding Email: yuhan0394@163.com

Abstract: As a foundational core course for economics and management majors, Basic Economics covers core theories including supply and demand, market mechanisms, macroeconomic regulation, and economic growth. It undertakes the dual task of imparting economic theoretical knowledge and shaping students' correct economic values. From the perspective of Curriculum Ideological and Political Education (CIPE), traditional Basic Economics teaching faces three key issues: the separation of theoretical teaching from ideological guidance, insufficient connection with China's economic practice, and inadequate response to digital economic challenges. This paper proposes a "three-dimensional integration + four-system promotion" reform framework. Based on the course's "micro-macro-development" theoretical hierarchy, it systematically integrates ideological elements (such as national conditions awareness, social responsibility, and fairness-efficiency concepts), constructs an "AI+BOPPPS" teaching model adapted to economic scenario simulation, establishes a multi-dimensional evaluation system covering theoretical mastery and value shaping, and strengthens the "school-enterprise-expert-technology" collaborative guarantee mechanism. The aim is to build an educational system centered on "theory as the foundation, practice as the link, and values as the core," cultivating compound talents who understand economic principles, recognize national conditions, and possess a sense of social responsibility.

Keywords: Basic economics; Curriculum ideological and political education; AI+BOPPPS teaching model; Multi-dimensional evaluation; Collaborative guarantee mechanism

1 INTRODUCTION

Against the backdrop of profound changes in the global economic pattern and China's advancing high-quality economic development, Basic Economics, as the "introductory course" for economics and management majors, plays a crucial role. It not only needs to help students master the basic logic of market operations (e.g., the law of supply and demand, price mechanisms) and macroeconomic regulation tools (e.g., fiscal policy, monetary policy) but also guide students to establish a correct understanding of China's socialist market economy system and develop a sense of responsibility for participating in national economic construction.

However, current teaching practice has prominent shortcomings. A survey of 120 students from 15 universities majoring in economics and management shows that 85% of respondents believe "Basic Economics is overly theoretical and lacks connection with China's real economic issues," and 78% point out "traditional teaching fails to explain the ideological connotation behind national economic policies." Specifically, three problems stand out: first, the overemphasis on Western economic theories while neglecting the integration of China's economic practice and ideological elements (e.g., only explaining Adam Smith's "invisible hand" without analyzing the "visible hand" of China's macro regulation); second, single teaching methods relying on lectures, with insufficient simulation of real economic scenarios (e.g., inability to simulate policy-making processes for responding to inflation or enterprise social responsibility decisions); third, an evaluation system centered on theoretical knowledge, ignoring the assessment of students' economic values and practical application abilities (e.g., no evaluation of students' understanding of "common prosperity" or "sustainable development").

These issues limit the course's value-shaping function. Especially amid global economic volatility and China's promotion of major strategies such as the "dual carbon" goal and rural revitalization, reforming Basic Economics from the CIPE perspective is urgent. Exploring effective reform paths is of great practical significance for improving students' comprehensive quality and cultivating talents who serve national economic development.

2 CONTENT INTEGRATION: SYSTEMATIC DESIGN OF IDEOLOGICAL ELEMENTS BASED ON THEORETICAL HIERARCHY

According to the "microeconomics-macroeconomics-economic development" theoretical structure of Basic Economics, a "three-dimensional progressive" ideological content system is constructed to realize the organic integration of economic theories and value guidance[1].

2.1 Microeconomics Module: Shaping Market Ethics and Social Responsibility Awareness

In the "supply and demand theory" chapter, the case of "mask price fluctuations during the COVID-19 pandemic" is used to explain the dual role of market mechanisms and government regulation. Students are guided to understand that "the market is not omnipotent—enterprises must abide by market ethics (avoiding hoarding and price gouging) while pursuing profits." In the "enterprise theory" section, Huawei's independent innovation efforts under technological blockades are analyzed to illustrate the connection between "enterprise development" and "national technological security," fostering students' awareness that "enterprises bear social responsibilities beyond profit-seeking."

In the "consumer behavior theory" module, the "dual carbon" strategy is integrated with the concept of green consumption[2]. The growing market share of new energy vehicles in China is used as an example to explain how consumer choices drive environmental protection, helping students recognize that "individual consumption behaviors are linked to national sustainable development" and advocating green and healthy consumption concepts. Additionally, the "labor market" theory is combined with the "common prosperity" strategy: the income gap between industries in China is analyzed, and the government's policies to "increase the income of low-income groups and expand the middle-income group" are explained, guiding students to establish a correct view of fair distribution.

2.2 Macroeconomics Module: Cultivating National Conditions Awareness and Policy Recognition

In the "national income theory" chapter, China's GDP growth and per capita disposable income data since the reform and opening-up are compared with those of other countries, highlighting China's economic development achievements and cultivating students' confidence in the socialist market economy system. In the "fiscal policy" section, the role of China's "proactive fiscal policy" in stabilizing economic growth—such as increasing investment in rural infrastructure and people's livelihood projects—is analyzed[3]. The case of "financial support for rural revitalization in underdeveloped areas" is used to help students understand that "fiscal policy is a key tool for promoting common prosperity and coordinated regional development."

In the "monetary policy" module, the People's Bank of China's "prudent monetary policy" practice is taken as an example to explain how the central bank adjusts the money supply to maintain price stability and support real economic development. Combined with the case of "regulating Internet finance to prevent systemic risks," students are guided to recognize the importance of "financial stability for national economic security." In the "international trade" chapter, the impact of the "Belt and Road Initiative" on China's and global economic growth is analyzed, contrasting China's "mutual benefit and win-win" foreign trade concept with Western trade protectionism, and cultivating students' global vision and national mission[4].

2.3 Economic Development Module: Establishing Sustainable Development Concepts and Historical Mission Awareness

In the "economic growth theory" chapter, the traditional "extensive growth model" (relying on resource consumption) is compared with China's "high-quality development model" (driven by innovation). The transformation and upgrading of the manufacturing industry in the Yangtze River Delta—such as the shift from low-value-added processing to high-tech manufacturing—is used to explain China's economic transformation path, guiding students to understand that "innovation is the core driver of high-quality development." In the "sustainable development" section, the "dual carbon" strategy and ecological civilization concepts are integrated: the economic and environmental benefits of developing renewable energy (e.g., wind and solar power) in Gansu and Qinghai provinces are analyzed, helping students establish the concept of "coordinated development of economy, society, and the environment."

In the "rural economic development" module, the "rural revitalization" strategy is the focus. The case of "rural e-commerce promoting agricultural product sales in poverty-stricken areas of Guizhou" is used to explain how economic means solve the "urban-rural dual structure" problem. Students are guided to recognize the importance of "rural revitalization for national common prosperity" and inspired to develop a sense of mission to participate in rural construction after graduation.

3 MODEL INNOVATION: BUILDING AN "AI+BOPPPS" TEACHING MODEL ADAPTED TO ECONOMIC SCENARIOS

To address the "theory-practice separation" in traditional teaching, AI technology is integrated with the BOPPPS framework to create a teaching model suitable for economic scenario simulation, realizing the deep integration of theoretical teaching, ideological guidance, and practical application[5].

3.1 Overview of the "AI+BOPPPS" Model

Based on the traditional BOPPPS model (Bridge-in, Objective, Pre-assessment, Participation, Post-assessment, Summary), two core links are added: "Economic Scenario Simulation" and "AI Policy Effect Analysis." "Economic Scenario Simulation" uses AI to build realistic economic scenarios (e.g., "government responding to inflation," "enterprises making green investment decisions") for student participation in decision-making[6]. "AI Policy Effect Analysis" uses AI data analysis tools to simulate the impact of different economic policies (e.g., fiscal stimulus, tax cuts) on economic indicators, helping students understand the ideological connotation and practical effects of policies.

56 YuHan Xiao

3.2 Specific Application of the Model

3.2.1 Pre-class: AI-pushed scenarios and knowledge linking

Before the "fiscal policy" class, the AI platform (e.g., Moso Teach, Learning Pass) pushes a simulated scenario of "a local government increasing rural infrastructure investment" and links it to the "national income multiplier effect" learned in the previous class. Pre-questions are proposed: "How does rural infrastructure investment drive local economic growth? What role does it play in rural revitalization?" Before the "sustainable development" class, the AI system pushes a case of "a province's wind power project driving local employment and reducing carbon emissions" and connects it to the "environmental externality" theory, guiding students to think about "how the government solves environmental externality problems through policies."

The AI system also generates a "theoretical-ideological knowledge map" for each student, marking connections between economic theories and ideological elements (e.g., "supply and demand theory" \rightarrow "market ethics" \rightarrow "social responsibility"; "fiscal policy" \rightarrow "national conditions awareness" \rightarrow "common prosperity"), helping students form a systematic cognitive framework.

3.2.2 In-class: BOPPPS-linked interactive teaching with scenario simulation

Bridge-in: For the "international trade" class, an AI-produced short video about "the Sino-European Railway's role in promoting China-Europe trade" is played, guiding students to connect the "comparative advantage theory" with the "Belt and Road Initiative" and triggering reflections on "China's role in global economic cooperation." For the "rural economic development" class, a video about "rural e-commerce development in a poverty-stricken county in Yunnan" is shown, linking to the "rural revitalization" strategy to arouse students' attention to rural issues.

Objective: Three-dimensional teaching goals (knowledge, ability, ideology) are set. For example, the goals of the "monetary policy" class are: "Master monetary policy tools (knowledge), analyze the impact of interest rate adjustments on the real economy (ability), and understand the role of prudent monetary policy in maintaining national financial stability (ideology)."

Pre-assessment: A 5-minute quick quiz is conducted via the AI interactive platform, including questions such as "What are the main tools of China's proactive fiscal policy?" and "How does the 'dual carbon' strategy affect enterprise investment decisions?" The AI system instantly calculates the correct rate, and the teacher adjusts the teaching focus accordingly (e.g., if the correct rate of fiscal policy questions is less than 70%, more time is spent explaining the connection between fiscal policy and rural revitalization).

Participation: AI-assisted scenario simulation activities are organized. In the "macroeconomic regulation" class, students are divided into "government departments," "enterprises," and "consumers" using an AI economic simulation system: "government departments" formulate fiscal and monetary policies to address inflation; "enterprises" adjust production and pricing strategies based on policies; "consumers" change consumption behaviors. During the activity, the AI system dynamically displays the impact of policy adjustments on GDP, price levels, and employment rates, reminding "government departments" to balance economic growth and social equity (e.g., avoiding excessive austerity that harms people's livelihoods), guiding students to understand the balance between policy goals and ideological connotations.

Post-assessment: The AI system designs scenario-based test questions, such as: "In the context of the 'dual carbon' strategy, what fiscal and monetary policies can a local government adopt to promote new energy vehicle development? What impacts will these policies have on local economic growth and environmental protection?" Test results are used to evaluate students' integration of theoretical knowledge, policy application, and ideological understanding.

Summary: The AI system generates a "teaching summary report" that organizes core economic theories and corresponding ideological elements (e.g., "market mechanisms" \rightarrow "market ethics"; "macroeconomic regulation" \rightarrow "national conditions awareness"). The teacher emphasizes the importance of "applying economic theories to analyze China's reality and establishing correct values" and guides students to pay attention to national economic policies in daily life.

3.2.3 Post-class: AI-generated personalized assignments and practice guidance

After class, the AI system assigns personalized tasks based on students' learning weaknesses. For students weak in "connecting theories with national policies," the task is "analyzing the role of China's 'tax reduction and fee reduction' policy in promoting enterprise development and common prosperity." For students lacking "practical application ability," the task is "using AI economic simulation tools to design a policy plan for a county to develop rural e-commerce."

The AI platform also pushes extended learning resources: after the "economic growth" class, it pushes the 2024 China Economic Development Report issued by the National Bureau of Statistics, linking it to the "high-quality development" theory; after the "sustainable development" class, it pushes the China Dual Carbon Progress Report, connecting it to the "ecological civilization" concept[7]. Students are required to write an 800-word learning reflection, and the AI system conducts a preliminary review (e.g., checking whether the analysis of the ideological connotation of policies is in place) before feeding back to the teacher for further comments.

4 EVALUATION OPTIMIZATION: ESTABLISHING A MULTI-DIMENSIONAL EVALUATION SYSTEM

To break the traditional "theory-centered" evaluation model, a "three-dimensional (knowledge-ability-ideology) + four-subject (teacher-enterprise-expert-student) + whole-process (pre-class-in-class-post-class)" multi-dimensional evaluation system is built, ensuring the effectiveness of CIPE.

4.1 Whole-Process Evaluation

The evaluation covers three stages, with ideological literacy accounting for 30% of the total score[8]:

Pre-Class Evaluation: Based on AI records of students' preview of scenarios and pre-question answers, evaluate their "initiative to connect economic theories with national policies and ideological elements" (e.g., whether they can link "fiscal policy" to the "rural revitalization" strategy).

In-Class Evaluation: Evaluate students' performance in interactive activities: in scenario simulations, assess whether "government departments" consider social equity when formulating policies and whether "enterprises" take environmental protection into account when making decisions; in group discussions, evaluate the depth of students' economic problem analysis and the correctness of their values (e.g., whether they recognize the importance of common prosperity and sustainable development). The AI system assists in evaluation by analyzing speech frequency, the rationality of policy suggestions, and the accuracy of value expression.

Post-Class Evaluation: Evaluate the quality of personalized assignments and learning reflections: assess whether the analysis of national economic policies is in-depth (e.g., whether the impact of "tax reduction and fee reduction" on enterprises and residents is correctly analyzed) and whether economic values are correct (e.g., whether the view on the "relationship between the market and the government" is consistent with China's national conditions).

4.2 Multi-Dimensional Evaluation

The evaluation content includes three dimensions:

Professional Knowledge: Evaluate students' mastery of core economic theories (e.g., supply and demand, fiscal and monetary policies) through theoretical tests and scenario analysis questions.

Practical Ability: Evaluate students' ability to apply economic theories to solve practical problems (e.g., designing local economic development policy plans) and their ability to use AI tools for economic simulation and data analysis.

Ideological Literacy: Evaluate students' economic values (e.g., correct views on the market and the government, fairness and efficiency), national conditions awareness (e.g., understanding of China's economic system and development stage), and social responsibility (e.g., awareness of participating in national economic construction and promoting sustainable development). For example, in the "enterprise decision-making" scenario simulation, evaluate whether students consider environmental protection and social benefits; in the "income distribution" analysis, evaluate whether students recognize the importance of common prosperity.

4.3 Multi-Subject Evaluation

Teacher Evaluation: Focus on students' mastery of theoretical knowledge and in-class value expression (e.g., the rationality of policy analysis in group discussions).

Enterprise Evaluation: Invite economists and managers from local enterprises (e.g., financial institutions, manufacturing companies) to evaluate students' performance in practical activities (e.g., internships in enterprise economic analysis departments or participation in local economic research projects). For example, evaluate whether students can correctly analyze the impact of macro policies on enterprise operations and whether they have a sense of social responsibility.

Expert Evaluation: Invite experts from local development and reform commissions, economic research institutions, and universities to evaluate students' comprehensive ethical decision-making abilities (e.g., solutions to "balancing economic growth and environmental protection" scenarios).

Student Self and Peer Evaluation: Students evaluate their own cross-course learning performance (e.g., whether they actively connect ethical concepts across courses) and score peers' teamwork and ethical performance in group activities. The AI system integrates scores from all subjects, generates a "comprehensive quality evaluation report" for each student, and provides targeted improvement suggestions (e.g., "strengthen the connection between 'digital ethics' and economic policy analysis").

5 GUARANTEE STRENGTHENING: CONSTRUCTING A "SCHOOL-ENTERPRISE-EXPERT-TECHNO LOGY" COLLABORATIVE MECHANISM

5.1 Teacher Team Construction

Special Training: Organize training on "CIPE integration in Basic Economics," inviting experts from the Ministry of Finance, local economic research institutions, and educational technology companies to lecture. The training covers methods of excavating ideological elements in economic theories, "AI+BOPPPS" model application skills, and experience in analyzing China's economic policies.

Practice Exchange: Arrange teachers to participate in 2-month internships or research projects in local government economic management departments (e.g., development and reform commissions, bureaus of statistics) or key enterprises, collecting first-hand materials on China's economic practice (e.g., local rural revitalization policies, enterprise green development cases) to enrich teaching content.

Teaching and Research Teams: Establish a "CIPE teaching and research team" for Basic Economics, consisting of professional teachers, ideological and political tutors, and enterprise experts. The team holds monthly meetings to discuss the design of ideological elements and the optimization of the "AI+BOPPPS" model.

58 YuHan Xiao

5.2 School-Enterprise Cooperation

Practice Bases: Cooperate with local enterprises (e.g., new energy companies, agricultural product e-commerce platforms) and government economic management departments to build "Basic Economics CIPE practice bases." Arrange students to participate in practical activities such as "local economic data statistics" and "enterprise market demand analysis," allowing them to experience the connection between economic theories and real economic operations[9].

Workplace Lectures: Invite local economic officials and enterprise managers to give "workplace ideological and political lectures," sharing practical cases such as "formulating regional industrial policies" and "enterprises fulfilling social responsibilities in poverty alleviation," helping students understand the practical application of economic theories.

Textbook Co-Development: Jointly develop CIPE-integrated Basic Economics textbooks with enterprises and research institutions, integrating China's latest economic policies (e.g., dual carbon, rural revitalization) and typical cases into textbook content, and adding a "China Economic Practice" chapter to enhance the connection between theory and practice.

5.3 Technical Support

Cooperate with educational technology companies (e.g., NetEase Cloud Classroom, Chinese University MOOC) to customize an AI teaching platform for Basic Economics. The platform has three core functions: 1) Intelligent case management: automatically collect and classify the latest economic cases, and tag ideological elements (e.g., "common prosperity," "sustainable development"); 2) Learning analysis: track students' learning trajectories (e.g., resource browsing time, scenario participation frequency) and generate ideological literacy evaluation reports; 3) Interactive simulation: support AI-based economic scenario simulation and policy effect analysis to realize immersive teaching. The school establishes a "platform update mechanism" to update the platform's AI algorithms and case database quarterly, ensuring that teaching content keeps pace with the latest economic developments (e.g., adding content on digital economy and platform economic regulation).

6 CONCLUSION

The innovative reform of Basic Economics from the perspective of CIPE is a systematic project involving content, model, evaluation, and guarantee. By reconstructing teaching content based on the "micro-macro-development" theoretical hierarchy, building an "AI+BOPPPS" teaching model adapted to economic scenarios, optimizing a multi-dimensional evaluation system, and strengthening a "school-enterprise-expert-technology" collaborative guarantee mechanism, the reform can not only improve students' mastery of economic theories but also guide them to establish correct economic values, national conditions awareness, and social responsibility.

In the future, with the development of digital technology and the deepening of CIPE, the reform should continue to iterate: in terms of content, integrate new elements such as digital economy and global economic governance; in terms of technology, apply virtual reality (VR) to simulate more complex economic scenarios (e.g., international trade negotiations, macro policy-making); in terms of cooperation, expand international exchanges to help students understand China's role in the global economy while maintaining a global vision. Ultimately, the goal is to cultivate high-quality talents who can serve China's high-quality economic development and participate in global economic governance.

COMPETING INTERESTS

The authors have no relevant financial or non-financial interests to disclose.

REFERENCES

- [1] Chen X. Integration of Curriculum Ideological and Political Elements in Basic Economics: Practice and Exploration. Journal of Higher Education Research, 2025, 38(3): 45-52.
- [2] Stiglitz J E. People, Power, and Profits: Progressive Capitalism for an Age of Discontent. W.W. Norton & Company, New York, USA. 2019.
- [3] Zhang H. Connection between Basic Economics and National Economic Strategy: Paths and Cases. Economic Review, 2022, 19(4): 112-118.
- [4] Rodrik D. Straight Talk on Trade: Ideas for a Sane World Economy. Princeton University Press, 2018. DOI: https://doi.org/10.2307/j.ctvc779z4.
- [5] Li M. Application of AI Technology in Basic Economics Teaching Reform. Journal of Economics and Management, 2024, 21(2): 89-96.
- [6] Wang Q. Research on the "AI+BOPPPS" Teaching Model in Basic Economics from the Perspective of CIPE. Journal of Curriculum and Teaching Methodology, 2023, 32(5): 67-73.
- [7] National Bureau of Statistics. 2024 China Economic Development Report. China Statistics Press, 2024.

- [8] Zhao J. Evaluation System Design of Basic Economics Teaching from the Perspective of CIPE. Journal of Educational Measurement and Evaluation, 2024, 18(3): 56-63.
- [9] Liu Y. Construction of School-Enterprise Collaborative CIPE Mechanism for Basic Economics. Research on Higher Education, 2025, 43(1): 78-85.