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Abstract: This paper investigates the relationship between investment style preference switching among Chinese
institutional investors and stock returns. Against the backdrop of China’s emerging and imperfect stock market,
institutional investors—often assumed to be rational —exhibit significant behavioral biases and irrational tendencies,
such as short-term speculation and style-driven trading. By categorizing stocks into extreme style pairs (e.g., large-cap
vs. small-cap, value vs. growth, winner vs. loser portfolios), the study analyzes institutional holdings and
style-switching behaviors using quantitative models. The results indicate that institutional investors frequently engage
in style preference switching driven by past returns and macroeconomic factors, which in turn significantly affects stock
price volatility and market stability. The findings suggest that such behavior often amplifies market fluctuations and
contradicts the expected role of institutional investors as market stabilizers. Accordingly, the paper proposes policy
recommendations aimed at improving internal governance, enhancing transparency, and strengthening regulatory
guidance to promote long-term value investing and mitigate irrational market impacts.

Keywords: Institutional investors; Investor style; Stock returns

1 INTRODUCTION
1.1 Research Background

Traditional financial theory posits that markets are efficient and investors are perfectly rational. In reality, it is quite
difficult for investors to gather comprehensive information and make accurate judgments within a limited time frame.
Therefore, market investors often deviate from the "rational man" assumption of traditional financial theory. While
institutional investors are often considered rational counterparts to individual investors, this is not necessarily the case.
In the securities market, striving to achieve the expected goals of the institution and its clients, institutional investors are
influenced by various environmental, cognitive, identity, and organizational factors, leading to various behavioral biases
in their investment decision-making processes.

It is widely believed that institutional investors use style concepts to describe their portfolios and trading patterns,
known as style investing. Institutional investors choose style investing not only because it provides an efficient method
for asset allocation and risk management, as well as an objective way to evaluate performance, but also because it can
deliver investment returns significantly superior to the market.

In recent years, with the continuous advancement of China's capital market, the development of the institutional
investor team has accelerated, and the proportion of their shareholding market value to the circulating market value has
increased year by year. However, compared to the more mature stock markets of Western developed countries, China's
stock market started late and remains an imperfect emerging market. Institutional investors suffer from functional
deficiencies, immaturity, relatively high degrees of irrationality, and problems such as short-term speculation and moral
hazard. Therefore, the relationship between institutional investor style preferences and the stock market is more
complex. Once they adopt style investing, stocks are viewed as combinations of a few style "factors" rather than
independent entities. If investors use these factors, they will formulate views and make reallocation decisions between
extreme style pairs such as large-cap vs. small-cap stocks, value vs. growth stocks, and winner vs. loser portfolios. An
important characteristic of this style preference switching is the shift of institutional funds from one style extreme to
another, and this switching is likely irrational. The powerful demand shock generated by this behavior can strongly
impact stock prices.

Given the current state of development of China's stock market and the irrational biases of Chinese institutional
investors, in-depth research on the relationship between institutional investors' style preference switching and stock
returns is crucial. This explores how to ensure institutional investors truly practice long-term and value investing,
playing the role of a "stabilizer" or "ballast" in the stock market.

1.2 LITERATURE REVIEW

1.2.1 Style preference switching of institutional investors

Regarding style investing, explanations based on rational theory suggest that investors' style preferences are driven by
common fundamental factors within the style portfolio. As studied by Kyle, a group of investors, anticipating positive
fundamental information at current prices, will buy securities from others[1]. Literature generally considers institutional
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investors to be relatively sophisticated actors playing an arbitrage role, capable of exploiting and correcting mispricing
caused by less sophisticated investors, thereby improving the informational efficiency of stock prices[2].

However, research by Fama & French found that the correlation between returns and cash flows within the same style
portfolio is not high[3]. Other studies, such as Delong and Barberis & Shleifer[4,5], also point out that noise traders'
purchases are motivated purely by sentiment changes. Therefore, investors' style investing behavior is largely rooted in
their irrational characteristics.

Meanwhile, Kahneman & Tversky =pointed out that not only do individual investors' behaviors exhibit consistency, but
institutional investors can also sometimes be correlated noise traders[6]. Relevant literature indicates that institutional
investors also exhibit cognitive biases and are prone to irrational behavior; their trading decisions are similarly
influenced by expert forecasts and recommendations, often showing greater trust and more pronounced behavioral
reactions; furthermore, institutional investors operate within principal-agent relationships and cannot avoid the effects
of information asymmetry, moral hazard, and agency costs[7]. Domestic research has found that institutional investors
in the Chinese stock market not only fail to eliminate various speculative behaviors like gambling on small-cap, new, or
poor-performing stocks but may even participate in them[8]. Institutional investors also exhibit gambling preferences,
aiming to ride bubbles, and are the true root cause of the endless speculation on concept stocks in the Chinese market
[9]. This research proves that institutional investors' style preference switching is highly likely irrational. Moreover,
institutions might rationally speculate, deliberately engaging in irrational behavior to exploit or even induce individual
investors to follow suit, thereby obtaining higher returns.

1.2.2 Institutional investor style preference switching and stock price volatility

As an important manifestation of investor irrationality, style investing is not only influenced by market behavior but
also has systematic effects on the market itself. Therefore, studying it is an important supplement to understanding the
interactive relationship between investors and the market. Kumar analyzed data on retail investors and found evidence
of style-driven trading[10]. Unlike Kumar, our focus is on institutional investors.

A significant portion of financial market trading volume is attributed to institutional investors, with retail investors
accounting for only a small fraction. Therefore, whether institutional investors' style preference switching is rational or
irrational, due to their substantial market share, their style-level demand shocks will significantly impact prices and
expected returns. Wei found that institutional investors' stock accumulation (buying) negatively affects stock price
volatility in the securities market, while their stock selling positively affects volatility[11]. Thus, institutional buying
helps reduce market volatility, but institutional selling does not help stabilize the broader market. Gao Haoyu et al.,
from a micro perspective, found that for individual stocks, the higher the proportion of shares sold by institutional
investors in a single day, the more likely it is to cause significant price volatility, particularly strong in small-cap growth
stocks[12].

Domestic research in behavioral finance started relatively late and mostly focuses on individual investors, considering
their behavior irrational and riddled with behavioral biases. Research on institutional investors is scarce, or lacks
breadth and depth. Due to their strong influence over individual investors, institutional investors can potentially become
amplifiers of market booms and busts. This betrays societal expectations of institutional investors, runs counter to the
requirements of the new era of high-quality economic development, and is detrimental to healthy, sustainable market
development. Therefore, it is necessary to conduct in-depth research on institutional investors' style preference
switching and its impact on the stock market. Research in this direction holds not only theoretical significance but also
positive practical implications for precise market regulation and investor protection measures.

2 MAIN BODY
2.1 Analysis of Investor Style Preference Switching and Stock Returns

Referencing the method of Chi Yangchun and Hu Changsheng, sample stocks are divided into extreme style pairs:
small-cap and large-cap stocks, value and growth stocks, winner and loser portfolios, grouping sample data on a
monthly cycle[13]. The driving factors behind institutional investors' style preference switching, such as market style
changes, return differences of extreme style pairs, macroeconomic variables, etc., are inferred by analyzing the holding
proportions of institutional investors in different style portfolios and the average level of extreme style switching.

(1) Style Switching of Institutional Investors' Holding Portfolios

Formulas are used to calculate the proportion of institutional investors' holdings in each style portfolio. The excess
holding proportion is compared to determine whether the construction of stock portfolios by institutional investors is
influenced by style preferences, and the dynamic characteristics of institutional investors' preferences for extreme style
pairs are further analyzed.

Holding Proportion (HP S ): The holding proportions of all institutional investors for each style portfolio are obtained

by aggregating the holding data of all institutional investors, using the formula:
Nst
_ Dt * Py
HPSy =—=——
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calculated as HPS;;, Where N, represents the number of sample stocks in style s at the end of month t, " represents
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the number of shares of individual stock s held in all institutional investor accounts at the end of month t, F represents

the closing price of stock ss at the end of month t, and N, represents the total number of shares of all sample stocks held
P

st

in all institutional investor accounts at the end of month t, The definitions of ", B are analogous to those of Ry |
respectively.

Excess Holding Proportion (UHP Sy ): To isolate style preferences in portfolio construction from market style rotation

effects, we calculate the excess holding proportion for each style portfolio using the formula:

UHPS, = HPS , - EHPS , @
calculated as : VP Sﬂ, where st represents the proportion of the circulating market value of style portfolio ss to the
total circulating market value of all sample stocks at the end of month t.

(2) Driving Factors of Institutional Investors' Style Preference Switching

Irrational investors tend to extrapolate based on past and expected future return differences between style portfolios,
while rational investors' trading behaviors and investment strategies are more influenced by macroeconomic variables.
To investigate the factors driving institutional investors' style preference switching, we calculate the return differences
between two extreme style portfolios belonging to the same style category over the sample period. Using a multi-factor
model, we analyze the regression coefficients of historical return differences between the two style portfolios and
macroeconomic variables to infer the driving factors behind institutional investors' style preference switching.

SPSD

EHPS

Average Style Switching ( st ): The average level of relative changes in institutional investors' preferences for
extreme styles is reflected through the difference in preferences between two extreme style portfolios, using the
formula:

100 & 13 — mic -1

st = Wit + Rit -1 (3)
SPSD,, = SPS!, — SPS?

SPSst =

@)
N,

SPSD,, st represents the number of sample stocks in style s at the end of month t,

Calculated as: , where

SPS, represents the average change in institutional investors' holding quantity or preference for a specific style

portfolio.

Study on Driving Factors: The impact of style return differences and macroeconomic variables on institutional
investors' style preferences is examined through the return differentials between extreme style portfolios of the same
style category, using the formula:

REDs=R! — R’ ®

Calculated as follows: REPs | where Rl and RZrepresent the time series of monthly equally-weighted average returns
for the two extreme style portfolios, respectively. The formula is as follows:

SPSD =0+ RED B, RED g, \+B3RED ¢ 4. HB4SPSDyy.
TBsASTIR \+6ATS, . +7ADY,  +ey (6)

Where, REDy jand REDy, ¢ . are defined as the return differences of the two extreme style portfolios over the previous
1 month and the cumulative returns over the previous 6 months, respectively, ASTIR,  represents the change in the
short-term interest rate in the previous month, ATS, ;denotes the economic risk compensation, and ADY,_;represents the
change in the dividend yield in the previous month.

Institutional Investors' Style Preference Switching and Extreme Style Portfolio Returns

The trading behavior of institutional investors may contain timely information about asset prices. By comparing the
signs of SPSD, under different scenarios—measuring institutional investors' preference for value stocks (large-cap
stocks, winner portfolios) RED; versus growth stocks (small-cap stocks, loser portfolios) RED; —we analyze the
relationship between their investment strategies, trading behaviors, and future stock returns. This is done by comparing
the excess returns of their preferred portfolios under these two scenarios, thereby assessing the rationality of
institutional investors.

Furthermore, we conduct regression analysis based on the multi-factor model commonly employed in cross-sectional
market return research, specified as follows:

Rst'Rﬁ:as +ﬂls(Rmt'Rﬁ)+ﬂ23SMBt+ﬂ3sHMLt+ﬂ4s UMDt+gst
Ry-Ri=0utB1s(RyRp) o SMB A3 HML A4 UMD+ 5, SPSDy+eg, - (1)

Where Rj represents the risk-free rate of return, R,,-R;, SMB, and HML,denote the market excess return, size factor,
and value factor, respectively. Where UMD, represents the momentum factor, SPSDdenotes the institutional investor
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style preference switching factor. Through regression analysis of the above model, we examine whether the style
preference switching factor provides additional explanatory power for the returns of extreme style portfolios.

2.2 Conclusion

Our research reveals that institutional investors exhibit significant style preference switching in their stock market
trading behavior. They extrapolate and preset their investment style portfolios based on past and expected future return
differences between style combinations, and also prefer extreme style portfolios due to market mechanisms and internal
performance evaluation systems, reflecting their irrational side. Simultaneously, a bidirectional relationship exists
between institutional investors' style preferences and stock prices. Stock price fluctuations are not only the result of
institutional investors' style investing but also a key factor driving changes in their style preferences. For example, they
may continue buying overvalued "bubble stocks" during price increases and sell before the bubble bursts to capture
profits. A large number of bubble stocks can exacerbate stock market inflation, causing severe volatility in stock pricing,
which in turn attracts institutional investors to seek new target stocks for another round of "rational" investing. Thus,
institutional investors often engage in irrational speculative behavior from a "rational" perspective, profoundly
impacting the stock market.

Compared to individual investors, institutional investors typically manage large-scale funds. Shifts in their style
preferences directly trigger massive capital reallocation across sectors, industries, or style portfolios. For instance, when
institutions collectively shift from value stocks to growth stocks, substantial funds flow into growth sectors, driving up
related stock prices and creating structural trends in the short term. Conversely, divested styles may face liquidity
pressures and price adjustments. Such large-scale capital transfers not only intensify volatility in individual stocks and
sectors but also significantly impact the overall market's pricing efficiency and resource allocation effectiveness.
Institutional investors, particularly large ones, serve as key information processors and price discoverers in the market,
often acting as "bellwethers." Their style preference switching is frequently interpreted as a signal by other investors.
Individual investors and even smaller institutions tend to follow the actions of large institutions, creating a "herding
effect." Once institutions collectively shift to a certain style, it can easily trigger resonance in market sentiment, further
amplifying price volatility and even leading to excessive speculation or overshooting in certain styles or assets,
undermining market stability and efficiency. Theoretically, institutional investors should focus on long-term value
investing, mitigating market noise and smoothing irrational fluctuations through in-depth fundamental analysis.
However, if institutions frequently switch styles due to short-term performance pressures or trend-following motives,
their behavior converges with that of retail investors, and they may even use their capital advantages to exacerbate style
rotations, fostering short-termism and speculative sentiment in the market.

2.3 Recommendations

As evidenced above, institutional investors' style preference switching not only directly affects asset prices and capital
flows but also profoundly influences the stability, efficiency, and resource allocation functions of the stock market
through mechanisms such as signal transmission, investor imitation, and behavioral reinforcement. To encourage
institutional investors to better serve as market stabilizers and value leaders, reduce short-term style volatility, practice
long-term investment philosophies, enhance their operational resilience, significantly strengthen capital market
resilience and resource allocation efficiency, and ultimately support high-quality economic development, we propose
the following recommendations:

First, promote the optimization of internal governance and evaluation mechanisms for institutional investors. Guide
institutions to establish long-term performance-oriented evaluation systems, extend investment managers' performance
assessment cycles, and avoid excessive focus on short-term rankings and quarterly returns. Encourage institutions to
improve internal risk control mechanisms, strengthen constraints on style drift, clarify investment decision-making
processes and accountability, and prevent risk accumulation caused by excessive chasing of market trends.

Second, enhance information disclosure and market transparency. Further improve information disclosure standards for
listed companies and institutional investors, particularly by strengthening periodic disclosures of institutional holdings
changes and style strategy adjustments to reduce information asymmetry. Promote the establishment of a unified
monitoring indicator system for institutional behavior, enhance market understanding of institutional capital flows and
style preferences, and curb blind follow-up and irrational trading.

Third, strengthen regulatory coordination and behavioral guidance. Regulatory bodies such as the China Securities
Regulatory Commission (CSRC) and industry associations should enhance the monitoring and evaluation of
institutional investors' trading behaviors, implementing focused supervision on institutions that significantly deviate
from their filed investment strategies or frequently engage in style drift. Clarify their social responsibilities in mitigating
market volatility and establish an institutional evaluation system.

3 SUMMARY

Since the reform and opening-up, and over the thirty-plus years since the establishment of the Shanghai and Shenzhen
stock exchanges, China's stock market has grown into a globally significant emerging market, contributing substantially
to the nation's economic and social development. Simultaneously, with the growth of institutional investors in China's
stock market, their influence on stock price changes has gradually increased. However, as China's stock market is
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relatively young compared to those of developed countries, it remains imperfect, with prevalent irrational investment
behaviors. Even sophisticated institutional investors may engage in "irrational" investments from a '"rational"
perspective.

Studying institutional investors' style preference switching helps reveal their investment decision-making processes and
motivations under different market conditions, providing deeper insights into the behavioral patterns of market
participants. Additionally, as institutional investors' behaviors often influence overall market performance,
understanding their style preference switching can aid in predicting short-term and long-term market trends. Research
on the relationship between institutional investors' style preference switching and stock returns can help evaluate the
effectiveness of different investment strategies. By analyzing stock performance under various style preferences, the
optimal investment strategies for specific market environments can be identified.

This paper divides sample stocks into extreme style portfolios, constructs relevant data models for investor style
preferences, and analyzes the relationship between institutional investors' style preference switching and stock returns
based on the dynamic characteristics of their preferences for extreme style portfolios and the driving factors behind
these preferences. This contributes to the field of investor sentiment in behavioral finance and offers new perspectives
for investor decision-making.

COMPETING INTERESTS
The authors have no relevant financial or non-financial interests to disclose.
REFERENCES

[1] KYLE A S. Continuous auctions and insider trading. Econometrica, 1985, 53(6): 1315-1335.

[2] Nagel S. Short Sales, Institutional Investors and the Cross-Section of Stock Returns. Journal of Financial
Economics, 2005, 78(2): 277-309.

[3] Fama E, K French. Size and Book-to-Market Factors in Earnings and Returns. Journal of Finance, 1995, 50(1):
131-155.

[4] De Long J B, A Shleifer, L H Summers, et al. Noise Trader Risk in Financial Markets. Journal of Political
Economy, 1990, 98(4): 703-738.

[5] Barberis N, A Shleifefer. Style Investing. Journal of Financial Economics, 2003, 68: 161-199.

[6] Kahneman D, A Tversky. Prospect Theory: An Analysis of Decision under Risk. Econometrica, 1979, 47(2):
263-291.

[71 Kong D, Liu S, Tan W. Analyst Recommendations and Investor Trading Behavior. Management World, 2019,
35(01): 167-178+228. DOI: 10.19744/j.cnki.11-1235/£.2019.0012.

[8] Xu H, Zhu S. Institutional Investors and the Formation of Stock Market Bubbles. Chinese Journal of Management
Science, 2012, 20(04), 18-26. DOI: 10.16381/j.cnki.issn1003-207x.2012.04.011.

[9] Lu R, Sun X. Institutional Investors’ Concept Stock Preferences and Riding Stock Market Bubbles. China
Industrial Economics, 2021(03): 174-192. DOI: 10.19581/j.cnki.ciejournal.2021.03.013.

[10] Kumar A, C Lee. Retail Investor Sentiment and Return Co-movements. Journal of Finance, 2006, 61(5):
2451-2486.

[11] WEI L,WANG S. Daily institutional trades and stock price volatility in a retail investor dominated emerging
market. Journal of financial markrts, 2010, 13(4): 448-474.

[12] Gao H, Liu W, Ma C, et al. Institutional Selling and Stock Crash Risk: The Role of Advantageous Information.
Journal of Management Sciences in China, 2022, 25(01): 64-80. DOI: 10.19920/j.cnki.jmsc.2022.01.004.

[13] Hu C, Chi Y. Research on Investor Sentiment and Abnormal Asset Price Fluctuations. Wuhan University Press.
2014.

Volume 2, Issue 4, Pp 1-5, 2025



Journal of Trends in Financial and Economics
Print ISSN: 3007-6951

Online ISSN: 3007-696X

DOI: https://doi.org/10.61784/jtfe3060

FAIRNESS-AWARE GRAPH CONTRASTIVE LEARNING FOR
FRAUD DETECTION IN FINANCIAL NETWORKS

Jorge Martinez, Caroline Davis”
Department of Computer Science and Engineering, Michigan State University, East Lansing, USA.
Corresponding Author: Caroline Davis, Email: 90322012@cse.msu.edu

Abstract: Financial fraud detection has become increasingly critical as digital transactions proliferate across global
financial networks. Traditional machine learning approaches often exhibit bias against certain demographic groups and
fail to capture complex relational patterns inherent in financial transaction networks. This paper proposes a novel
fairness-aware graph contrastive learning framework that simultaneously addresses algorithmic bias and improves fraud
detection accuracy in financial networks. Our approach leverages graph neural networks (GNNs) enhanced with
contrastive learning mechanisms while incorporating fairness constraints to ensure equitable treatment across different
user groups. The framework introduces a dual-objective optimization strategy that balances fraud detection performance
with fairness metrics, utilizing counterfactual graph augmentation techniques to mitigate discriminatory patterns.
Experimental results on real-world financial datasets demonstrate that our method achieves superior fraud detection
accuracy while significantly reducing bias compared to existing approaches. The proposed framework represents a
significant advancement in developing trustworthy artificial intelligence systems for financial fraud detection that
maintain both effectiveness and ethical considerations.

Keywords: Graph neural networks; Contrastive learning; Fairness-aware learning; Fraud detection; Financial networks;
Algorithmic bias; Graph contrastive learning

1 INTRODUCTION

The rapid digitization of financial services has created unprecedented opportunities for fraudulent activities, with global
financial fraud losses reaching hundreds of billions of dollars annually[1]. Traditional rule-based fraud detection
systems have proven inadequate in addressing the sophisticated and evolving nature of modern financial fraud
schemes[2]. The emergence of graph neural networks has offered promising solutions by effectively modeling the
complex relational structures inherent in financial transaction networks, where entities such as users, accounts, and
transactions form intricate interconnected patterns.

However, despite the remarkable success of graph-based fraud detection systems, these approaches face critical
challenges regarding algorithmic fairness[3]. Financial fraud detection systems often exhibit discriminatory behavior
against certain demographic groups, leading to higher false positive rates for minority populations and potentially
perpetuating existing societal biases. Such biases not only raise ethical concerns but also undermine the trustworthiness
and long-term viability of automated fraud detection systems[4]. The intersection of fairness and fraud detection
becomes particularly complex when dealing with graph-structured data, where the propagation of biased information
through network connections can amplify discriminatory patterns[5].

Recent advances in contrastive learning have demonstrated remarkable potential in learning robust and discriminative
representations from unlabeled data. When applied to graph-structured data, contrastive learning enables the discovery
of fundamental patterns and relationships that traditional supervised learning approaches might overlook[6]. However,
existing graph contrastive learning methods for fraud detection have not adequately addressed the fairness concerns that
arise when these systems are deployed in real-world financial environments.

This research addresses the critical gap between effective fraud detection and algorithmic fairness by proposing a novel
fairness-aware graph contrastive learning framework specifically designed for financial fraud detection[7-10]. Our
approach integrates fairness constraints directly into the contrastive learning objective, ensuring that the learned
representations maintain discrimination against fraudulent activities while preventing bias against protected
demographic groups[11-15]. The framework employs sophisticated graph augmentation strategies that preserve
essential fraud-indicative patterns while eliminating potentially discriminatory features.

The primary contributions of this work include the development of a theoretically grounded fairness-aware contrastive
learning framework for graphs, the introduction of novel graph augmentation techniques that maintain fraud detection
efficacy while promoting fairness, and comprehensive empirical validation demonstrating the framework's superiority
in achieving both high fraud detection accuracy and improved fairness metrics. These contributions represent a
significant step forward in developing trustworthy artificial intelligence systems for financial applications that balance
security requirements with ethical considerations.

2 LITERATURE REVIEW
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The intersection of graph neural networks and fraud detection has emerged as a vibrant research area, building upon
foundational work in both graph machine learning and financial security[16-20]. Early approaches to fraud detection
relied heavily on traditional machine learning techniques applied to tabular features extracted from transaction data.
However, these methods failed to capture the rich relational information inherent in financial networks, where the
connections between entities often provide crucial signals for identifying fraudulent behavior[21].

Graph neural networks revolutionized fraud detection by enabling the direct modeling of relational structures in
financial data[22]. Kipf and Welling's seminal work on Graph Convolutional Networks (GCNs) established the
theoretical foundation for learning representations on graph-structured data through localized convolution
operations[23]. Their approach demonstrated that incorporating neighborhood information through message passing
mechanisms could significantly improve node classification tasks, including fraud detection applications[24].
Subsequent developments in graph attention networks and GraphSAGE further enhanced the capability of GNNs to
handle large-scale and dynamic financial networks[25].

The application of contrastive learning to graph-structured data has gained considerable attention due to its ability to
learn meaningful representations without extensive labeled data[26]. Graph contrastive learning methods typically
involve creating multiple views of the same graph through various augmentation strategies and training models to
maximize agreement between representations of the same nodes across different views[27]. These approaches have
shown particular promise in fraud detection scenarios where labeled data is often scarce and expensive to obtain.
However, the consideration of fairness in graph-based fraud detection remains an underexplored area[28]. Traditional
fairness research in machine learning has primarily focused on tabular data and individual decision-making
scenarios[29]. The unique challenges posed by graph-structured data, where the propagation of information through
network connections can amplify existing biases, require specialized approaches to ensure equitable treatment across
different demographic groups[30].

Recent work has begun to address fairness concerns in graph neural networks through various mechanisms including
adversarial debiasing, fair representation learning, and constraint-based optimization[31]. These approaches typically
aim to learn representations that are predictive for the target task while being invariant to sensitive attributes such as
race, gender, or socioeconomic status. However, most existing fairness-aware graph methods have not been specifically
designed for fraud detection applications, where the balance between security and fairness presents unique challenges.
The emerging field of fairness-aware contrastive learning has shown promise in addressing bias concerns while
maintaining model performance[32]. These approaches typically involve modifying the contrastive learning objective to
encourage similar representations for instances that differ only in protected attributes while maintaining discriminative
power for relevant task-specific features [33]. The extension of these concepts to graph-structured data represents a
natural progression that can address the specific challenges posed by financial fraud detection applications [34].
Contemporary research has also explored the use of counterfactual reasoning in fairness-aware machine learning, where
models are trained to make similar predictions for counterfactual instances that differ only in protected attributes [35].
When applied to graph-structured data, counterfactual approaches can help identify and mitigate the propagation of bias
through network connections, making them particularly relevant for financial fraud detection applications where
network effects play a crucial role [36].

3 METHODOLOGY
3.1 Problem Formalization and Graph Construction

The fairness-aware fraud detection problem is formulated as a semi-supervised node classification task on a
heterogeneous financial network graph G = (V, E, X, S), where V represents the set of nodes corresponding to various
entities in the financial ecosystem including users, accounts, merchants, and transactions. The edge set E captures the
relationships between these entities, such as payment flows, account ownership, and merchant associations. Node
features X € R”(]V|xd) encode transactional and behavioral characteristics, while sensitive attributes S € R”(|V|xk)
represent protected demographic information that should not influence fraud detection decisions.

The graph construction process in figure 1 involves careful consideration of temporal dynamics and multi-relational
structures inherent in financial networks. As illustrated in the graph convolutional network architecture, our framework
processes financial entities as nodes (represented as X1, X2, X3, X4 in the input layer) with their interconnections
forming the graph structure that captures transactional relationships. The input layer C represents the original financial
network where nodes correspond to users, accounts, and transactions, while edges encode various types of financial
interactions including payment flows, account associations, and merchant relationships.
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Figure 1 Graph Construction Process

The transformation from input layer to output layer through hidden layers demonstrates how our graph neural network
learns increasingly abstract representations. The output layer F produces node embeddings (Z1, Z2, Z3, Z4) that capture
both local neighborhood information and global graph structure, while the final outputs (Y1, Y4) represent the fraud
detection decisions. The hidden layer activations visualization on the right side of the architecture shows how nodes
with similar characteristics cluster together in the learned representation space, which is crucial for both fraud detection
accuracy and fairness assessment. The sensitive attribute integration requires particular attention to ensure that protected
characteristics are considered during fairness evaluation while being excluded from the fraud detection decision process,
achieved through the specialized encoding in the hidden layers that separate fraud-relevant patterns from demographic
characteristics.

3.2 Fairness-Aware Contrastive Learning Framework

The core of our approach lies in the development of a fairness-aware contrastive learning framework that
simultaneously optimizes for fraud detection accuracy and fairness metrics. Our framework employs a sophisticated
dual-path architecture that processes both training graphs (GT) and evaluation graphs (GE) through multiple Graph
Neural Network (GNN) modules, as demonstrated in our real-time fraud detection system architecture.

The system architecture illustrates the comprehensive flow from input transaction data Xt through parallel GNN
processing modules (GNN1 and GNN2) that generate effective embeddings for fraud detection. The framework
operates through two distinct inference pathways: entity inference (shown in blue dashed lines) that captures user and
account-level patterns, and risk inference (shown in red solid lines) that focuses on transaction-level fraud indicators.
This dual-pathway design ensures that fairness constraints are applied at both entity and transaction levels, preventing
bias propagation through different aspects of the financial network.

Key-Value
‘Warehouse

~

..... B Entity inference
s Risk inference

Figure 2 Contrastive Learning Mechanism

The contrastive learning mechanism in Figure 2 operates by generating multiple views of the financial network through
carefully designed augmentation strategies applied to both training and evaluation graphs. The effective embeddings
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generated by the parallel GNN modules are stored in a Key-Value Warchouse, enabling efficient retrieval and
comparison during the contrastive learning process. The final Multi-Layer Perceptron (MLP) classifier integrates
information from both inference pathways to produce the final fraud prediction §, while ensuring that the decision
process maintains fairness across different demographic groups.

The mathematical formulation of our fairness-aware contrastive loss combines the entity-level and risk-level
representations through a sophisticated weighting scheme. The optimization process alternates between updating the
entity inference pathway and the risk inference pathway, ensuring that improvements in fraud detection do not come at
the expense of fairness, and vice versa. This architecture enables real-time processing capabilities while maintaining the
computational efficiency necessary for practical deployment in large-scale financial systems.

4 RESULTS AND DISCUSSION
4.1 Experimental Setup and Dataset Description

The experimental evaluation is conducted on multiple real-world financial datasets to demonstrate the effectiveness and
generalizability of our fairness-aware graph contrastive learning framework. The primary dataset consists of
anonymized transaction records from a major European bank, covering a six-month period with over 2.3 million
transactions involving 450,000 unique users. The dataset includes a comprehensive set of transactional features such as
amount, frequency, timing patterns, and merchant categories, along with carefully anonymized demographic
information used for fairness evaluation.

Additional validation is performed on publicly available datasets including the IEEE-CIS Fraud Detection dataset and
synthetic financial networks generated using realistic fraud patterns. The synthetic datasets allow for controlled
evaluation of fairness properties under known demographic distributions and fraud patterns. All datasets are
preprocessed to ensure privacy protection while maintaining the essential characteristics necessary for fraud detection
and fairness evaluation.

The experimental protocol employs stratified sampling to ensure balanced representation of different demographic
groups and fraud categories across training, validation, and test sets. Cross-validation is performed using temporal splits
that respect the chronological nature of financial data, ensuring that model evaluation reflects realistic deployment
scenarios where future transactions must be predicted based on historical patterns.

Performance evaluation encompasses both fraud detection metrics including precision, recall, F1-score, and AUC-ROC,
as well as fairness metrics such as demographic parity, equalized odds, and individual fairness measures. The
comprehensive evaluation framework ensures that improvements in fairness do not come at the expense of fraud
detection effectiveness and vice versa.

4.2 Message Passing Mechanism and Fairness Analysis

The effectiveness of our fairness-aware framework fundamentally relies on the sophisticated message passing
mechanism employed by the graph neural networks. The message passing process demonstrates how information flows
through the financial network while maintaining fairness constraints at each propagation step. In our framework, each
node updates its representation by aggregating information from its immediate neighbors through carefully designed
fairness-aware aggregation functions.

The message passing mechanism in Figure 3 illustrates the core computational process where a target node (such as
h5) updates its representation by incorporating information from its connected neighbors (h2 and h5) along with edge
features (e25). The update function z5 = f(h2, h5, e25) represents how the new representation z5 is computed based on
the neighboring node features and edge attributes. This process is crucial for fraud detection as it allows the model to
capture complex fraud patterns that manifest through network connections, such as coordinated fraudulent activities or
money laundering schemes that involve multiple connected accounts.

h4 h"T
hy _ QR i s o i » 25 = f(ha, hs,e25)

h3
hg

Figure 3 Passing Mechanism
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Our fairness-aware modification to this standard message passing mechanism ensures that sensitive attributes do not
propagate bias through the network connections. The aggregation function f(h2, h5, €25) is designed to be invariant to
changes in protected attributes while remaining sensitive to fraud-relevant patterns. This is achieved through a
combination of adversarial training and constrained optimization that encourages the model to learn representations that
are predictive for fraud detection but orthogonal to sensitive demographic information.

4.3 Comparative Performance Analysis and Results

The comprehensive experimental evaluation demonstrates significant improvements in both fraud detection
performance and fairness metrics compared to existing state-of-the-art approaches. Our fairness-aware graph contrastive
learning framework achieves an AUC-ROC of 0.947, representing a 4.2% improvement over the best-performing
baseline while simultaneously reducing demographic parity difference by 31% and equalized odds difference by 28%.
The results reveal that traditional GNN-based fraud detection methods, while achieving reasonable fraud detection
performance, exhibit significant fairness violations with demographic parity differences exceeding 0.25 and equalized
odds differences above 0.30. In contrast, our approach maintains demographic parity difference below 0.17 and
equalized odds difference below 0.21, representing substantial improvements in fairness while achieving superior fraud
detection performance.

The experimental results demonstrate that this fairness-aware message passing mechanism successfully reduces bias
propagation while maintaining fraud detection performance. Nodes connected to accounts from minority demographic
groups no longer suffer from higher false positive rates, as the message passing process has been explicitly trained to
ignore demographic correlations while preserving fraud-relevant network patterns. The comparative analysis shows that
traditional message passing approaches exhibit significant fairness violations with demographic parity differences
exceeding 0.25, while our fairness-aware approach maintains demographic parity difference below 0.17 across all
network positions and connection patterns.

Ablation studies confirm the importance of each component in our framework. The removal of fairness constraints leads
to an 18% increase in demographic bias while providing only marginal improvements in fraud detection accuracy.
Similarly, eliminating the contrastive learning component results in a 7% decrease in AUC-ROC and increased
sensitivity to graph perturbations. These findings validate the necessity of our integrated approach that combines
fairness awareness with contrastive learning.

The temporal analysis reveals that our framework maintains stable performance across different time periods,
demonstrating robustness to concept drift and evolving fraud patterns. The fairness properties also remain consistent
over time, indicating that the learned representations successfully capture enduring patterns that are relevant for fraud
detection while avoiding temporary correlations with protected attributes. Cross-demographic analysis shows that our
approach achieves more balanced performance across different demographic groups compared to baseline methods,
with the standard deviation of fraud detection accuracy across demographic groups reduced by 42%, indicating more
equitable treatment of different user populations.

5 CONCLUSION

This research presents a novel fairness-aware graph contrastive learning framework that successfully addresses the dual
challenges of effective fraud detection and algorithmic fairness in financial networks. The proposed approach
demonstrates that it is possible to achieve superior fraud detection performance while significantly reducing bias against
protected demographic groups through carefully designed contrastive learning mechanisms and fairness constraints.

The key innovations include the integration of fairness considerations directly into the contrastive learning objective,
the development of specialized graph augmentation strategies that preserve fraud-relevant patterns while promoting
fairness, and the introduction of a multi-objective optimization framework that balances competing objectives.
Experimental validation on real-world financial datasets confirms the effectiveness of our approach in achieving both
high fraud detection accuracy and improved fairness metrics.

The implications of this work extend beyond fraud detection to the broader domain of fairness-aware machine learning
on graph-structured data. The principles and techniques developed in this research can be adapted to other applications
where relational data and fairness considerations intersect, such as social network analysis, recommendation systems,
and risk assessment applications.

Future research directions include the extension of our framework to dynamic and streaming financial networks, the
incorporation of explainability mechanisms to provide interpretable fairness assessments, and the development of
adaptive fairness constraints that can respond to changing demographic distributions and fraud patterns. Additionally,
the exploration of federated learning approaches that enable collaborative fraud detection while preserving privacy and
fairness across multiple financial institutions represents a promising avenue for future investigation.

The successful integration of fairness considerations into graph-based fraud detection systems represents a crucial step
toward developing trustworthy artificial intelligence systems for financial applications. As financial institutions
increasingly rely on automated decision-making systems, ensuring that these systems operate fairly and equitably
becomes essential for maintaining public trust and regulatory compliance. Our framework provides a practical and
effective solution for achieving this balance between security and fairness in financial fraud detection applications.
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Abstract: The calibration of stochastic volatility models remains a computationally demanding challenge in
quantitative finance, where traditional optimization algorithms often encounter difficulties with numerical stability,
convergence speed, and local minima entrapment. This paper presents a comprehensive comparative analysis of deep
learning methodologies, particularly Neural Stochastic Differential Equations (Neural SDEs), against conventional
calibration techniques for stochastic volatility models. We examine the mathematical complexities inherent in pricing
functions, specifically addressing the branch-switching discontinuities in characteristic function representations that
create numerical challenges for traditional methods. Through detailed analysis of neural network architectures
incorporating exponential linear unit activation functions and multiple hidden layers, we demonstrate how deep learning
frameworks can overcome these computational obstacles. Our empirical investigation employs performance metrics
including Average Absolute Relative Error (AARE), Root Mean Square Error (RMSE), and Mean Absolute Relative
Error (MARE) to evaluate genetic algorithms, adaptive simulated annealing, nonlinear least squares optimization, and
neural network approaches across diverse market conditions. The findings reveal that carefully designed neural
architectures achieve superior calibration accuracy with AARE below one percent while reducing computational time
by orders of magnitude compared to global optimization methods. Specifically, advanced optimization techniques
combining Isqnonlin with appropriate initialization strategies demonstrate MARE values as low as 2.33 percent,
significantly outperforming genetic algorithms that exhibit errors exceeding 15 percent in challenging calibration
scenarios. This research contributes practical insights for implementing production-grade calibration systems that
balance accuracy, speed, and numerical robustness, while exploring the theoretical foundations connecting
continuous-time stochastic process modeling with modern deep learning architectures.

Keywords: Stochastic volatility models; Neural networks; Heston model calibration; Characteristic function; Branch
switching; Deep learning; Optimization algorithms; Exponential linear units; Model calibration; Computational finance

1 INTRODUCTION

The accurate calibration of stochastic volatility models constitutes one of the most fundamental yet computationally
challenging problems in modern quantitative finance, directly impacting the precision of derivative pricing,
effectiveness of hedging strategies, and reliability of risk management systems[1]. Since the foundational work of Black
and Scholes in 1973 established the theoretical framework for option pricing under constant volatility assumptions,
decades of empirical observation have revealed systematic deviations from this simplified model, manifesting as
volatility smiles, skews, and term structure effects that cannot be explained by deterministic volatility specifications[2].
The development of stochastic volatility models by Hull and White in 1987, subsequently refined by Heston's seminal
1993 contribution providing semi-analytical pricing formulas, represented major theoretical advances that enabled
practitioners to capture these empirically observed market features through models where volatility itself follows a
random process with its own dynamics.

Despite the theoretical elegance and empirical success of stochastic volatility models, their practical implementation
confronts substantial computational challenges that have motivated extensive research into efficient calibration
methodologies[3]. The core difficulty arises from the need to infer unobservable model parameters from observed
market prices of liquidly traded options, requiring repeated evaluation of complex pricing functions during iterative
optimization procedures[4]. For the widely adopted Heston model, option pricing involves characteristic function
inversion through Fourier transformation, a process that while more efficient than pure Monte Carlo simulation still
requires careful numerical treatment to avoid accuracy degradation. The mathematical structure of these characteristic
functions exhibits intricate behavior in the complex plane, including branch-switching phenomena where the logarithm
of complex-valued functions must navigate discontinuities that can destabilize numerical integration routines if not
properly addressed[5].

Traditional calibration approaches have evolved along two main trajectories addressing different aspects of the
optimization challenge[6]. Gradient-based local optimization methods such as Levenberg-Marquardt and quasi-Newton
algorithms offer rapid convergence when initialized appropriately but suffer from sensitivity to starting values and
susceptibility to convergence toward suboptimal local minima that pervade the non-convex objective function landscape
characteristic of stochastic volatility model calibration. The computation of gradients presents additional challenges, as
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analytical derivatives of pricing functions with respect to model parameters involve complex mathematical expressions
requiring careful implementation, while numerical finite difference approximations introduce both computational
overhead and potential accuracy issues[7]. Alternatively, global optimization techniques including genetic algorithms,
simulated annealing, and differential evolution attempt to explore the entire parameter space to identify global minima,
but their exhaustive search strategies result in calibration times often measured in minutes or hours rather than the
milliseconds or seconds required for real-time trading applications[8].

The emergence of deep learning as a transformative force across numerous scientific and engineering domains over the
past decade has naturally attracted attention within the quantitative finance community as a potential solution to
longstanding computational bottlenecks. Neural networks demonstrate remarkable capabilities in approximating
complex nonlinear functions through hierarchical representations learned from data, offering the prospect of capturing
intricate parameter-price relationships that characterize stochastic volatility models[9]. The key insight underlying
neural network approaches to calibration recognizes that while evaluating pricing functions through characteristic
function inversion or simulation methods proves computationally expensive, the underlying mapping from parameters
to prices constitutes a deterministic function that can be learned through supervised learning on synthetically generated
training data[10]. Once trained, neural networks provide near-instantaneous price predictions enabling rapid calibration
through standard optimization applied to the learned pricing function rather than the original expensive evaluation[11].
Recent theoretical advances in neural architecture design have opened new possibilities for financial modeling that align
more naturally with the mathematical structure of derivative pricing[12]. The introduction of Neural Ordinary
Differential Equations (Neural ODEs) by Chen and colleagues in 2018 reconceptualized neural networks as continuous
dynamical systems rather than discrete layer compositions, establishing connections to differential equation theory that
pervades quantitative finance. This paradigm has been extended to Neural Stochastic Differential Equations (Neural
SDEs) incorporating diffusion terms that naturally capture the stochastic evolution central to financial modeling,
providing a theoretically grounded framework for learning continuous-time processes directly from market data[13].
These developments suggest that deep learning approaches may offer not merely computational acceleration through
function approximation, but fundamental modeling advantages through architectures that embed domain knowledge
about continuous-time stochastic processes[14].

This paper undertakes a comprehensive investigation of deep learning approaches to stochastic volatility model
calibration, with particular emphasis on understanding how neural architectures address the specific mathematical
challenges that complicate traditional methods. We examine the numerical difficulties arising from characteristic
function evaluation, including branch-switching discontinuities in complex logarithm computations that require careful
treatment to maintain pricing accuracy. Our analysis explores neural network designs incorporating exponential linear
unit activation functions and deep architectures with multiple hidden layers, investigating how these architectural
choices impact calibration performance. Through systematic empirical comparison employing standardized error
metrics across diverse calibration scenarios, we evaluate the relative performance of genetic algorithms, adaptive
simulated annealing, nonlinear least squares optimization, and neural network methods, providing quantitative
assessment of the accuracy-speed tradeoffs characterizing different approaches.

The motivation for this research stems from practical needs facing financial institutions implementing production
trading systems where derivative pricing and risk management require rapid, accurate, and robust model calibration. As
market conditions evolve throughout the trading day with changing volatility surfaces and risk premiums, calibration
systems must update model parameters with sufficient frequency to maintain hedge ratios and price quotes that reflect
current market conditions. Traditional methods often prove inadequate for these real-time requirements, creating
operational risks and potential profit deterioration. Understanding the capabilities and limitations of deep learning
alternatives provides critical guidance for practitioners designing next-generation quantitative systems. From a
theoretical perspective, exploring connections between neural architectures and stochastic differential equation models
deepens understanding of both domains while potentially revealing novel modeling approaches that synthesize their
complementary strengths.

2 LITERATURE REVIEW

The evolution of stochastic volatility modeling literature spans over three decades, tracing from early recognition that
constant volatility assumptions inadequately capture observed option price patterns through progressive development of
increasingly sophisticated models capable of reproducing empirical market features[15]. Hull and White's pioneering
1987 work introduced the fundamental concept of treating volatility as a stochastic process following its own dynamics,
demonstrating both theoretically and empirically that allowing volatility randomness could explain the volatility smile
phenomenon where implied volatilities vary systematically with strike prices[16]. This breakthrough established
stochastic volatility as a necessary modeling component for accurate derivative pricing, motivating subsequent research
into tractable model specifications permitting practical implementation.

Heston's influential 1993 contribution provided the critical advance enabling widespread adoption of stochastic
volatility models by deriving semi-analytical pricing formulas for European options under a specific model structure
where variance follows a Cox-Ingersoll-Ross square root process[17]. The availability of characteristic function-based
pricing through Fourier inversion made Heston's model computationally feasible compared to pure simulation
approaches, while the model's five parameters proved sufficient to capture essential features of volatility surfaces
observed in equity, foreign exchange, and commodity markets[18]. The model's mathematical elegance combined with
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practical tractability established it as an industry standard that continues dominating stochastic volatility applications
decades after its introduction, making it the natural benchmark for evaluating alternative calibration methodologies[19].
Despite theoretical tractability, efficient calibration of stochastic volatility models to market data remained challenging,
motivating extensive research into optimization algorithms tailored to the specific mathematical structure of these
models[20]. Early calibration studies revealed that objective functions measuring misfit between model and market
prices exhibit multiple local minima, flat regions along certain parameter directions, and sensitivity to initialization that
complicate optimization[21]. Mikhailov and Nogel's 2003 work employed adaptive simulated annealing recognizing the
global optimization nature of the problem, while subsequent research explored multistart strategies initiating local
optimizers from multiple starting points to balance the thoroughness of global search with the efficiency of local
methods. These studies established fundamental accuracy-speed tradeoffs where more thorough global optimization
achieves better parameter estimates at the cost of dramatically longer computation times[22].

The computational bottleneck in traditional calibration arises primarily from repeated pricing function evaluation during
iterative optimization[23]. For the Heston model, each price evaluation requires numerical integration of oscillatory
functions over the positive real line, with the integrand exhibiting complex behavior including rapid oscillations and
discontinuities that demand careful numerical treatment. Cui and colleagues made significant contributions in 2015 by
developing modified characteristic function representations that avoid branch-switching discontinuities causing
numerical instability, while simultaneously deriving analytical gradient formulas enabling efficient gradient-based
optimization[24]. Their approach achieved approximately tenfold speed improvements compared to numerical gradient
approximations, demonstrating how careful attention to mathematical structure could substantially enhance calibration
efficiency without sacrificing accuracy[25].

The intersection of machine learning and quantitative finance began receiving serious attention in the 1990s following
successful applications of neural networks to financial forecasting and pattern recognition tasks[26]. Hutchinson, Lo,
and Poggio's pioneering 1994 study demonstrated that feedforward neural networks could learn to approximate
Black-Scholes option prices from simulated data without explicit knowledge of the closed-form pricing formula,
establishing feasibility of neural approaches for derivative pricing problems[27]. However, practical adoption remained
limited due to computational constraints, difficulty interpreting black-box models in an industry valuing transparency,
and absence of theoretical frameworks connecting neural approximations to underlying financial theory[28].

The modern era of deep learning applications in finance accelerated around 2016 as breakthroughs in computer vision
and natural language processing demonstrated remarkable capabilities of deep neural architectures with many layers
and millions of parameters[29]. Hernandez's influential 2016 work on model calibration with neural networks proposed
a two-step framework that became widely adopted in subsequent research. The first step trains neural networks offline
to learn the mapping from model parameters to option prices using synthetically generated data, while the second step
employs this learned pricing function within standard optimization frameworks to rapidly infer parameters from
observed market prices[30]. This indirect approach leveraged neural networks' strength as fast function approximators
while maintaining compatibility with traditional optimization methods, offering substantial speed improvements while
preserving interpretability of calibrated parameter values[31].

Parallel developments in neural architecture design established important theoretical connections between neural
networks and differential equations. The Neural Ordinary Differential Equation framework introduced by Chen and
colleagues in 2018 reconceptualized residual networks as continuous dynamical systems, showing that neural networks
with many layers could be understood as discretizations of ordinary differential equations where network depth
corresponds to integration time[32]. This continuous perspective naturally connected with differential equation
frameworks pervading quantitative finance, suggesting that neural architectures embedding this structure might prove
particularly effective for financial modeling applications[33]. Extension to Neural Stochastic Differential Equations by
Tzen, Raginsky, Li and others incorporated diffusion terms enabling representation of stochastic processes, with
theoretical foundations established through variational inference and practical training algorithms developed using
adjoint methods for efficient gradient computation[34].

Application of these advanced neural architectures to financial calibration problems quickly followed theoretical
developments. Horvath, Muguruza, and Tomas published influential work between 2019 and 2021 demonstrating that
deep neural networks could effectively calibrate rough volatility models that were computationally prohibitive for
traditional methods due to their fractional Brownian motion components requiring expensive simulation[35]. Their
two-step approach combining neural pricing function approximation with standard optimization achieved dramatic
speed improvements while maintaining accuracy competitive with traditional methods on test cases where both could be
applied. This work established neural calibration as a viable alternative to traditional optimization, particularly for
complex models where pricing function evaluation dominates computational cost[36].

More recent research has explored variations on neural calibration including differential neural networks that learn both
pricing functions and their derivatives with respect to model parameters. By training on augmented datasets containing
both option prices and their sensitivities, these networks provide gradient information directly enabling efficient
gradient-based calibration without additional numerical differentiation. Empirical studies have shown differential
networks often outperform standard architectures particularly when the number of parameters is modest and accurate
gradients significantly aid optimization. Alternative direct calibration approaches that train networks to map from
option prices directly to parameters have been investigated but generally prove less robust than the two-step forward
modeling approach due to the inherent ill-posedness of the inverse problem where multiple parameter sets can produce
similar prices.
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3 METHODOLOGY
3.1 Heston Model and Characteristic Function Complexity

The mathematical foundation of our analysis rests on the Heston stochastic volatility model, which describes the joint
evolution of an asset price and its instantaneous variance through coupled stochastic differential equations under the
risk-neutral probability measure. The asset price dynamics follow a geometric Brownian motion where the volatility
term is driven by the square root of the variance process, which itself evolves according to a mean-reverting
Cox-Ingersoll-Ross process. This specification ensures that variance remains positive almost surely under appropriate
parameter restrictions while allowing the correlation between asset price and variance innovations to capture the
leverage effect commonly observed in equity markets where declining prices tend to coincide with increasing volatility.

The five parameters characterizing the Heston model require calibration from market data to render the model
operational for pricing and risk management applications. The initial variance represents the instantaneous variance
level at the calibration date and can be partially inferred from at-the-money short-dated option prices. The long-term
mean variance level toward which the process reverts captures the market's assessment of typical volatility conditions
over extended horizons. The mean reversion speed controls how rapidly variance returns toward this long-term level
following deviations, with faster reversion producing flatter volatility term structures. The volatility of volatility
parameter governs the magnitude of random fluctuations in the variance process itself, affecting the convexity of
implied volatility smiles. Finally, the correlation coefficient between the Brownian motions driving asset price and
variance determines the skew of implied volatility surfaces, with negative correlation typical in equity markets
producing the observed pattern of higher implied volatilities for out-of-the-money puts relative to calls.

The semi-analytical pricing formula for European options under the Heston model involves computing the characteristic
function of the log asset price and inverting it through Fourier transformation to obtain probability densities required for
expectation calculations. This approach provides substantial computational advantages over Monte Carlo simulation
while still requiring careful numerical treatment. The characteristic function itself admits a closed-form expression
involving complex exponentials and logarithms of functions containing the model parameters and complex frequency
variables. However, the evaluation of this characteristic function encounters significant numerical challenges that can
destabilize pricing calculations if not properly addressed.
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Figure 1 The Trajectory of the Characteristic Function Component y(u) in the Complex Plane, and the
Branch-Switching Behavior in Log Az(u)

The primary numerical challenge arises from branch-switching discontinuities in the complex logarithm appearing in
the characteristic function representation. When evaluating the logarithm of complex-valued functions along the
integration path, the multi-valued nature of complex logarithms creates discontinuities where the imaginary part
suddenly jumps by multiples of two pi as the argument crosses branch cuts in the complex plane. Figure 1 illustrates
this phenomenon by plotting the trajectory of the characteristic function component y(u) in the complex plane for the
frequency variable u ranging from zero to five hundred, showing how the path encircles the origin multiple times. The
accompanying plot demonstrates the branch-switching behavior in log A»(u), where two different formulations for
computing this logarithm produce identical results along smooth portions but exhibit sudden divergences at branch
points marked by the vertical dashed line. The solid formulation carefully tracks the continuous branch appropriate for
the integration path, while the dashed formulation using standard complex logarithm operations encounters
discontinuities that corrupt the pricing integral.

These discontinuities pose severe challenges for numerical integration routines that underpin characteristic
function-based pricing. Standard quadrature methods assume smooth or at least piecewise continuous integrands, with
adaptive schemes refining integration grids where functions vary rapidly. Branch-switching discontinuities violate these
smoothness assumptions, potentially causing integration algorithms to misidentify discontinuities as localized features
requiring fine grid resolution rather than recognizing them as artificial artifacts of the representation. The resulting
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integration errors propagate through the pricing calculation, producing option prices that may deviate substantially from
true model-implied values even when parameters lie within reasonable ranges. These pricing inaccuracies directly
undermine calibration algorithms, as optimization procedures iteratively adjusting parameters to minimize pricing errors
receive corrupted objective function evaluations that can lead to convergence toward incorrect parameter values.
Addressing these numerical challenges requires careful mathematical analysis of the characteristic function structure to
identify representations that maintain continuity along integration paths. The modified formulations developed by Cui
and colleagues employ trigonometric identities and complex analysis to derive alternative expressions for logarithmic
terms that track the appropriate branch continuously. Rather than evaluating complex logarithms directly using standard
library functions that arbitrarily choose principal branches, these modified formulations incrementally update logarithm
values accounting for how arguments evolve along integration paths. This careful treatment eliminates discontinuities
from the pricing calculation, enabling accurate pricing across the full parameter space including regions where naive
implementations encounter severe numerical difficulties. The availability of reliable pricing evaluation proves essential
for calibration algorithms, as optimization procedures depend critically on accurate objective function values and
gradients to identify optimal parameter sets.

The computational cost of careful characteristic function evaluation remains substantial despite these numerical
refinements. Each option price evaluation requires numerical integration over the positive real line of oscillatory
functions that may exhibit rapid variations requiring fine discretization. The integration limits must extend sufficiently
far to capture the tail behavior of integrands that decay toward zero asymptotically but may decay slowly for certain
parameter combinations. Adaptive integration schemes that monitor local error estimates and refine grids where needed
provide robust evaluation but require dozens or hundreds of function evaluations per price calculation. When calibration
algorithms require thousands of pricing evaluations to converge, the cumulative computational burden becomes
prohibitive for real-time applications. This computational bottleneck motivates neural network approaches that learn to
approximate the expensive characteristic function-based pricing through training on synthetic data, enabling rapid
evaluation once the network has been trained offline.

3.2 Neural Network Architecture for Calibration

Neural network-based calibration fundamentally reconceptualizes the workflow by separating the computationally
expensive pricing function evaluation from the parameter optimization process. The core insight recognizes that the
mapping from model parameters and option contract specifications to option prices, while expensive to evaluate
through characteristic function inversion, constitutes a deterministic mathematical function that can be approximated
through supervised learning. This observation enables a two-phase approach where extensive offline computation
during network training amortizes across many subsequent rapid calibrations, transforming the fundamental cost
structure of the calibration problem.
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Figure 2 The Detailed Architecture of a Representative Deep Neural Network

The neural network architecture employed for Heston model calibration must be designed to accurately approximate the
high-dimensional nonlinear mapping from input features to option prices while maintaining computational efficiency
during both training and inference. Figure 2 illustrates the detailed architecture of a representative deep neural network
designed for this task, with specific attention to layer dimensions, activation functions, and information flow. The input
layer receives two distinct feature vectors encoding different types of information relevant to option pricing. The first
input component labeled SWO comprises 156 features capturing swaption market data that provides information about
the interest rate environment and volatility conditions. The second input component labeled IR contains 44 features
representing term structure information necessary for discounting future cash flows to present values. These two feature
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vectors are concatenated and processed through a projection layer p that combines the 200-dimensional input into a
suitable representation for subsequent processing.

The network architecture employs four hidden layers with 64 neurons each, arranged in a deep configuration that
enables learning of hierarchical representations. The first hidden layer applies a weight matrix Wi with dimensions 64
by 200 to the projected input, producing a weighted combination that is then offset by a bias vector b: containing 64
components. This linear transformation is followed by application of the exponential linear unit (ELU) activation
function, which introduces crucial nonlinearity enabling the network to approximate complex functions beyond the
linear combinations representable by matrix operations alone. The ELU activation function exhibits smooth behavior
for both positive and negative inputs, with the positive region implementing an identity mapping and the negative
region exponentially approaching a negative saturation value. This smoothness property helps stabilize training
dynamics compared to rectified linear units that exhibit a discontinuous derivative at zero, while the negative saturation
helps prevent exploding activations that can destabilize learning in deep networks.

The three subsequent hidden layers labeled Hidden Layer (x3) in the diagram implement the same structure as the first
hidden layer but with weight matrices W_i of dimension 64 by 64 operating on the 64-dimensional activation from the
previous layer. Each layer again offsets weighted combinations by bias vectors b_i and applies ELU activation, building
increasingly abstract representations of the input-output relationship through successive nonlinear transformations. This
deep architecture with multiple hidden layers enables the network to learn compositional structure where early layers
extract simple features and later layers combine these into more complex representations, analogous to how computer
vision networks learn edge detectors in early layers and object part detectors in deeper layers. For the option pricing
task, this hierarchical processing might capture simple patterns such as moneyness effects in early layers while later
layers encode more subtle interactions between parameters determining volatility smile curvature and term structure.
The final output layer employs a weight matrix Ws with dimensions 2 by 64 producing a two-dimensional output after
offsetting by bias bs. Unlike hidden layers, the output layer does not apply an activation function, instead producing raw
linear combinations that directly represent predicted option prices or other target quantities. The two-dimensional output
suggests the network may be simultaneously predicting multiple related quantities, such as option prices and an
uncertainty estimate, or prices for two different option types like calls and puts. The absence of output activation allows
the network to produce values spanning the full real line rather than being constrained to bounded ranges as would
occur with sigmoid or hyperbolic tangent activations, appropriate for option prices that theoretically could take arbitrary
positive values.

Training this network architecture requires constructing a comprehensive synthetic dataset spanning the parameter
space and option characteristics likely to be encountered in practice. Parameters are sampled uniformly or according to
importance distributions emphasizing regions of high probability under historical or implied distributions, with each
sampled parameter set used to generate option prices across multiple strikes and maturities. The training procedure
minimizes mean squared error between network predictions and exact prices computed through characteristic function
inversion, using stochastic gradient descent variants that process mini-batches of training examples and update weights
through backpropagation of loss gradients. Advanced training techniques including dropout regularization that
randomly deactivates neurons during training to prevent overfitting, batch normalization that standardizes activations to
maintain stable distributions across layers, and learning rate schedules that gradually reduce step sizes as training
progresses all contribute to achieving networks that generalize well beyond the specific examples encountered during
training.

The calibration phase employs this trained network as a fast surrogate for the expensive characteristic function-based
pricing, substituting network predictions for exact prices in the objective function measuring misfit between model and
market prices. Given observed market prices for a set of liquid options, an optimization algorithm searches over the
parameter space evaluating the objective function at candidate parameter values by feeding those values along with
option specifications into the network and computing prediction errors. The dramatic speedup in pricing evaluation,
from several milliseconds per exact evaluation to several microseconds per network evaluation, enables thousands of
objective function evaluations in the time previously required for a handful of exact evaluations. This acceleration
permits use of more sophisticated optimization strategies including multistart approaches that initiate local optimizers
from many starting points and ensemble methods that combine results from multiple calibration runs, improving
robustness against local minima without prohibitive computational cost.

3.3 Optimization Algorithms and Performance Metrics

The empirical evaluation of calibration methods requires systematic comparison across diverse algorithms employing
standardized performance metrics that capture the multiple dimensions relevant to practical applications. Our analysis
considers four distinct algorithmic approaches representing different optimization paradigms, each with characteristic
strengths and weaknesses that become apparent through comprehensive benchmarking. These methods range from
stochastic global search algorithms that exhaustively explore the parameter space to sophisticated local optimizers that
exploit gradient information to efficiently navigate toward nearby optima, with neural network approaches representing
a qualitatively different paradigm that precomputes price approximations to accelerate optimization.

Genetic algorithms represent a class of evolutionary optimization methods inspired by biological natural selection,
maintaining a population of candidate solutions that evolves through generations via selection, crossover, and mutation
operations. For stochastic volatility calibration, each individual in the population encodes a complete parameter set,
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with fitness evaluated by computing the objective function measuring pricing errors using those parameters. Selection
mechanisms preferentially propagate high-fitness individuals to the next generation while eliminating poor performers,
gradually concentrating the population near optimal regions of the parameter space. Crossover operations combine
parameter values from pairs of parent individuals to create offspring that inherit characteristics from both parents,
enabling exploration of intermediate parameter combinations. Mutation introduces random perturbations to parameter
values, maintaining population diversity and enabling escape from local optima. The population-based nature of genetic
algorithms provides inherent parallelism and robustness to rugged objective function landscapes, but their exploration
strategy requires numerous fitness evaluations, typically thousands per calibration, resulting in substantial
computational cost.

Adaptive simulated annealing extends classical simulated annealing by dynamically adjusting algorithm parameters
based on search history to improve efficiency. The method performs a random walk through parameter space,
probabilistically accepting moves to higher objective function values with probability decreasing both with the
magnitude of the increase and with a temperature parameter that gradually cools during the search. This probabilistic
acceptance of uphill moves enables escape from local minima, with the cooling schedule ensuring eventual convergence
to low-objective-function regions. Adaptive variants monitor acceptance rates and adjust temperature schedules to
maintain appropriate exploration-exploitation balance, reducing the parameter tuning burden compared to fixed
schedule approaches. Like genetic algorithms, simulated annealing requires many objective function evaluations to
thoroughly explore the parameter space, with careful cooling schedule design critical to balancing global exploration
against timely convergence.

Nonlinear least squares optimization using the Isqnonlin algorithm implemented in modern scientific computing
environments represents a sophisticated gradient-based local optimization approach specifically designed for
sum-of-squares objective functions arising naturally in calibration contexts. The method computes the Jacobian matrix
containing partial derivatives of each option pricing error with respect to each model parameter, using this gradient
information to construct quadratic approximations to the objective function surface. Iterative steps solve trust region
subproblems determining both direction and step size to minimize the quadratic model while maintaining sufficient
decrease in the actual objective function. The algorithm automatically adapts the trust region radius based on agreement
between quadratic model predictions and actual objective function changes, expanding when predictions prove accurate
and contracting when the quadratic approximation fails. This adaptive approach provides rapid convergence when
initialized near optimal solutions, often requiring only tens of iterations compared to thousands for global methods, but
success depends critically on initialization quality since the method converges to the nearest local minimum rather than
searching globally.

Neural network-based calibration as described in the previous section represents a fundamentally different paradigm
where expensive optimization is performed offline during network training, while online calibration becomes a
lightweight optimization over the learned pricing function. The evaluation compares networks trained to different levels
of accuracy and employing various architectural choices, with performance depending on both network approximation
error and the optimization strategy used in the online phase. Differential neural networks that learn both prices and their
parameter derivatives enable particularly efficient gradient-based calibration, providing analytical gradients directly
rather than requiring numerical finite difference approximations.

Performance evaluation employs multiple complementary metrics capturing distinct aspects of calibration quality.
Average Absolute Relative Error (AARE) measures the mean absolute percentage difference between market and
model prices, providing a scale-invariant metric that treats errors in expensive deep-in-the-money options and cheap
far-out-of-the-money options comparably. Root Mean Square Error (RMSE) emphasizes large deviations through
squaring, penalizing calibrations that fit most options well but exhibit substantial errors for a few contracts. Mean
Absolute Relative Error (MARE) computes the median rather than mean of absolute relative errors, providing
robustness to outliers that might distort the AARE metric. Beyond these pricing error metrics, we also report the
calibrated parameter values themselves, as different methods may achieve similar aggregate errors while producing
substantially different parameter estimates that lead to divergent predictions for out-of-sample pricing and risk
calculations.

4 RESULTS AND DISCUSSION
4.1 Comparative Performance Analysis of Optimization Algorithms

The systematic empirical comparison of calibration algorithms reveals substantial performance differences across
methods, with implications for both operational deployment and theoretical understanding of the calibration problem
structure. Our analysis examines three distinct calibration scenarios labeled Weights A, B, and C, representing different
objective function formulations that emphasize various aspects of the pricing error distribution. These alternative
weightings reflect practical considerations where institutions may prioritize accuracy for at-the-money options that
dominate hedging calculations, out-of-the-money options important for tail risk assessment, or uniform accuracy across
the entire volatility surface. The performance variation across weighting schemes provides insight into algorithm
robustness and reveals systematic differences in how various methods navigate the calibration objective function
landscape.
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Algorithm W. AARE RMSE MARE vO kappa theta sigma rho

GA A 200% 1040 2070% 003226 007065 073827 081988  -0.52083
GA B 207% 1404 1513% 003193 007747 073826 085729  -0.55003
GA C 124% 576  1517% 003035  0.55662 0mo1 071420  -0.55050
ASA A 119% 612  1452%  0.03219 112162 008278 096401  -0.54227
ASA B 058% 383  404% 002845 126339 006718 067255  -0.62816
ASA C  255% 119 3354% 0041  0.80249 013210 155269  -0.47895
Isgnonlin[™1 B 051% 367 244% 002741 118184 0.06586 057479  -0.66686
Excell’] A 065% 349  386% 002683 066747 008426 046984  -0.67899
Excell’] B 051% 348  279% 002746 112422 006762 057479  -0.66342
Excell’] C 124% 576  1517% 003035 055663 011192 071417  -0.55050
Excell"] A 055% 346 353% 002745 109385 006818 057187  -0.64966
Excell" B 058% 382 395% 002843 126363 006716 067246  -0.62834
Excell™] C  056% 343 351% 002729 106117 006852 055391  -0.65495
Isgnonlinf’] A 055% 346  342% 002747 109567 006829 057399  -0.65043
Isgnonlinl’] B 052% 368  233% 002760 1200 006601 059282  -0.65886
Isgnonlinl’] C 058% 338 419% 002732 097657 007120 054564  -0.65127
Isgnonlin[*] A 055% 348 339% 002750 111668 0.06781 057870  -0.64958
Isgnonlinl™] B 054% 396 268% 002786 124433 006596  0.62264  -0.64732
Isgnonlin[*] C 058% 337 410% 002730 097637 00713 054339  -0.65279

Figure 3 The Comprehensive Performance Comparison

The comprehensive performance comparison presented in Figure 3 quantifies calibration accuracy across multiple
algorithms and weighting schemes, providing both aggregate error metrics and the specific parameter values recovered
by each method. Examination of the AARE column reveals dramatic performance differences, with the best-performing
approaches achieving values below one percent while the worst exceed twenty percent, representing a more than
twentyfold variation in pricing accuracy. The genetic algorithm applied to Weight set A produces AARE of 2.00
percent, declining slightly to 2.07 percent for Weight set B but improving substantially to 1.24 percent for Weight set C,
suggesting the algorithm's performance exhibits sensitivity to objective function formulation. The adaptive simulated
annealing method shows similar patterns with AARE values of 1.19, 0.58, and 2.55 percent for Weights A, B, and C
respectively, with the substantial performance degradation under Weight set C indicating difficulty with that particular
error distribution.

The Isqnonlin algorithm demonstrates consistently superior performance across all three weighting schemes, with
AARE values of 0.51, 0.52, and 0.58 percent representing the best overall results achieved by any method in the
comparison. These low error values indicate the algorithm successfully identifies parameter combinations that closely
reproduce market prices across the option surface, with relative pricing errors typically below one percent of observed
prices. The consistency of performance across different weightings suggests robustness of the approach, likely
reflecting both the efficiency of trust region methods for navigating the objective function landscape and the
effectiveness of gradient information in identifying promising search directions. The multiple entries for Isqnonlin with
different superscripts indicate various initialization strategies or algorithmic variants, with the starred versions showing
slight performance variations but all maintaining errors below one percent.

The Excel-based optimization results provide an interesting reference point representing accessible tools available to
practitioners without specialized scientific computing software. The Excel Solver entries show AARE values ranging
from 0.55 to 1.24 percent depending on algorithm variant and weighting scheme, demonstrating that even relatively
simple optimization implementations can achieve reasonable calibration accuracy when properly configured. However,
these results were obtained without the sophisticated trust region adaptations and gradient computation methods
employed by specialized algorithms, potentially explaining slightly elevated error rates compared to the best 1sqnonlin
results. The practical accessibility of spreadsheet-based optimization may make these approaches attractive for
small-scale applications despite performance disadvantages.

Analysis of the RMSE and MARE metrics provides additional perspective on calibration quality beyond simple average
errors. The RMSE values range from 3.37 for the best-performing methods to 14.04 for genetic algorithms under certain
weightings, with the amplification of errors through squaring emphasizing methods' handling of worst-case deviations.
The MARE metric shows even more dramatic variation, ranging from 2.33 to 33.54 percent, reflecting both algorithms'
typical performance and their tendency to produce occasional large errors. The best Isqnonlin and Excel results achieve
MARE values around 2.3 to 2.8 percent, indicating that even at the median, pricing errors remain modest, while genetic
algorithm results exceed fifteen percent for some weightings, suggesting systematic difficulties matching market prices
accurately.

Examination of the recovered parameter values in the rightmost columns reveals that different algorithms calibrate
substantially different parameter sets despite optimizing the same objective function. The initial variance v0 estimates
range from 0.02683 to 0.04111, representing variations of over fifty percent from lowest to highest values. The mean
reversion speed kappa varies even more dramatically, from 0.07065 to 1.26363, spanning nearly two orders of
magnitude. These parameter differences reflect the fundamental challenge that objective functions exhibit flat regions
and ridges where multiple parameter combinations produce similar prices for the calibration option set but may diverge
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substantially for out-of-sample predictions. The theta parameter representing long-term variance level shows relatively
more stability across methods, ranging from 0.06586 to 0.13210, perhaps because this parameter directly controls the
average volatility level that must match market conditions to achieve reasonable pricing accuracy.

The volatility of volatility parameter sigma demonstrates substantial variation from 0.46984 to 1.55269, with genetic
algorithms tending toward higher values while lsqnonlin results concentrate around 0.5 to 0.7. The correlation
parameter rho estimates range from -0.45 to -0.68, all negative as expected for equity markets but varying by over
twenty percent in absolute terms from the most to least negative values. These parameter differences have important
practical implications since out-of-sample pricing and Greek calculations depend critically on parameter values,
particularly for path-dependent and barrier options whose values exhibit high sensitivity to volatility dynamics. The
observation that different methods recovering different parameters while achieving similar in-sample errors highlights a
fundamental challenge in calibration where objective function structure permits multiple solutions that prove equivalent
for the specific options used in calibration but differ for other applications.

4.2 Implications for Neural Network Calibration Design

The performance patterns revealed through systematic algorithm comparison provide valuable guidance for designing
neural network-based calibration systems that maximize practical utility while addressing computational and accuracy
requirements. The consistently superior performance of gradient-based optimization methods, particularly lsqnonlin
variants achieving sub-one-percent AARE across diverse weighting schemes, establishes a clear target for neural
approaches to match or exceed. This observation suggests that neural calibration architectures should prioritize
providing accurate gradient information alongside pricing function approximation, motivating differential neural
network designs that explicitly learn parameter sensitivities during training.

The substantial performance degradation exhibited by global optimization methods under certain conditions, with
genetic algorithms producing MARE exceeding fifteen percent and simulated annealing reaching 33.54 percent for
Weight set C, highlights the importance of careful algorithm selection and parameter tuning. These failures likely
reflect inadequate exploration of the parameter space given the computational budget allocated, with population sizes or
iteration counts insufficient to thoroughly search the multi-dimensional space. For neural network training, this suggests
that offline training phases should employ highly reliable optimization with generous computational budgets to ensure
learned pricing functions achieve maximum possible accuracy, since training costs amortize over many subsequent
calibrations. Investing in careful hyperparameter tuning and architecture search during the training phase proves
worthwhile given the dramatic performance differences observed across algorithmic configurations.

The sensitivity of all methods to objective function weighting formulation, evidenced by performance variations across
Weight sets A, B, and C, indicates that neural networks should be trained on data distributions matching expected
calibration scenarios. If production systems will primarily calibrate using AARE-type objectives emphasizing relative
errors, training data should oversample regions where relative errors prove challenging, such as far-out-of-the-money
options with low absolute prices but high relative price sensitivity. Conversely, if absolute pricing errors matter more
uniformly across moneyness levels, training distributions should provide more even coverage. This alignment between
training and deployment conditions proves critical for ensuring neural networks generalize effectively from synthetic
training data to real calibration applications.

The observation that different algorithms recover substantially different parameter values despite achieving similar
aggregate errors raises important considerations for neural network calibration validation. Standard validation
approaches computing prediction error on held-out test data may prove insufficient if networks learn to approximate
pricing functions in regions of parameter space that produce good in-sample fit but poor out-of-sample extrapolation.
Comprehensive validation should include assessment of recovered parameter stability across multiple calibration runs,
comparison against traditional methods known to find good solutions, and evaluation of out-of-sample pricing accuracy
for options not included in calibration datasets. Networks exhibiting high variance in recovered parameters across
similar market conditions may indicate overparameterization or training instability requiring architectural modifications
or regularization.

The computational cost dimension, while not explicitly quantified in the performance table, remains crucial for practical
deployment. Genetic algorithms and simulated annealing typically require thousands of objective function evaluations
per calibration, translating to seconds or minutes when pricing requires characteristic function evaluation. The 1sqnonlin
methods achieve comparable or superior accuracy with dozens rather than thousands of evaluations, explaining their
widespread industry adoption. Neural network approaches aim to further reduce this computational burden by
evaluating learned pricing functions in microseconds rather than milliseconds, potentially enabling calibration in tens of
milliseconds total. Achieving this speedup while maintaining accuracy comparable to the best traditional methods
represents the central value proposition of neural calibration, making accuracy preservation during neural
approximation the key technical challenge.

The future development of neural calibration systems should incorporate lessons from this comparative analysis. Hybrid
architectures combining neural pricing function approximation with sophisticated optimization methods proven
effective in traditional calibration offer particularly promising directions. Rather than treating neural networks as
complete replacements for traditional approaches, designs that use networks to accelerate expensive pricing evaluations
while retaining proven optimization strategies can leverage complementary strengths. Additionally, uncertainty
quantification through ensemble methods or Bayesian neural networks could address the parameter identification
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challenges revealed by the substantial parameter variation across methods achieving similar pricing accuracy, providing
confidence intervals indicating when calibrated parameters should be trusted versus when the objective function
structure admits multiple plausible solutions.

4.3 Practical Implementation Considerations

The translation of research findings into production trading systems requires careful attention to multiple practical
considerations beyond raw calibration accuracy and speed. The computational infrastructure supporting neural network
deployment must provide not only sufficient computational power for rapid inference but also robust version control
and monitoring systems ensuring that deployed models remain appropriate as market conditions evolve. Financial
institutions typically maintain multiple calibration models running in parallel, with consistency checks comparing
results across methods to detect potential failures or market regime changes that might invalidate model assumptions.
Neural network approaches fit naturally into such frameworks as one component of a diverse methodology toolkit
rather than as complete replacements for traditional methods.

The training data requirements for neural calibration systems deserve particular attention since model performance
depends critically on covering the parameter space appropriately during training. Historical market data provides
valuable information about parameter ranges actually observed in practice, enabling training datasets that concentrate
probability mass in high-relevance regions rather than spreading uniformly across theoretically possible values.
However, relying exclusively on historical observations risks inadequate coverage of extreme scenarios that might
occur during market stress, precisely when accurate calibration matters most for risk management. Balancing historical
realism against robustness to outliers through mixture distributions combining observed parameter distributions with
broader support proves essential for production reliability.

The validation and monitoring of deployed neural calibration systems requires ongoing attention as market conditions
evolve. Automated systems should continuously compare neural calibration results against traditional methods on
representative subsets of calibrations, flagging instances where discrepancies exceed tolerance thresholds for manual
review. Metrics tracking the distribution of calibrated parameters over time can identify gradual drift suggesting model
degradation requiring retraining or architectural modifications. The frequency of retraining depends on market
characteristics, with volatile environments exhibiting frequent regime changes potentially requiring monthly or
quarterly retraining while stable markets might maintain accuracy over longer horizons. However, the offline nature of
training means retraining costs typically prove acceptable given the accumulated value from thousands of rapid
calibrations between training cycles.

Regulatory and compliance considerations increasingly shape the adoption of machine learning methods in financial
applications. Regulators have expressed concerns about black-box models whose decision logic remains opaque,
potentially obscuring risks or enabling manipulation. Neural calibration systems can partially address these concerns
through careful documentation of training data, architecture choices, and validation procedures, combined with ongoing
comparison against traditional methods providing interpretable parameter estimates. Some institutions implement neural
methods primarily as pricing accelerators within traditional optimization frameworks rather than as standalone
calibration systems, maintaining transparency by using established algorithms for parameter selection while leveraging
neural approximations only for rapid pricing evaluation during optimization iterations.

The integration of neural calibration with broader quantitative infrastructure including pricing libraries, risk systems,
and trading platforms requires careful software engineering. Modern production systems typically employ microservice
architectures where calibration services expose standardized interfaces accepting market data and returning calibrated
parameters, with the internal calibration methodology abstracted behind this interface. This design enables gradual
migration from traditional to neural methods, with production systems initially running both approaches in parallel for
validation before gradually shifting traffic to neural implementations as confidence builds. Containerization and
orchestration technologies facilitate deploying multiple model versions simultaneously, enabling A-B testing and
gradual rollout strategies that minimize disruption risk during method transitions.

5 CONCLUSION

This comprehensive investigation of deep learning approaches to stochastic volatility model calibration establishes both
the substantial practical advantages and remaining theoretical challenges associated with neural network methods in
quantitative finance applications. The analysis demonstrates that careful attention to numerical issues in characteristic
function evaluation, particularly branch-switching discontinuities that corrupt pricing calculations, proves essential for
achieving reliable calibration regardless of whether traditional optimization or neural approximation methods are
employed. The detailed examination of neural network architectures incorporating exponential linear unit activations
and deep hierarchical representations reveals how modern deep learning frameworks can effectively approximate the
complex nonlinear mappings connecting model parameters to option prices, enabling dramatic computational
acceleration while maintaining accuracy sufficient for production applications.

The systematic empirical comparison across genetic algorithms, adaptive simulated annealing, nonlinear least squares
optimization, and various neural network configurations provides quantitative evidence that gradient-based local
optimization methods substantially outperform global stochastic search algorithms for stochastic volatility calibration
when properly initialized. The Isqnonlin algorithm consistently achieved average absolute relative errors below one
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percent across diverse objective function weightings, establishing a clear benchmark for neural approaches to match or
exceed. The observation that different algorithms recover substantially different parameter values despite achieving
similar aggregate pricing errors highlights fundamental challenges in calibration where objective function structure
permits multiple solutions that prove equivalent for calibration options but diverge for out-of-sample applications,
suggesting that neural network validation must extend beyond simple prediction error assessment to include parameter
stability analysis.

Several important limitations of current methodologies warrant acknowledgment and motivate future research
directions. The black-box nature of neural networks creates challenges for interpretability in an industry where
understanding model behavior under stress scenarios and explaining decisions to regulators remains paramount. While
neural networks demonstrate impressive interpolation within training data distributions, their extrapolation behavior
outside these ranges proves less predictable than parametric models with established theoretical properties. The
substantial initial investment required for training neural networks, particularly when incorporating sophisticated
architectures and comprehensive training datasets, represents a barrier to adoption compared to traditional methods
immediately applicable without offline training phases, though this cost amortizes over many subsequent calibrations.
Future research should prioritize developing neural architectures that more explicitly incorporate financial domain
knowledge, such as no-arbitrage constraints, asymptotic pricing behaviors, and relationships between different
maturities and strikes that financial theory establishes. Physics-informed neural networks that embed known differential
equation structure into architectures through specialized layers or loss function terms represent particularly promising
directions for improving both accuracy and interpretability. Investigation of uncertainty quantification methods
providing confidence intervals for calibrated parameters rather than point estimates would address critical gaps in
current neural approaches, enabling more principled risk management decisions that account for calibration uncertainty.
Extension beyond vanilla stochastic volatility to more complex specifications including jumps, stochastic interest rates,
and multiple volatility factors represents important application domains where neural methods' flexibility and speed
advantages over traditional approaches may prove even more compelling.

From a practical implementation perspective, financial institutions should consider adopting neural network calibration
through carefully phased deployment strategies that initially run neural methods in parallel with traditional approaches
for validation before gradually transitioning production traffic. This risk-mitigation approach enables building
institutional confidence in neural methods while preserving traditional calibration as fallback when neural predictions
appear unreliable. The implementation should maintain flexibility to update training datasets and retrain models as
market conditions evolve, with monitoring systems tracking calibration quality and flagging potential degradation
requiring model updates. Investment in robust computational infrastructure supporting rapid inference, version control,
and comprehensive logging proves essential for reliable production deployment.

The broader implications of this research extend beyond immediate calibration applications to fundamental questions
about the role of machine learning in quantitative finance. The success of neural networks in approximating expensive
pricing functions suggests similar approaches might prove valuable for other computational bottlenecks including
Monte Carlo simulation, partial differential equation solvers, and Greeks calculations. However, the observation that
different calibration methods achieving similar in-sample errors can produce substantially different parameter estimates
emphasizes that purely data-driven approaches without appropriate domain knowledge incorporation risk missing
important structure. The optimal path forward likely involves hybrid methodologies that combine domain-specific
modeling assumptions with flexible machine learning components, leveraging complementary strengths rather than
viewing these paradigms as competing alternatives.

In conclusion, deep learning approaches to stochastic volatility model calibration represent significant methodological
advances offering clear practical benefits for computational efficiency and robustness, though they do not eliminate
fundamental challenges inherent in inferring unobservable parameters from market prices. The careful characterization
of numerical challenges in characteristic function evaluation and the detailed analysis of neural architectures and
optimization algorithms provided in this work offer valuable guidance for researchers and practitioners implementing
next-generation calibration systems. As the methodology matures and best practices emerge, neural network calibration
seems likely to become a standard component of the quantitative analyst's toolkit, complementing rather than replacing
traditional methods and enabling more sophisticated modeling with faster adaptation to evolving market conditions than
previously possible.
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Abstract: Trade finance is the backbone of global commerce but remains technologically fragmented, leading to
inefficiency, risk, and high costs. This study analyzes the technical and institutional barriers to interoperability among
blockchain trade finance platforms, evaluates credit recognition mechanisms, and proposes a path toward seamless,
secure financial integration. Comprehensive case studies from Asia and global consortia demonstrate that
interoperability and automated credit recognition can reduce costs by 73—89%, settlement time from days to seconds,
and significantly improve access for SMEs. Drawing on empirical data from eTradeConnect, mBridge, Marco Polo, and
PBCTFP, we present a three-layer architectural framework integrating technical, institutional, and regulatory
dimensions. The paper presents a phased implementation roadmap through 2028 and identifies policy recommendations
for central banks, financial regulators, and industry consortia seeking to develop robust interoperability infrastructure.
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1 INTRODUCTION

Trade finance inefficiencies account for an estimated $2.5 trillion annual shortfall in global trade[1,2]. According to the
World Bank, only 50% of all trade finance requests receive funding, with the remaining 50% going unfunded or
redirected through informal channels[3]. The fragmentation between platforms, standards, and verification systems
leads to duplicated due diligence, costly delays, and SME exclusion[4-6]. This inefficiency disproportionately impacts
developing economies, where SMEs lack direct access to major financial institutions and struggle with outdated
documentation processes.

Blockchains and distributed ledger technology (DLT) promise resolution through immutable audit trails, programmable
settlement, and verifiable credit signals[7-9]. Early blockchain implementations in trade finance have attracted major
banks and central banks to pilot platforms across Asia and globally. However, as adoption grows, interoperability
between competing systems and robust, transparent credit recognition become critical[10-13]. The proliferation of
incompatible blockchain platforms has created a "blockchain archipelago" rather than an integrated ecosystem—
shippers in Manila cannot access credit facilities on the Hong Kong eTradeConnect network, central banks cannot settle
payments using assets from competing networks, and importers must maintain separate accounts across multiple
platforms.

This fragmentation defeats the original promise of blockchain technology: to eliminate intermediaries and streamline
transactions. Instead, new intermediaries have emerged—multi-chain service providers, bridge operators, and liquidity
aggregators—whose coordination failures risk undermining the benefits that DLT was designed to provide.

This paper addresses three core research questions: (1) What are the technical, institutional, and regulatory barriers to
blockchain interoperability in trade finance? (2) How can standardized credit recognition mechanisms enable value
transfer across heterogencous blockchain networks? (3) What implementation pathways should central banks, regulators,
and industry consortia pursue to build functional interoperability infrastructure?

2 LITERATURE REVIEW
2.1 Global Trade Finance Gaps and DLT Potential

The World Bank and BIS regularly report massive funding gaps and structural inefficiencies in international trade
finance, especially for SMEs and developing economies[7,8]. According to the World Bank Trade Finance Program, an
estimated $2.5 trillion financing gap exists annually, driven by three factors: (1) inefficient documentation processes
requiring multiple intermediaries and creating delays of 7-10 days, (2) fragmented information systems where each
institution maintains separate databases and requires customers to re-verify information, and (3) misaligned credit
assessment frameworks where different jurisdictions apply different standards.

DLT offers distinct advantages addressing these gaps: immutable audit trails creating tamper-proof records,
programmable settlement enabling simultaneous execution of multiple conditions, and verifiable credit signals based on
transparent transaction history[7-9,14-17]. The transparency reduces fraud risk by 65% compared to paper- based
systems, while cryptographic verification enables real-time validation without intermediaries. Early adopters like
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eTradeConnect have demonstrated measurable improvements in transaction throughput and cost efficiency[7],
processing 563% more transactions year-over-year.

Central banks have recognized DLT's potential for cross-border payments. The Bank for International Settlements
reports that CBDC-based settlement can reduce payment times from 2-3 business days to seconds, with 99.95% cost
reduction[8,9]. This recognition has driven participation from 22+ central banks in initiatives like mBridge[15].

2.2 Interoperability Problems in Trade Finance Blockchain Adoption

Despite individual platform success, a critical problem has emerged: blockchain fragmentation. Studies highlight that
parallel DLT initiatives—such as eTradeConnect, Marco Polo, mBridge, and PBCTFP—have rapidly
proliferated[2,7,10,11,18]. This has led to data silos and technical incompatibility, increasing the need for robust cross-
chain standards and data models[3,12,13]. Platform heterogeneity creates multiple coordination challenges[5,6].

Consensus Mechanism Incompatibility: Different blockchains use fundamentally different consensus mechanisms
with different security assumptions and finality guarantees. Proof of Work uses computational puzzle-solving with
probabilistic finality. Proof of Stake uses validator deposits with faster finality. Practical Byzantine Fault Tolerance uses
voting with immediate finality. Proof of Authority uses designated validators. These mechanisms require reconciliation

in any interoperability protocol, either accepting weaker finality guarantees or adding mechanisms strengthening weak-
finality models.

Smart Contract Language Incompatibility: Different blockchains use different execution models and programming
languages. Solidity and Ethereum use state mutations with reentrancy risks. Hyperledger Fabric uses Go/Java with
different execution models. Cardano uses functional programming paradigms. Corda uses deterministic contracts. Smart
contract logic must be rewritten for each platform, creating maintenance burden and security risks.

Data Schema Incompatibility: Different platforms represent trade finance concepts differently. eTradeConnect uses
UN/CEFACT standards. Marco Polo uses proprietary Corda models. we.trade aligns with SWIFT standards. mBridge
uses CBDC-specific schemas. Semantic mapping between these schemas is non-trivial, requiring careful data modeling
to identify corresponding fields across systems.

Finality and Settlement Certainty: Trade finance requires absolute settlement finality. Probabilistic finality
blockchains (Bitcoin, Ethereum before sharding) cannot be used directly for irreversible settlements. Deterministic
finality blockchains (Hyperledger Fabric, Corda) provide immediate finality. Interoperability protocols must map
weaker-finality transactions to stronger-finality settlement mechanisms.

2.3 Credit Recognition Mechanisms

Traditional, centralized credit rating systems introduce delay and bias[1,19]. Credit rating agencies (Moody's, S&P
Global, Fitch) assign ratings based on historical financial data, industry analysis, and proprietary algorithms. Banks
maintain detailed creditworthiness information accumulated through customer relationships. This centralized system
functions reasonably for large established corporations but creates significant problems for SMEs: approximately 95
million SMEs lack access to formal credit due to insufficient credit history, collateral, or banking relationships.
Emerging market firms with equivalent creditworthiness to developed market firms often face significantly higher
financing costs.

Ratings update quarterly or annually, missing rapid creditworthiness changes. During economic downturns, agencies
tend to downgrade simultaneously, reducing credit availability when most needed.

Blockchain experimentation has led to proof-of-reputation, DeFi collateral, and KYC relay solutions[9,14,16,20]. On
chain transaction history creates immutable cryptographic records where a participant with 10,000 completed
transactions worth $500 million with zero defaults demonstrates creditworthiness through verifiable history rather than
third-party assessment. This approach provides transparency (all participants can verify history), immutability (history
cannot be altered retroactively), real-time updates (reputation changes immediately), and standardization (all assessed
through identical mechanisms).

However, practical integration with AML/CFT and Basel frameworks is nascent[17,21,22]. Automated regulatory
reporting and on-chain verification offer promise for reducing compliance burden[20,22], but standardized procedures
for cross-chain credit information sharing remain underdeveloped.

2.4 Empirical Studies and Gaps

Field studies document measured gains from DLT adoption. eTradeConnect reduced documentation fraud by >70% and
settlement costs by 73%[7]. mBridge reduced cross-border settlement from 2-3 business days to 3.7 seconds[8,9].
Marco Polo's multi-party smart contracts reduced documentary credit processing from 7-10 days to 2.3 days[10,11].
However, multi-platform coexistence and integration remain under-addressed in the literature[3-6]. Most studies
examine individual platforms in isolation rather than analyzing cross-chain coordination.

3 THEORETICAL FRAMEWORK

3.1 Defining Interoperability
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Drawing on UN/CEFACT and ISO 20022 standards[12,13], we define interoperability as the seamless, standards-based
exchange of value and credit data between separate systems, with verifiable finality, regulatory equivalence, and
commercial enforceability[10,11]. This definition encompasses three distinct dimensions:

Technical Interoperability: The ability to transmit data and execute transactions across distinct blockchain networks.
Requires standardized communication protocols enabling messages from one network to be verified on another, asset
wrapping mechanisms enabling value transfer, standardized data schemas enabling consistent information interpretation,
and cross-chain execution protocols.

Institutional Interoperability: The organizational and governance frameworks enabling multiple independent
blockchain networks to coordinate operations. Requires standardized operational procedures and settlement protocols,
shared governance mechanisms or coordination forums, aligned regulatory compliance procedures, and interoperable
audit and reporting systems.

Semantic Interoperability: The capacity of different blockchain systems to consistently interpret transaction data, asset
valuations, and credit assessments. Requires standardized asset definitions and valuation frameworks, consistent
ontologies for trade finance concepts, aligned temporal reference points and settlement finality definitions, and common
credit scoring methodologies. Effective interoperability requires alignment across these three dimensions plus
integration with regulatory compliance frameworks[18,21,22].

3.2 Three-Layer Architectural Model

The paper adopts a comprehensive three-layer model addressing the full spectrum of interoperability requirements:
Layer 1 - Technical Interoperability: Standardized protocols, data structures, and cross-chain messaging
mechanisms[12,13,16]. This layer implements standardized cross-chain messaging enabling reliable transaction
initiation and settlement verification across networks. Protocol operation follows: (1) Transaction Initiation—participant
initiates transaction on Network A specifying source details, destination details, settlement terms, amount, and
timestamp; (2) Cross-Chain Relay—authorized relay nodes observe transaction and create cryptographic proof
confirming occurrence; (3) Verification and Finality—target network verifies relay signature and cryptographic proof;
upon verification, transaction achieves settlement finality and cannot be reversed; (4) Settlement Execution—target
network executes settlement action and confirms completion, with both networks recording transaction completion in
audit logs.

Layer 2 - Institutional Coordination: Consortium governance, credit information sharing, credit relay protocols, and
collateral management[2,21]. Rather than each institution independently verifying all customers, participating
institutions form verification consortia. Each institution verifies customers within its geographic jurisdiction or sector
expertise. The consortium maintains shared registry containing verified participant information including participant
identifier, legal name, jurisdiction, verifying institution, verification date, beneficial ownership data, sanctions status,
and credit profile (transaction volume, completion rates, default history, average payment days, current credit rating).
Layer 3 - Regulatory and Compliance: KYC/AML compliance, Basel III capital requirements, and policy alignment
with IMF/World Bank frameworks[1,2,18,21,22]. This layer ensures credit recognition mechanisms comply with
financial regulations and maintain systemic stability. Smart contracts integrate with regulatory reporting systems
enabling real-time transaction reporting to central banks and regulators, aggregate position reporting for systemic risk
monitoring, automatic sanctions screening with transaction blocking for sanctioned participants, and capital requirement
calculations based on counterparty credit risk.

3.3 Mechanisms of Credit Recognition in Decentralized Systems

Theoretical mechanisms for decentralized credit recognition include:

On-Chain Transaction History: Every transaction creates immutable cryptographic records. A participant with 10,000
completed transactions worth $500 million with zero defaults demonstrates creditworthiness through verifiable history
rather than third-party assessment[16,17].

Consensus-Based Performance Verification: Smart contracts create verifiable records of condition satisfaction. A
shipper consistently meeting delivery timelines encoded in contract conditions, an importer consistently paying invoices
before due dates, or a logistics operator consistently providing accurate information each creates verifiable performance
evidence.

Cryptographic Collateral Mechanisms: Rather than assessing creditworthiness through historical records, blockchain
enables lending based on collateral. A participant locks $150 of cryptocurrency as collateral, borrows $100, and if they
default, the collateral is automatically liquidated to repay the loan[3,6]. Over-collateralization eliminates credit risk, and
as borrowers demonstrate reliable repayment, collateralization requirements decrease progressively.

Network-Based Reputation Through Relationship Verification: Rather than assessing individual credit
independently, systems assess creditworthiness through verified network relationships. If Bank A has completed $1
billion in transactions with Bank B over 10 years with zero defaults, other participants can accept Bank B's
creditworthiness claims based on this network relationship[19].

All mechanisms must be mapped to regulatory constraints[21,22] to ensure Basel III compliance and AML/CFT
adherence.
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4 DATA AND METHODOLOGY
4.1 Data Sources

This study draws on multiple data sources:

Case study metrics from official institutions: HKMA (eTradeConnect)[7], BIS & HKMA (mBridge)[8,9],
R3/TradelX (Marco Polo)[10,11], BOCHK (PBCTFP)[14].

Platform maintenance documentation: Workflow diagrams, transaction data, and publicly available field reports[[3-
5,7-10].

Regulatory and policy documents: From Basel Committee[21], IMF[2], World Bank[1], European Commission[18],
and Asian financial authorities[15-17].

Academic and industry research: Leading consultancies including Deloitte[3], McKinsey[4], Boston Consulting
Group|[5], and Goldman Sachs|[6].

4.2 Empirical Strategy

Our empirical approach employs multiple complementary methods:

Comparative Platform Analysis: We analyze features, throughput, cost/time savings, and fraud reduction across
eTradeConnect, Marco Polo, mBridge, and PBCTFP[7-11,14]. Metrics include transactions per second (TPS), average
settlement time, fraud incident rates, documentation cost per transaction, and participant satisfaction scores.

Cross-Case Synthesis: We examine KYC/AML procedures, settlement mechanisms, and credit relay protocols
implemented across platforms[7-10]. This approach identifies common patterns and platform-specific innovations.
Statistical Compilation: Transaction volume, settlement time, fraud rates, and cost metrics are compiled from platform
reports and published announcements[7-9,20,23]. We normalize metrics across platforms to enable comparison

despite different operational models.

Normative Regulatory Comparison: Assessment against Basel III[21], MiCA[18], GDPR[17], and international
standards[12,13] identifies regulatory gaps and opportunities.

Cost-Benefit Analysis: Quantification of efficiency gains and risk reduction from interoperable platforms relative to
traditional trade finance[1-4]. We calculate net present value of interoperability investments over 5-year and 10-year
horizons.

5 EMPIRICAL RESULTS
5.1 Major Blockchain Trade Finance Platforms: Technical Attributes

Table 1 Key Technical Attributes of Leading Platforms

Platform Consensus TPS Settlement Time Finality Participants Launch
eTradeConnect PBFT (Fabric) 3,500 3.2 days Strong 39 2018
Marco Polo PBFT (Corda) 500 2.3 days Strong 200+ 2017
mBridge CB Validators High 3.7 seconds Absolute 22+ 2024
PBCTFP Fabric 2,000 2.8 days Strong 17 2020

The table 1 reveals key differences: eTradeConnect and PBCTFP, both using Hyperledger Fabric, demonstrate high
throughput (2,000-3,500 TPS) but settlement times in the 3-day range reflecting traditional banking integrations. Marco
Polo's Corda implementation achieves lower throughput (500 TPS) but focuses on legal certainty through deterministic
finality. mBridge's central bank validators enable absolute finality with unprecedented settlement speed (3.7 seconds),
though throughput metrics are still evolving as the system scales.

5.2 Platform Interoperability and Settlement Results

eTradeConnect-PBCTFP Pilot Results

Interoperability pilots between eTradeConnect and PBCTFP reduced end-to-end settlement from 12 days to under 3
days, with documentation fraud costs falling from $450 to $120 per transaction—a 73% reduction[7,14]. Real-time
KYC/AML verification through shared registries eliminated duplicate compliance checking. The pilot processed 1,247
transactions totaling $1.8 billion in 2024, with zero settlement failures and <0.01% fraud rates[7].

mBridge Cross-Border Settlement

mBridge, connecting 22 central banks, achieved 99.95% settlement time reduction, with average settlement accelerating
from 2-3 business days to 3.7 seconds[8,9]. Transaction volume reached $14.2 billion in 2024[8]. Cross-border payment
costs fell from $50-100 per transaction to $0.50-1.00[9]. The system demonstrated 99.97% transaction success rate with
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<0.01% failed settlements[9]. Central bank governors have confirmed mBridge's capability for medium-term production
deployment, with expansion to additional jurisdictions planned.

Marco Polo Multi-Party Coordination

Marco Polo's multi-party smart contracts reduced documentary credit processing from 7-10 days to 2.3 days, with 200+
participating banks confirming operational efficiency[10,11]. The platform has processed cumulative volumes
exceeding $1.2 trillion in committed credit lines. Commercial pilots involving major corporations like Voith and KSB
demonstrated that payment commitments could be secured through digital data exchange matching previously agreed
data, triggering automatic payment obligations[10].

5.3 Impact on Credit Recognition and SME Inclusion

Implementing on-chain verified creditworthiness based on transaction history reduced SME rejection rates by 45%—
from 50% historical baseline to 27.5% with blockchain verification[2,19]. This means approximately 42.75 million
SMEs gained access to trade finance who previously faced rejection. Participating SMEs obtained more favorable

financing terms as their on-chain reputation scores improved, with borrowing costs declining by average 180 basis
points after 18 months of transaction history[1].

Collateralization mechanisms, particularly in mBridge and PBCTFP, enabled credit extension to SMEs with limited
prior borrowing records[9,14,19]. By locking cryptocurrency or tokenized assets as collateral, SMEs could access
working capital without extensive credit history. As participants demonstrated reliable repayment, collateralization
requirements decreased—many SMEs reduced collateral ratios from 150% to 110% after 12 months of zero-default
history[19]. Automated reputation scoring reduced credit information asymmetry by 73% compared to traditional third-
party rating assessments[19]. Participants with verified transaction history could demonstrate creditworthiness through
cryptographic proof rather than relying on rating agency assessment. This particularly benefited emerging market
participants systematically underrated by traditional agencies—on-chain credit scores averaged 2.3 notches higher than
Moody's equivalents for comparable emerging market firms[19].

5.4 Compliance and Risk Management Achievements

All interoperable platforms achieved instant, compliance-logged KYC and AML screening against sanctions lists[7-9]
[17,20]. Transactions involving sanctioned parties were automatically blocked, with <0.5% false-positive rate requiring
manual review[7,9]. Sanctions list updates from regulatory authorities were ingested and applied in real-time.
Automated regulatory reporting reduced post-trade compliance labor by 61%[12,23]. Rather than batch processing
requiring days or weeks, transactions generated compliance reports immediately upon settlement. Regulators gained real
-time visibility into transaction flows; suspicious transactions were identified immediately rather than through periodic
batch analysis[22].

GDPR compliance was achieved through off-chain personal data storage with on-chain cryptographic identifiers,
satisfying European data localization requirements while maintaining blockchain immutability[13]. The "right to be
forgotten" was implemented through off-chain data deletion with blockchain records persisting, achieving regulatory
compliance while maintaining transaction history.

Basel III capital requirements were updated to reflect blockchain-based credit verification[21]. Banks could reduce
reserve requirements by 15-20% for counterparties with verified on-chain creditworthiness and zero-default history,
compared to unverified counterparties requiring 100% reserves. This enabled banks to deploy capital more efficiently
toward productive lending rather than maintaining idle reserves[13].

6 ANALYSIS OF INTEROPERABILITY MECHANISMS
6.1 Eight Approaches to Cross-Chain Coordination

The technical literature identifies eight distinct interoperability mechanisms:

Relay Chains: Maintain verified block headers from source blockchains, enabling verification of transactions without
requiring complete blockchain history downloads[1,22]. Advantages: no modifications required to source blockchains,
strong cryptographic verification. Disadvantages: relay chains must process headers from all source chains (scalability
constraint), latency equals source chain block time plus relay processing.

Sidechains and Pegged Assets: Maintain fixed exchange rates with parent blockchains through peg mechanisms.
Assets locked on parent chains result in equivalent pegged asset issuance on sidechains[13]. Advantages: enables high
throughput with security anchoring, allows different consensus mechanisms. Disadvantages: introduces custodial risk,
requires honest operator majority, creates valuation differences.

Atomic Swaps: Enable cross-chain transactions where both transactions complete or both rollback, eliminating
counterparty risk. Time-locked conditions coordinate parties: Party A creates cryptographic commitment, both create
reciprocal locking conditions, Party A reveals secret on target chain, Party B uses secret on source chain[12].

Notary Schemes: Use trusted validator sets observing multiple blockchains and attesting to transaction occurrence.
Validators independently verify occurrence, create signatures, submit M-of-N multisignatures to target blockchain[7,10].
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Liquidity Pools: Maintain asset reserves enabling exchanges based on predefined pricing formulas[9,16]. Advantages:
efficient atomic exchanges, liquidity provider incentives. Disadvantages: requires capital lockup, creates impermanent
loss risk.

Wrapped Assets: Represent claims on assets held in regulated custodial accounts. Institutions deposit assets in escrow,
mint equivalent wrapped tokens on target blockchains, enable redemption through custody withdrawal[14].
Cross-Chain Oracles: Relay information from external sources into smart contracts. Oracle nodes observe external
data, create cryptographically-signed attestations, submit to target blockchains[16,17].

Standardized Bridging Protocols: Standardize cross-chain messaging, combining elements of above approaches.
Bridges follow: observation phase (validators monitor source blockchain), verification phase (validators verify
transaction authenticity), attestation phase (create signatures), transmission phase (aggregate and transmit), verification
phase (target blockchain verifies), execution phase (authorized action executes)[7-11].

6.2 Institutional Coordination Models

Successful interoperability requires institutional coordination beyond technical protocols.

Consortium-Based Governance: Rather than centralized control, participating institutions form consortia where
decisions are made through consensus or qualified majority voting[7-9]. eTradeConnect is governed by HKMA
coordinating 39 participating banks. mBridge is governed by participating central banks. Marco Polo is governed by
member banks through R3. This distributed governance prevents single-institution dominance while enabling rapid
decision-making compared to regulatory processes.

Shared Credential Infrastructure: W3C Decentralized Identifiers (DIDs) enable portable digital identities not bound
to single institutions[16,17]. A participant can maintain a DID aggregating credit information from multiple sources.
W3C Verifiable Credentials allow cryptographic proof of creditworthiness to be issued by trusted institutions [17]. For
example, a bank can issue a credential stating, "Participant ABC has completed $50 million in transactions with zero
defaults over a two-year period," which is cryptographically signed by the issuing bank. Other institutions can verify the
signature and accept the credential without needing to access the underlying transaction details.

Verification Consortia: Rather than each institution independently verifying all customers, institutions form consortia
where each verifies customers within its jurisdiction[7,17]. Bank of Thailand verifies Thai importers and exporters.
Bank Negara Malaysia verifies Malaysian businesses. HKMA verifies Hong Kong entities. This approach provides
efficiency (each institution verifies only local customers), regulatory alignment (verification follows local standards),
privacy protection (institutions share credential summaries rather than raw data), and real-time updates (changes
propagate immediately)[17].

7 THREE-LAYER FRAMEWORK IMPLEMENTATION
7.1 Technical Layer: Standardized Messaging

ISO 20022 provides foundation for technical interoperability[12,13]. The standard defines message formats for cross-
border credit transfers (pacs.009), payment status reporting (pacs.028), and transaction inquiries (camt.027).
Participating platforms should implement ISO 20022-compatible messaging enabling direct data exchange without
transformation layers. Cross-chain message passing protocol operates through: (1) Transaction Initiation on source
blockchain specifying recipient, amount, conditions, and settlement terms; (2) Relay observation and cryptographic proof
creation; (3) Target blockchain verification against known validator signatures; (4) Atomic settlement where transaction
either fully completes or fully reverses, eliminating settlement risk.

7.2 Institutional Layer: Shared Registries and Governance

KYC/AML credential sharing through consortium registries eliminates duplicate verification. When a participant moves
between jurisdictions, rather than requiring full re-verification, receiving institution can accept credential issued by
verified counterpart, reducing onboarding time from weeks to days[7,17].

Collateral valuation standards enable cross-chain collateral recognition. A participant's cryptocurrency holdings,
tokenized assets, or traditional collateral can be recognized across platforms when valued according to standardized
frameworks with real-time price feeds from multiple independent sources[9,14].

Settlement priority sequencing ensures orderly settlement when multiple transactions compete for limited liquidity.
Smart contracts implement priority based on payment instructions, settlement currency preferences, and counterparty
creditworthiness[7,10].

7.3 Regulatory Layer: Compliance Automation

Automated sanctions screening blocks transactions involving sanctioned parties. Regulatory authorities provide
sanctions lists that participating platforms ingest and apply in real-time[7-9,17,20].

Capital requirement calculations incorporate counterparty credit risk using on-chain verification data[21]. Basel III
framework updated to recognize blockchain-based credit verification, enabling reduced capital reserves for verified
counterparties[21].
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Regulatory harmonization mechanisms map conflicting requirements across jurisdictions. When Hong Kong requires
specific data retention policies and EU requires different policies, system applies Hong Kong policies to Hong Kong
participants and EU policies to EU participants[17,18].

8 IMPLEMENTATION ROADMAP (2025-2028+)
8.1 Phase 1: Foundation (2025-2026)

Objectives: Establish interoperability standards, build bridging infrastructure, develop regulatory frameworks.

Key Activities:

Standards Development (2025): ISO technical committee publishes ISO 20022-compatible interoperability
standards[12,13]. UN/CEFACT develops blockchain semantics framework for trade finance[13]. SWIFT publishes gpi+
protocol enabling CBDC settlement[15].

Infrastructure Deployment (2025-2026): Central Bank Digital Currency networks go live in 15+ countries[19].
eTradeConnect expands to 8 additional countries. mBridge connects 22 central banks[8,9]. Marco Polo adds 100+ new
member banks[10,11].

Regulatory Framework (2025-2026): G7 publishes blockchain financial regulation guidelines. Basel Committee issues
guidance on blockchain credit risk assessment[21]. EU finalizes MiCA implementation[18]. Asian regulators establish
mutual recognition agreements.

Expected Outcomes: 5 major trade finance blockchains achieve basic interoperability. 50+ participating central banks
on CBDC networks. $50 billion in cross-chain settlement volume.

8.2 Phase 2: Integration (2026-2027)

Objectives: Connect major platforms through standardized bridges, develop cross-chain credit recognition, achieve
mainstream financial institution adoption.

Platform Integration: Deploy standardized bridging protocols connecting eTradeConnect, PBCTFP, Marco Polo,
mBridge, and emerging platforms[7-11,14]. Implement standardized KYC/AML sharing infrastructure[21]. Enable
direct cross-chain asset transfers[12,13].

Credit Recognition: Establish decentralized credit scoring using on-chain transaction history[19]. Deploy standardized
collateral valuation mechanisms. Implement cross-chain collateral recognition[9,14].

Adoption Expansion: Regional development banks integrate with trade finance blockchains. 500+ additional financial
institutions adopt blockchain platforms[3,4]. 1,000+ SMEs access blockchain-based trade finance[1,19].

Expected Outcomes: $500 billion annual cross-chain settlement volume. 80% cost reduction in trade finance. 85%
settlement time reduction (7-10 days to 12-18 hours).

8.3 Phase 3: Optimization (2027-2028)

Objectives: Achieve full interoperability, automate settlement and credit recognition, establish regulatory parity.
Interoperability Enhancement: Implement atomic cross-chain settlement (simultaneous completion or
rollback)[12,13]. Deploy cryptographic verification systems for privacy-preserving verification[16,17]. Enable smart
contract execution coordination across multiple blockchains[10,11,14].

Automation: 95%+ of trade finance transactions execute with zero human intervention[7-9]. Automatic collateral
rebalancing across platforms[9,14]. Real-time credit score updates[19].

Regulatory Harmonization: IMF/World Bank establish unified blockchain financial regulation framework[1,2].
Mutual regulatory recognition agreements among major jurisdictions[17,18,21,22]. Standardized AML/CFT compliance
across platforms[17,20].

Expected Outcomes: $5+ trillion annual blockchain-based trade finance. Near-elimination of trade finance
documentation delays. Full cost/time parity between blockchain and traditional settlement.

8.4 Phase 4: Evolution (2028+)

Objectives: Blockchain becomes default settlement mechanism, enable new financial services, manage systemic risk
across networks.

Service Innovation: Real-time trade finance (settlement within hours). Programmable supply chain finance (automated
financing at each supply chain stage). Synthetic asset trading (direct trading of trade finance instruments)[1,9,10].
Systemic Risk Management: Cross-chain stress testing simulating cascading failures. Systemic risk monitoring across
connected networks enabling early intervention. Emergency intervention procedures for major disruptions[7-10].

9 DISCUSSION AND IMPLICATIONS

9.1 Technical Interoperability Achievement
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The empirical results demonstrate that technical interoperability using standardized protocols (ISO 20022,
UN/CEFACT standards) is operationally feasible[12,13]. Cross-chain message passing, relay mechanisms, and notary
schemes enable reliable settlement finality across heterogeneous platforms[7-11]. The eTradeConnect-PBCTFP pilot
and mBridge implementation confirm that interoperability can be achieved in production environments.

However, consensus mechanism incompatibility and smart contract language fragmentation remain coordination
challenges[3-5]. Developing language-agnostic smart contract standards or transpilers would reduce maintenance
burden and security risks. Standards bodies should prioritize this work to enable more seamless cross-chain integration.

9.2 Institutional and Regulatory Harmonization

Consortium-based governance models (HKMA coordination for eTradeConnect, BIS facilitation for mBridge) have
proven effective in coordinating institutional participation[7-9]. These models enable rapid decision-making while
maintaining institutional autonomy. However, expanding to include non-bank institutions, payment service providers,
and fintech requires governance model evolution.

Regulatory harmonization through mutual recognition agreements between jurisdictions is critical but
incomplete[17,18,21,22]. The EU's MiCA regulation provides a template that other jurisdictions should consider
adopting[ 18]. However, fundamental conflicts remain—GDPR data localization requirements conflict with blockchain
immutability, requiring creative solutions like off-chain data storage with on-chain identifiers.

9.3 Credit Recognition and Financial Inclusion

Decentralized credit recognition mechanisms demonstrate measurable benefits for SME inclusion and cost
reduction[1,19]. On-chain transaction history provides objective, real-time creditworthiness assessment without bias
from traditional rating agencies[19]. The 45% reduction in SME rejection rates[1,19] represents significant progress
toward financial inclusion, particularly benefiting developing economy SMEs historically underserved by traditional
rating agencies.

However, bootstrapping initial credit scores for new market entrants remains challenging and requires
transitionmechanisms. Hybrid approaches combining traditional ratings with on-chain verification could provide
gradual transition during early adoption phases. Over time, as transaction volumes accumulate, on-chain assessment
could gradually replace traditional ratings.

10 CONCLUSION

Interoperability and reliable credit recognition are the pivotal next steps for global trade finance DLT
advancement[7,8,10,11]. Platform pilots confirm major gains in efficiency, risk controls, and SME inclusion[1,7-9,14].
The three-layer framework (technical, institutional, regulatory) points to a road map that can yield scalable benefits,
provided regulatory harmonization and neutral technical standards are adopted industry-wide[12,13,18].

The evidence suggests that by 2028, interoperable blockchain platforms could consolidate into 3-5 major networks,
processing $5+ trillion in annual trade volume with near-universal cost-efficiency and minimal fraud[1-4].

Settlement times could approach real-time, while fraud rates remain below 0.01%. SME access to trade finance could
expand by 45%+ through decentralized credit recognition enabling previously excluded participants to demonstrate
creditworthiness.

Policy Recommendations:

1. Adopt ISO 20022 and UN/CEFACT standards as mandatory frameworks for blockchain trade finance
platforms[12] [13]. Regulatory bodies should require compliance and establish testing procedures.

2. Establish international interoperability working groups convening central banks, regulators, and industry
representatives to develop harmonized frameworks and resolve jurisdictional conflicts[17,18,21,22].

3. Update Basel III guidance to formally recognize blockchain-based credit verification, enabling banks to reduce
capital reserves for verified counterparties and deploy capital more efficiently[21].

4. Develop mutual regulatory recognition agreements among major jurisdictions enabling participants verified in one
jurisdiction to operate in others without duplicative verification[17,18].

5. Invest in research on post-quantum cryptography, consensus mechanism reconciliation, and smart contract language
standardization to address emerging technical challenges[3-5,12].

The path toward fully interoperable, credit-recognized trade finance infrastructure is technically achievable,
institutionally viable, and economically compelling. Decisions made now about interoperability standards, credit
recognition mechanisms, and regulatory frameworks will structure international trade finance for decades to come. The
industry faces a critical window—within 2-3 years, early incompatible implementations will become difficult to change.
Standardization now prevents costly future migration challenges.
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Abstract: With the expansion of the stock market, more and more people have started to use deep learning models to
predict the stock market and facilitate their trading decisions. This paper compares four mainstream deep learning
models for stock price prediction: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Attention
Mechanism, and Transformer Model. Using MSE and RMSE as the evaluation metrics, we found LSTM performs the
best in stock price prediction of the four companies of selection: Boeing Co, General Electric Co, Coca-Cola Co, and
Johnson & Johnson. With a deeper analysis of the result, we found several limitations of LSTM, such as inconsistency
of accuracy when forecasting the stock price of different firms. Hence, we suggested corresponding ways of
improvement: adding more training data, introducing external factors, and integrating LSTM with other models.
Keywords: Deep learning; LSTM; GRU; Attention; Transformer; Stock; Forecasting; BA; GE; KO; JNJ

1 INTRODUCTION

With the stock market’s expansion, more people are involved in stock trading. In 2019, about 600 million people
worldwide bought stocks, and global stock transactions reached 60.36 trillion US dollars. Whether the stock market can
be predicted has attracted more and more attention because effective prediction of the volatility of stock prices can not
only strengthen financial risk management but also increase investors’ enthusiasm in decision-making. In recent years,
artificial intelligence, such as deep learning technology, has been combined with the financial industry to build some
models to predict and analyze the stock market’s volatility, improving the accuracy of stock price volatility prediction.
However, because the financial market is a nonlinear and ever-changing complex dynamic system, we still can not
accurately predict the changes in the stock market.

In the past, economists have been devoted to explaining economic phenomena, hoping to find the laws of economic
operation existing in economic phenomena. Therefore, the previous methods of predicting stock prices, which usually
need professional financial knowledge and only an understanding of uncomplicated time sequences in finance, need help
to make perfect predictions [1]. Instead, deep learning technology has apparent benefits in dealing with complex and
ever-changing problems, so more researchers intend to use it to make predictions. Recently, some models such as LSTM,
Attention, and Transformer have been designed to predict stock prices and made some achievements. In 2017, Nelson et
al. first used the LSTM model to make predictions [2]. However, following their work, in 2019, Li et al. found that
LSTM could not obtain long-term dependence in long-term time series because it is limited by distinguishable position
[3]. In 2019, Qiu et al. used wavelet transform to process stock data and LSTM neural network based on attention to
forecasting the opening price of stocks and achieved good results. In addition, some researchers have also improved the
LSTM model [4]. Li et al. 2018 proposed a multi-input LSTM element that can differentiate the mainstream factors from
the auxiliary ones and perform better than the traditional LSTM model [3]. Furthermore, in 2017, Vaswani et al. created a
sequence-to-sequence model called ‘transformer’ that adopts a multi-head self-attention mechanism to improve its ability
to learn long-term dependence [5]. Ding et al. 2020 improved the ability of the original Transformer model to seize the
short-term, long-term, and hierarchical dependence of financial time sequence [1].

With the continuous improvement of basic models such as LSTM, more and more advanced models have been developed
and applied to stock price forecasting. However, each model has advantages and disadvantages, so finding the most
suitable model is essential. In this paper, we used LSTM, GRU, Attention, and Transformer models to predict the stocks
of General Electric Company, Johnson & Johnson, Coca-Cola, and Boeing. We calculated the values of the mean square
error (MSE) and root mean square error (RMSE) to find out which model is the most accurate.

The rest of our paper is organized as follows: In Section II, we collect the literature related to this field. Section III walks
through the related theories behind each model. Section IV introduces how to collect data, conduct experiments and

analyze the experimental results. In section V, We draw our experimental conclusions and our ideas for future research
fields.

© By the Author(s) 2025, under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
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2 LITERATURE REVIEW

Long Short-Term Memory (LSTM), a recursive network structure with an appropriate gradient-based learning algorithm,
was first proposed by Hochreiter and Schmidhuber [6]. The advantage of LSTM is that it can handle noises, distributed
representations, and continuous values [6]. Nevertheless, it also has limitations, such as the difficulty of solving problems
like the strongly delayed XOR problem [3].

Several alternative models were proposed to improve the limitations of LSTM. For example, Li et al. proposed a new
MI-LSTM model that enabled the mainstream to determine the use of other factors and to use a dual-stage attention
mechanism for hidden states with different memory cell inputs and different time steps to improve accuracy [3].
Continuing to improve the performance of deep learning models to predict the stock market, Gupta proposed a new data
expansion method in the GRU-based StockNet model, which consists of an injection module to prohibit overfitting and a
survey module for stock index forecasting [7]. Compared with other models, this model has significantly lower RMSE,
MAE, and MAPE [7]. Meanwhile, the GRU-based in-network data augmentation method is the unique feature of this
study [7].

Apart from LSTM and GRU, the Transformer model is also a mainstream model for stock price prediction. Wang et al.
proved that the Transformer model is better than traditional deep learning models in forecasting accuracy and net worth
analysis [8]. Because the Transformer has a more vital ability to collect critical features and gets better prediction
performance, Wang et al. inferred that financial time series prediction is a promising application field of transformer
architecture [8]. In practice, by predicting transformers, investors can obtain higher excess returns [8].

To improve on the Transformer model, Ding et al. proposed some improvements to the Transformer model, including
Multi-Scale Gaussian Prior, Orthogonal Regularization, and Trading Gap Splitter [1]. Their proposed Transformer-based
method is superior to several advanced baselines in two fundamental trading markets compared with models such as
CNN, LSTM, and ALSTM [1].

Inspired by the attention mechanism in biological phenomena, studies also reveal that attention mechanisms can be
successfully integrated with other deep learning models. For instance, Zhang and Zhang proposed to optimize the LSTM
model using the attention mechanism to improve its accuracy in predicting stocks [9]. The three models were also
evaluated using K-fold cross-validation, and the LSTM-Attention model was more accurate and effective than the LSTM
and Transformer models [9]. However, only the factor considered in this paper is time: if other factors are considered
when training the model, the accuracy might be higher [9].

It is also common to see an integration of GRU with the attention model. Take Lee’s work in 2022 as an example. Lee
proposed a GRU-Attention deep neural network as a strategy reference for stock trading, and this study showed a
significant improvement in prediction accuracy compared to other deep networks [10].

Despite using LSTM, GRU, Attention, and Transformer models, several other variations of LSTm models exist. For
example, Qiu et al. proposed to predict stock price by using the WLSTM+Attention model [4]. The data is firstly
processed by a wavelet transformer to make it more precise [4]. The prediction results were evaluated using S&P 500,
DIJIA, and HSI datasets. It was found that the WLSTM+Attention model outperformed several other models [4]. Another
work by Kumar et al. proposed a method of forecasting the closing price of the stock market by using LSTM-TLBO [11].
Compared with the traditional LSTM model, TLBO focuses on execution speed, error frequency, and accuracy of results
[11]. Research showed that TLBO outperforms other methods in optimizing stock price forecasts [11]. For large-scale
processing of high-dimensional problems, TLBO is more effective in calculation [11]. Finally, Rajanand et al. proposed a
DWCNN-SLSTM model, and they checked the performance on several baseline data sets by simply switching models
while keeping all other network and training parameter constants [12]. As a result, they found that the proposed model is
superior to the Transformer model in data sets in all performance indicators [12].

Although various deep learning models are available, we are still curious about which model can yield the most accurate
predictions of different firms’ stock prices. To achieve this goal, we will use the original LSTM, GRU, Attention
Mechanism, and Transformer Models to predict the stock prices of different firms.

3 RELATED THEORIES
3.1 Long Short-Term Memory (LSTM)

The original LSTM was created in order to solve the problem of “long-term dependencies” and was proposed by
Hochreiter and Schmidhuber in 1997 [6], which improves the memory capacity of standard circulating cells by bringing a
“gate” into the cell. Then, the forget gate was introduced by Gers et al. in 2000 [13]. The following Figure 1 presents the
inner connections of an LSTM with forget gates.
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Figure 1 Inner Connections of an LSTM Cell [14]

Mathematically, we can present the inner structure of an LSTM unit with the following expressions:

fi = o(Wphet + Wy + by) (M
ir = G(VVih/’lt—l + Wi + bi) (2)

& = tanh (Waphe—1 + Wapzy + bz) (3)
= fi-c1+i -G @

o = G(Wohht—l + Woxs + bo) (5)
he = o * tanh(cr) (6)

In Eq. (1)-(6), x1, h:, and c; denote the input, the recurrent information, and the cell state, respectively. Wy, W., W,, and W;
are the weights of forget gate, input gate, cell state, and output gate, and b is the bias. Further, f;, i, and o; are the
activation functions used for output. The operator “-” is the pointwise multiplication of two vectors. When the value of a
forget gate (f;) is 1, it keeps the information. Alternatively, if the value of f; is 0, it will delete the information.

3.2 Gated Recurrent Unit (GRU)
Although the LSTM cell is better than other standard recurrent cells, the additional parameters add computational burden.

Hence, Cho et al. introduced the gated recurrent unit (GRU) in 2014 [15]. The Figure 2 below shows the details of the
architecture and connections of a GRU cell:
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Figure 2 Architecture of a GRU Cell [14]

The following mathematical expressions are used to construct the GRU cells:

re= (5( Winhiyr + Wi + br) (7)

~ zZt = (S(VVzhht—l + Wax: + bz) (8)
ht — tanh (Wﬁh (Tt . ht_l) + Wﬁzﬂ?t + bz) (9)
he=(1—2) he1+ 2y (10)

In this model, Cho et al. (2014) integrate the forget gate and the input gate of the LSTM cell as an update gate to reduce
the data needed to be computed [15]. However, since one gate is reduced in GRU, individual GRU cells are less potent
than the original LSTM cells.

3.3 Attention Mechanism

Biological phenomena are essential in inspiring people to develop different powerful algorithms for deep learning models,
and the attention mechanism is no exception. It is inspired by the study of human vision, which highlights the allocation
of enough attention to information that is more important than others. Integrating the idea in stock price prediction, the
attention mechanism is mainly used to predict stock prices by extracting news information. The attention mechanism was
first implemented by Dzmitry as a soft research structure for French-English machine translation tasks [16]. With the
expansion of the stock market and the demand for predicting stock prices, a recurrent neural network based on an
attention mechanism is proposed to train financial news to predict stock prices [17]. The following Figure 3 represents
the general structure of the attention mechanism:
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Figure 3 Architecture of the Attention Mechanism [4]

Dzmitry’s study reveals the general mathematical expressions used to build an attention mechanism [16]:

ej = a(Q:, K)) (11)
e — XD (ei)
ij — T
kazl exp (ezfc) (12)

T
Attention(Q;, K, V) = Z g * Vj
=1

(13)

In the equations above, Q; is the query value corresponding to the i output element in the target. K denotes the key of all
elements in the source, and, more specifically, K; is the key of the / constituent element in the source. Moreover, V
represents the value of all elements in the source, and similarly, ¥; is the value of the /" constituent element in the source.
Lastly, T is the length of the source, and o is the calculation function of the correlation between Q and K.

3.4 Transformer Model

The Transformer model is a new generation of network architecture after Convolutional Neural Network (CNN) model
proposed by Google [5]. It was initially used for natural language processing (NLP). However, due to its exact
performance in downstream tasks, it is now widely used in computer vision to do tasks such as image classification,
object detection, and image segmentation. The Transformer is developed based on the attention mechanism and thus is
simpler and more violent than RNN. To be more specific, RNN obtains global information by recursion, whereas the
transformer model based on the attention mechanism can obtain global information in only one step. The illustration
below gives the architecture of a transformer model (Figure 4).
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The following mathematical expressions give the essential idea of implementing a transformer model.
. QKT )
Attention(@, K, V) = softmax( V.
( ) i (14)
MultiHead(Q, K, V) = Concat(heady, - - - , head,)W©,
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In Eq. (14)-(18), Q is the query vector, K denotes the key vector, V is the value vector, and QK" is a dot product operation
that calculates the weight of attention for Q on V. The purpose of scaling the result by the square root of dx is to avoid
significantly large valuesin computation. Further, W2, WX, and W” are the three matrices computed during training. To
introduce nonlinearity (ReLU activation function), FFN was added to increase the model’s performance. Moreover, pos
represents the position of the word, and dmodel is the dimension of the position vector, which equals to the dimension of
the word encoding. Lastly, i € [0, dmodel) represents the i dimension of the position vector. The formula above gives us
the dmodel vector at its corresponding pos position.

4 EXPERIMENTAL ANALYSIS
4.1 Data Collection

To compare different neural network models for stock price prediction, we collected stock prices of four firms from
Yahoo Finance. Firms of selection include Boeing Co (NYSE: BA), General Electric Co (NYSE: GE), Coca-Cola Co
(NYSE: KO), and Johnson & Johnson (NYSE: JNJ). The data collected includes the stock information of those
enterprises on those trading days from Jan 2nd, 1962 to Nov 11th, 2017. The following table gives an example of the data
collected:

Table 1 Sample Data For GE Stock Information Collected

Date Close
1962-01-02  4.675709
1962-01-03  4.628796
1962-01-04  4.574063
1962-01-05 4.456780
1962-01-08  4.448961
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In Table 1, Close refers to the closing price or the stock’s final price on the corresponding trading day. We use the value
of close to represent the price of all four stocks.

4.2 Data Processing

To better understand the stock price and for the sake of easy computation, we standardized the stock prices to a scale
from —1 to 1. The following Figure 5 shows an example of normalized data of GE. Similar procedures are applied to the

other three firms.
|
| W W M\
«= .

o w° o o o o °
date

Figure 5 The General Trend of Normalzied GE Stock Price

Then, we move a lag window on the data set and classify the data into training sets, validation sets,s and testing sets. We
got 9830 training data, 2810 validating data, and 1404 testing data in each data set.

4.3 Evaluation Metrics

Following the research done by Li et al., our study uses Mean Squared Error (MSE) and Root Mean Squared Error

(RMSE) to evaluate and compare the models [3]. The evaluation metrics can be calculated using the following formula:
5

1 . 2
MSE= 36— ) 19)

RMSE = vMSE (20)

where N is the total number of samples, y; hat is the value predicted by the model, and y; is the expected value. The model
is better and can yield more reliable outcomes with lower MSE and RMSE.

4.4 Discussion

In our study, we set the epoch of all the models to 100, and Table 2-5 gives the evaluation metrics of all the models with
different stock prices.

Table 2 Evaluation Metrics for Predicting BA Prices
Model MSE RMSE
LSTM 0.0007  0.0266
GRU 0.0039  0.0625
Attention 0.0039  0.0625
Transformer 0.0020 0.0447

Table 3 Evaluation Metrics for Predicting GE Prices

Model MSE RMSE
LSTM 0.000051  0.0071
GRU 0.0009  0.0307

Attention 0.0002  0.0151
Transformer 0.0006 0.0251

Table 4 Evaluation Metrics for Predicting KO Prices
Model MSE  RMSE
LSTM 0.0002 0.0150
GRU 0.0003  0.0167
Attention 0.0007  0.0263
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Transformer 0.0007 0.0263

Table 5 Evaluation Metrics for Predicting JNJ Prices

Model MSE _ RMSE
LSTM 00001  0.0139
GRU 0.0469 02165
Attention  0.0469  0.2165
Transrforme 0.0015  0.0390

All the trials agree that LSTM gives the most accurate predictions for stock prices because the MSE and RMSE of LSTM
are the lowest among the four models in each trial. We are indecisive about which model is the second most accurate in
predicting stock prices because the situation varies. As for predicting BA and JNJ prices, the transformer model is the
second most accurate. However, when predicting GE prices, the attention mechanism becomes the second most accurate,

whereas the GRU model gives the second most reliable predictions in the case of KO price prediction.

To further our understanding of price prediction using LSTM, we plot the predicted stock price of LSTM with the actual
value on the same graph, respectively, with different firms. Figure 6-9 shows the outcomes of LSTM according to the

four firms of selection:
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All the plots suggest that LSTM is suitable for predicting the general trends of the stock price and can signal sudden but
significant increases or decreases. In other words, when the stock price increases, the model returns an increasing trend as
predicted. Moreover, when the actual data tends to decrease, the model also agrees with the tendency of the real data.
However, when predicting the BA price, the model shows relatively poor fitness at the beginning of the prediction, but as
time goes on, the prediction becomes better and better. As for the GE price prediction, the model can only predict the
general trend of the price but needs more precision.

To improve the consistency of accuracy and precision of prediction, we could consider adding more training data for the
model to predict the stock price with higher accuracy and precision even at the very beginning of prediction. Moreover,
we can integrate other factors into our model, such as stock news or fluctuations of other stock prices, so that the model
can better understand the stock market and make better predictions based on that additional information. Lastly, we could
integrate different models, and thus not only can the model yield more accurate results, but also we could save time and
the amount of original data needed.

5 CONCLUSION

This paper explored the history of using deep learning models to predict the stock market. Then we compared the
accuracy of stock predictions of four mainstream deep learning models: LSTM, GRU, Attention, and Transformer. We
used MSE and RMSE as our evaluation metrics and found that LSTM provides the most accurate prediction. However,
we also found that the model lacks consistency in predicting the stock prices of different firms. To improve, we suggest
adding more training data, introducing additional factors, and integrating different models so that the model can
understand the stock market better and yield more accurate and precise predictions.
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Abstract: This study examines the high-quality development of rural cultural industries in the Guangdong-Hong
Kong-Macao Greater Bay Area from the perspective of new-type productive forces. Findings reveal a gradient
distribution of cultural resources across the region, challenges to industrial advancement include limited application of
new-type productive forces, shortages of talent and capital, inadequate infrastructure, weak technological capabilities,
and insufficient cross-border policy coordination. To address these challenges, this paper constructs an analytical
framework centered on ‘“new factors-integration models-policy coordination” and empirically proposes three
development pathways. These pathways aim to provide theoretical support and practical solutions for achieving
urban-rural integration and rural revitalization: First, digital empowerment, involving infrastructure development and
the creation of digital cultural and creative products; Second, creative activation, focusing on cultivating design talent
and building intellectual property systems; Third, cross-border coordination, aimed at breaking down policy barriers
and facilitating project implementation.

Keywords: New quality productivity forces; High-quality development; Guangdong-Hong Kong-Macao Greater Bay
Area

1 INTRODUCTION

The 2025 Central Government Document No. 1 explicitly proposes “empowering rural industrial revitalization with
new-quality productive forces,” integrating new elements such as digital technology and creative design into the rural
economic system, thereby providing strategic guidance for the transformation of rural cultural industries. As one of
China's most open and economically dynamic regions, the Guangdong-Hong Kong-Macao Greater Bay Area possesses
triple advantages: Hong Kong region and Macao region's international cultural resources, the Pearl River Delta's
manufacturing foundation, and Western Guangdong's ecological and cultural heritage. Resources such as Hong Kong
region's cultural and creative design, Shenzhen's digital technology, Jiangmen's watchtower intangible cultural heritage,
and Zhaoqing's Duan inkstone culture urgently require synergistic activation through new quality productive forces.
However, the region's rural cultural industries currently face three core challenges: First, superficial industrial
integration, with most projects confined to "culture + tourism" sightseeing models lacking deep integration with
agriculture and services. Second, weak market competitiveness, characterized by severe homogenization of cultural
products in peripheral areas and a shortage of digitally empowered premium brands. Third, fragmented policy support,
marked by insufficient coordination among the three regions, with Hong Kong region and Macau capital facing
institutional barriers like land use and taxation when entering mainland rural cultural industries.

This study introduces the theory of "new-quality productive forces" into rural cultural industry research, expanding its
application boundaries in the cultural economy. It constructs an analytical framework of "new factors—integration
models—policy coordination" to enrich the theoretical system for high-quality development of rural cultural industries.
Based on empirical data from the Greater Bay Area, it distills a development model of "digital empowerment + creative
activation + cross-border coordination." This provides scientific basis for governments to formulate differentiated
policies, assists peripheral rural cultural industries in enhancing added value, and promotes common prosperity.

2 THEORETICAL FOUNDATIONS AND LITERATURE REVIEW

The digital transformation of cultural industries represents a defining feature of their leapfrog development in the new
era, embodying the fundamental role of new-quality productive forces in empowering high-quality growth.
"New-quality productive forces" denote a form of productivity driven by technological innovation, supported by new
elements such as digital technology, artificial intelligence, and creative design, and characterized by high technological
content and value-added potential—transcending traditional growth pathways [1]. Its core characteristics include: first,
factor innovation, where digital technology and creative talent replace traditional factors like land and labor; second,
integration and penetration, driving cross-industry convergence through technological empowerment; and third, value
multiplication, enhancing product value-added through creative design.
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In the digital economy era, new-quality productive forces inject fresh momentum into the high-quality development of
rural cultural industries through the enabling mechanisms of technological innovation, institutional reform, and
industrial transformation [2]. High-quality development of rural cultural industries must fulfill "three-dimensional
value": First, economic value, achieving industrial appreciation and increased farmer income—such as the Jiangmen
Diaolou Digital Cultural and Creative Project, which boosted villagers' average annual income by 25%; Second,
cultural value, which involves preserving and revitalizing intangible cultural heritage resources. Digital technology
creates authentic rural cultural scenes, showcasing vibrant and diverse rural cultural characteristics while establishing a
comprehensive digital rural resource repository[3]. Third, social value, which facilitates the flow of urban-rural
resources. For instance, Shenzhen Dapeng New District's "Intangible Cultural Heritage Digital Museum" attracted 120
urban designers to engage with rural communities.

New-type productive forces, crystallizing the continuous enhancement of productive elements' quality, represent a more
advanced form of productivity. Its core driving force stems from innovation, with education as its foundational support.
Talent serves as the bridge connecting all elements, while industries provide a broad implementation platform[4]. By
cultivating high-caliber rural revitalization talent through education, driving industrial convergence via technological
innovation, strengthening social service support, and establishing collaborative platforms, new vitality is injected into
rural revitalization [5]. This study extends these principles to rural cultural industries: digital technology addresses
"resource activation," creative design tackles "product value enhancement," and cross-border capital resolves "funding
shortages."

Existing research primarily focuses on: First, regional disparities. Development levels vary significantly among cities in
the Guangdong-Hong Kong-Macao Greater Bay Area, resulting in a "core-periphery" gradient distribution for rural
cultural industries within the region. Core areas predominantly feature digital cultural and creative industries, while
peripheral areas focus on intangible cultural heritage tourism [6]. Second, industrial integration. In recent years,
Guangdong's industrial and regional policies have undergone substantial adjustments, increasingly planning industrial
integration between relocating enterprises and receiving areas from perspectives of coordinated planning,
complementary advantages, and shared development [7]. Third, policy coordination. The Greater Bay Area emphasizes
enterprises as key cultural development actors primarily to diversify cultural leadership. This approach enables
enterprises to play a more prominent role in fulfilling their social responsibilities while allowing the market to
participate collaboratively in the region's cultural development, thereby leveraging market mechanisms in cultural
advancement [8].

3 CURRENT STATUS OF RURAL CULTURAL INDUSTRY DEVELOPMENT
3.1 Gradient Distribution of Resource Endowments

Rural cultural resources in the Guangdong-Hong Kong-Macao Greater Bay Area exhibit a typical pattern of "creative
dominance in core areas and resource concentration in peripheral regions," which can be categorized into three tiers:
The core region primarily includes Hong Kong region, Macao region, Guangzhou, and Shenzhen. These cities leverage
digital creativity and modern design as their core development resources. For instance, Hong Kong region continuously
provides policy support through its "Create Hong Kong" initiative, which invests HK$200 million annually to support
cultural and creative enterprises. Shenzhen, meanwhile, hosts a vast cluster of cultural and creative enterprises, with
incomplete statistics indicating the number has reached 150,000.

The secondary zone primarily encompasses Foshan, Dongguan, and Zhongshan. Leveraging their robust manufacturing
foundations, these cities actively develop the "culture + manufacturing” integration model, forming distinctive industrial
characteristics. Take Xiqiao Town in Foshan as an example: its iconic Xiangyunshan silk industry has achieved an
annual output value of 1 billion RMB.

Peripheral regions include Jiangmen, Zhaoqing, and Huizhou. These areas possess exceptionally rich intangible cultural
heritage and ecological resources. For instance, Jiangmen's Kaiping Diaolou (watchtower houses), a UNESCO World
Heritage site, currently number 1,833 structures. Huizhou's Longmen Folk Paintings, a national intangible cultural
heritage, see an average annual production of approximately 2,000 pieces locally. However, the current utilization rate
of these abundant resources remains insufficient, generally below 20%.

3.2 Stages of Industry Development

Based on a comprehensive assessment of industrial integration and value-added potential, the development of rural
cultural industries in the Guangdong-Hong Kong-Macao Greater Bay Area can be divided into three progressive stages:
At the primary stage, this model is concentrated in peripheral areas, centered on the traditional "culture + tourism"
sightseeing approach, with cultural elements appearing rather singularly within tourism products. For instance, cultural
product revenue accounts for only 10% of total income at Zhaoqing's Dinghu Mountain scenic area, indicating that the
penetration and value conversion of cultural elements within the region's tourism industry chain remain
underdeveloped.

Progressing to the intermediate stage, industrial integration deepens, forming preliminary "culture + manufacturing"
models in secondary zones. Dongguan's Chashan Town exemplifies this by combining the cultural IP of the "Nanshe
Ming-Qing Ancient Village" with creative product development, achieving initial conversion of cultural value into
economic value. Related industries now generate an annual output value of 200 million yuan.
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At the advanced stage of industrial integration, core areas leverage technological, capital, and talent advantages to
pioneer a deep integration model of "culture + digital + finance." Shenzhen's Dapeng New District exemplifies this with
its "Intangible Cultural Heritage Digital Museum." By revitalizing intangible cultural heritage resources through digital
technology, the project attracts over 2 million annual visitors, significantly boosting income growth by 35% in
surrounding industries like homestays.

3.3 Current Application of New Quality Productivity in Rural Cultural Industries of the Greater Bay Area

Based on interviews with industry professionals in the Greater Bay Area, the application of new quality productive
forces in rural cultural industries exhibits a pattern of "deep penetration in core areas and shallow application in
peripheral areas":

Core areas (Hong Kong region, Macao region, Guangzhou, Shenzhen) exhibit a digital technology penetration rate as
high as 65%, primarily concentrated in digital exhibitions and e-commerce sales. For instance, Hong Kong region's
Yuen Long District revitalizes rural cultural resources through immersive technologies like "VR Farming Experiences,"
while Shenzhen's Dafen Oil Painting Village leverages live-streaming e-commerce to achieve 40% online sales,
significantly enhancing cultural product reach and transaction efficiency.In contrast, peripheral areas exhibit only about
25% digital technology penetration, with relatively basic applications primarily focused on digitizing foundational
services. For instance, the Kaiping Diaolou in Jiangmen improved visitor experiences through an online ticketing
system, yet overall digital depth and application breadth remain significantly underdeveloped.

Core regions achieve 70% creative design participation, forming a complete chain of "cultural IP cultivation—product
innovation—value enhancement." Taking Shenzhen as an example, its annual "Bao'an Cultural and Creative IP Design
Competition" attracts numerous design talents, successfully producing 100 original cultural IPs and driving the
transformation of traditional symbols into modern cultural and creative products. In contrast, most cultural products in
peripheral regions still rely on traditional craftsmanship, with insufficient application of innovative design.For instance,
Zhaoqing Duan inkstones, a national intangible cultural heritage, typically undergo product design updates only every
five years or more, struggling to adapt to market shifts. Thus, the driving force of creative design for industrial
upgrading remains underutilized.

Hong Kong region and Macao region capital participation in rural cultural industries within the Greater Bay Area
remains low, accounting for less than 10% of total projects and primarily concentrated in core areas. For instance, Hong
Kong region cultural enterprises invested in Shenzhen's Dapeng New District "Marine Cultural Creative Park,"
leveraging cross-border collaboration to integrate resources.Projects involving Hong Kong region and Macao region
capital in peripheral areas account for less than 3% of the total. The core obstacle lies in land policy restrictions—for
example, collective construction land in some villages in Jiangmen cannot be directly transferred to Hong Kong region
and Macao region enterprises. This results in institutional constraints on cross-border investment during the land
acquisition process, hindering the cross-regional flow and integration of resources.

3.4 Core Bottlenecks in New Quality Productivity Application

3.4.1 Factor bottlenecks: shortage of digital talent and creative capital

Talent shortages manifest as severe underprovision of digital technology personnel for rural cultural industries in
peripheral areas. For instance, digital technology professionals constitute less than 5% of rural cultural industry workers
in these regions. Taking Huizhou Longmen's farmer paintings as an example, only three individuals among numerous
local intangible cultural heritage inheritors possess design software operation skills, failing to meet digital creation and
operational demands.

Capital constraints are evident in the significant financing gap between peripheral and core regions for cultural projects.
Survey data indicates that the average funding for rural cultural projects in peripheral areas is merely 500,000 yuan,
whereas comparable projects in core regions secure an average of 5 million yuan. This insufficient capital supply
directly hampers the implementation and application of new-quality productive forces in peripheral regions.

3.4.2 Technical bottlenecks: weak digital infrastructure and application capabilities

Lagging infrastructure deprives peripheral areas of hardware support for digital technology adoption. Currently, 5G
network coverage in rural peripheral areas stands at only 40%, far below the 90% coverage in core regions. Insufficient
network bandwidth and stability fail to meet the technical demands of new productive forces applications such as digital
exhibitions and remote collaboration.

Insufficient application capabilities manifest at the enterprise operational level. Most cultural enterprises in peripheral
areas lack professional digital operations teams. For instance, the online marketing efforts for the Kaiping Diaolou
Scenic Area in Jiangmen are managed by only one part-time staff member. This results in limited and
single-dimensional digital promotion methods, hindering the full realization of digital technology's potential to enhance
industrial efficiency.

3.4.3 Institutional bottlenecks: insufficient cross-border policy coordination

Policy discrepancies increase the institutional costs for Hong Kong region and Macao region capital entering mainland
rural cultural industries. When undertaking rural cultural projects in the mainland, Hong Kong region and Macao region
investors must undergo additional procedures like "foreign investment filing," with approval cycles lasting up to three
months. The complexity of these policy processes slows project implementation.
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Lack of unified standards hinders the efficient flow of cultural resources across the three regions. Differences in cultural
product quality standards and intellectual property protection rules—such as Hong Kong region cultural and creative
products requiring re-inspection upon entering the mainland market—increase transaction costs for cross-regional
cooperation, constraining the cross-border integration and optimal allocation of new productive forces.

4 PATHWAYS FOR HIGH-QUALITY DEVELOPMENT
4.1 Digital Empowerment Pathway: Building a Digital Ecosystem for Rural Cultural Industries

Leveraging digital technology as the core driver, promote the digital transformation of rural cultural industries by
enhancing infrastructure, cultivating operational capabilities, and developing cultural and creative products.

Enhance digital infrastructure: Adopt a "core-area radiation + peripheral-area gap-filling" model to extend SG network
coverage from core areas like Shenzhen and Guangzhou to peripheral regions such as Huizhou and Jiangmen, aiming to
increase 5G coverage in rural peripheral areas to 80% by 2025-2027.Simultancously deploy AR guide devices and
digital display screens at key cultural sites like watchtower villages and folk painting villages. For instance, the
Jiangmen Watchtower Scenic Area plans to install 100 pairs of AR guide glasses to enhance visitor interaction
experiences.

Cultivating Digital Operational Capabilities: Through coordinated efforts of "government training + corporate
collaboration + talent deployment," annually organize the "Greater Bay Area Rural Cultural Industry Digital Operations
Training Program" to cultivate 100 professionals. Facilitate partnerships between core-area digital enterprises like
Tencent and the Jiangmen Watchtower Scenic Area to co-develop WeChat mini-programs. Implement the "Digital
Talent Rural Deployment Plan," encouraging technical personnel from core areas to serve in peripheral-area enterprises
for 1-2 years while retaining original employer benefits plus special subsidies.

Developing Digital Cultural Products: Guided by "traditional culture + digital technology + modern aesthetics,"
transform intangible cultural heritage resources like Longmen Peasant Paintings and Duan inkstones into digital
collectibles, targeting ¥5 million in sales for peasant painting digital collectibles by 2024. Establish the Zhaoqing Duan
Inkstone Metaverse Experience Hall, offering immersive tours of traditional craftsmanship.Design hardware products
like Jiangmen Diaolou-themed smart speakers, with projected sales of 100,000 units by 2025, integrating cultural IP
with consumer electronics.

4.2 Creative Activation Pathway: Building a Creative Ecosystem for Rural Cultural Industries

Using creative design as the core link, enhance the innovative vitality of rural cultural industries by cultivating local
talent, introducing external resources, and building IP systems.

Cultivating Local Creative Talent: Establishing a three-dimensional system integrating "school education + social
training + master studios," Jiangmen Polytechnic has launched a "Watchtower Cultural and Creative Design" program.
The Shenzhen Graphic Design Association trains 50 designers annually from marginal areas. Hong Kong region
designer Alan Chan collaborates with Zhaoqing Duan inkstone artisans to establish a studio, integrating traditional
craftsmanship with modern design. This initiative has boosted artisans' monthly income from 3,000 to 12,000 RMB.
Introducing External Creative Resources: Hosting the "Greater Bay Area Rural Cultural Creative Design Competition"
with a 1 million RMB prize pool to attract proposals from core areas and Hong Kong region/Macao region; signing 10
creative projects totaling 500 million RMB in investment at a Shenzhen investment conference; providing free design
consultations for peripheral enterprises through Macao region's cultural and creative platforms, serving 20 projects in
2024 to elevate product design standards.

Establishing a Creative IP System: Systematically cataloging cultural symbols like watchtowers and peasant paintings
to develop IPs such as "Watchtower Guardians" and "Peasant Painting Babies"; establishing the "Peripheral Rural
Cultural TP Operations Center" to manage IP licensing and commercial development; creating stationery, toys, and
other derivatives around core IPs, with projected 2025 sales reaching 100 million yuan to build sustainable IP
monetization capacity.

4.3 Cross-Border Collaboration Pathway: Building a Cross-Border Collaborative Ecosystem for Rural Cultural
Industries

Leveraging Hong Kong region and Macao region resources as key pillars, promote deep integration of rural cultural
industries across the three regions through policy coordination, factor mobility, and project collaboration.

Establish a cross-border policy coordination mechanism: Develop the "Greater Bay Area Rural Cultural Industry
Cross-Border Cooperation Negative List" to clarify prohibited and restricted projects; create a "cross-border approval
green channel” to reduce the approval cycle for Hong Kong region and Macao region capital projects from 3 months to
7 working days; establish a tri-regional product standards committee to unify quality specifications and intellectual
property protection rules, eliminating trade barriers.

Develop a cross-border factor mobility platform: Launch the "Greater Bay Area Rural Cultural Industry Cross-Border
Creative Platform" to integrate creative talent, capital, and market resources across the three regions; establish a factor
exchange center offering cross-border talent, technology, and copyright transaction services; provide free exhibition
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booths for enterprises from peripheral areas at the Hong Kong International Cultural and Creative Expo, with 15
enterprises securing over US$20 million in overseas orders by 2024.

Launch cross-border cooperation projects: Construct the "Hong Kong-Macao Cultural and Creative Industrial Park" in
Kaiping, Jiangmen, targeting 50 enterprises by 2025; develop the "Hong Kong Yuen Long—Shenzhen
Dapeng—Jiangmen Diaolou" cross-border tourism route to connect cultural resources across the three regions; jointly
create "Greater Bay Area Rural Cultural IPs," with plans to launch 10 collaborative IPs by 2025 and promote them
internationally through cross-border channels.

4.4 Policy Support Pathway: Establishing a Policy Framework for Rural Cultural Industries

Leverage fiscal, land, and talent policies as pillars to provide full-cycle support for the development of new quality
productive forces.

Fiscal Support Policies: Establish the "Greater Bay Area Rural Cultural Industry New Quality Productivity Special
Fund," investing 500 million yuan annually to support infrastructure and creative projects in peripheral areas;
implement a "three-year exemption, two-year reduction" tax incentive for enterprises in peripheral areas (exempting
corporate income tax for the first three years, then halving it for the next two); encourage financial institutions to
develop "Digital Cultural and Creative Loans" with a maximum limit of 10 million yuan, prioritizing support for
technology application and IP development.

Land Support Policy: Pilot the "spot land supply" model, such as the Huizhou Longmen Farmers' Painting Project,
which allocated only 5 mu of land while preserving 95 mu of ecological green space; permit direct transfer of collective
construction land in peripheral areas to Hong Kong region and Macao region enterprises, such as the Kaiping pilot in
Jiangmen where Hong Kong region and Macao region enterprises acquired usage rights through land transfers; establish
an urban-rural construction land quota trading platform to ensure land supply for key projects.

Talent Support Policy: Provide monthly living subsidies of 5,000 yuan for digital and creative talents deployed to
peripheral areas, with a maximum duration of three years; construct "Rural Cultural Talent Apartments" offering
move-in-ready accommodations; enable children of core-area talents to attend key schools in peripheral arcas—e.g.,
Shenzhen-deployed talents' children may enroll in Jiangmen's top institutions—eliminating concerns about talent
mobility.

5 CONCLUSION

This study employs a mixed-methods approach to reveal the practical challenges and breakthrough pathways for
high-quality development of rural cultural industries in the Guangdong-Hong Kong-Macao Greater Bay Area.

Research indicates that new-quality productive forces are key to resolving current industry problems—digital
technology addresses resource activation, creative design enhances product value-added, and cross-border capital
compensates for funding shortages. Establishing a three-dimensional pathway system of “digital empowerment +
creative activation + cross-border collaboration,” supported by complementary policies, can effectively propel the
transformation of the Bay Area's rural cultural industries from “resource dependency” to “innovation-driven” models,
achieving integrated urban-rural development and shared prosperity. Future efforts should further strengthen policy
coordination among the three regions and improve mechanisms for factor mobility, providing more robust institutional
safeguards for empowering rural revitalization through new quality productive forces.
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Abstract: Transfer pricing (TP) has become increasingly complex in the era of globalization, requiring multinational
enterprises (MNEs) to establish arm's length prices for intercompany transactions across jurisdictions. Traditional
transfer pricing methodologies, while established through decades of regulatory practice, face significant challenges in
addressing the complexity and volume of modern cross-border transactions. The emergence of predictive analytics (PA)
and machine learning (ML) techniques offers transformative potential for enhancing transfer pricing determination,
documentation, and compliance. This review examines the application of predictive analytics in transfer pricing
contexts, exploring how artificial intelligence (Al), big data analytics (BDA), and advanced statistical methods are
reshaping both corporate tax planning strategies and regulatory enforcement mechanisms. The regulatory implications
of these technological advances are profound, raising questions about data transparency, algorithmic accountability, and
the evolution of arm's length principle (ALP) interpretation. This paper synthesizes current research on predictive
modeling approaches including neural networks (NN), random forests (RF), gradient boosting machines (GBM), and
support vector machines (SVM) applied to comparable company selection, profit allocation, and risk assessment. We
examine how tax authorities worldwide are deploying similar technologies for audit selection and compliance
monitoring, creating both opportunities and challenges for MNEs navigating increasingly data-driven regulatory
environments. The review addresses critical implementation considerations including data quality requirements, model
interpretability standards, and the alignment of predictive systems with existing legal frameworks under Organisation
for Economic Co-operation and Development (OECD) guidelines and local regulations. Findings indicate that while
predictive analytics significantly improves accuracy and efficiency in transfer pricing processes, successful
implementation requires careful attention to regulatory acceptability, documentation standards, and cross-functional
integration between tax, finance, and data science teams.

Keywords: Transfer pricing; Predictive analytics; Machine learning; Tax compliance; Regulatory implications; Arm's
length principle; Multinational enterprises; Artificial intelligence; OECD guidelines; BEPS

1 INTRODUCTION

Transfer pricing (TP) represents one of the most challenging areas of international taxation, governing the pricing of
transactions between related entities within multinational enterprises (MNEs) across different tax jurisdictions. The
fundamental principle underlying transfer pricing regulation is the arm's length principle (ALP), which requires that
intercompany transactions be priced as if they occurred between independent parties under comparable circumstances
[1]. This principle, codified in Article 9 of the Organisation for Economic Co-operation and Development (OECD)
Model Tax Convention and embedded in domestic legislation across more than 60 countries, aims to prevent profit
shifting and ensure appropriate tax revenue allocation among jurisdictions [2]. However, the practical application of
ALP has grown increasingly complex due to the expansion of global value chains, the proliferation of intangible assets,
and the digitalization of business models that challenge traditional TP methodologies [3].

The compliance burden associated with TP has escalated dramatically in recent years, driven by enhanced regulatory
scrutiny following the OECD Base Erosion and Profit Shifting (BEPS) initiative and the introduction of
country-by-country reporting (CbCR) requirements [4]. MNEs now face extensive documentation obligations, requiring
detailed functional analysis, economic analysis, and benchmarking studies to support their intercompany pricing
policies [5]. Traditional approaches to TP analysis rely heavily on manual processes, expert judgment, and retrospective
application of established methods such as the comparable uncontrolled price (CUP) method, resale price method
(RPM), cost plus method (CPM), transactional net margin method (TNMM), and profit split method (PSM) [6]. These
conventional methodologies, while theoretically sound, suffer from significant limitations including subjectivity in
comparable selection, limited data availability, difficulty in adjusting for differences between controlled and
uncontrolled transactions, and challenges in addressing unique value creation aspects of modern business models [7].
The emergence of predictive analytics (PA) and machine learning (ML) technologies offers transformative potential for
addressing these limitations and enhancing TP practices. PA encompasses a range of statistical and computational
techniques designed to identify patterns in historical data and generate predictions about future outcomes or unknown
parameters [8]. When applied to TP contexts, PA can improve the accuracy of comparable company identification,
enhance the precision of arm's length range determination, enable real-time monitoring of TP outcomes, and provide
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more robust support for documentation and defense positions [9]. Advanced ML algorithms including neural networks
(NN), random forests (RF), gradient boosting machines (GBM), and support vector machines (SVM) have
demonstrated superior performance compared to traditional statistical methods in handling high-dimensional data,
capturing non-linear relationships, and automating complex pattern recognition tasks [10].

The adoption of PA in TP practice extends beyond mere technical implementation and carries significant regulatory
implications that warrant careful examination. Tax authorities worldwide are simultaneously deploying similar
technologies for audit selection, risk assessment, and compliance monitoring, fundamentally altering the dynamics of
tax administration and enforcement [11]. The use of algorithmic decision-making in both corporate tax planning and
government oversight raises critical questions about transparency, interpretability, and the appropriate evolution of
established legal principles in light of technological capabilities [12]. Furthermore, the integration of big data analytics
(BDA) with TP processes creates new considerations regarding data privacy, cross-border data flows, and the
evidentiary standards applicable to algorithmically-generated analyses in tax dispute resolution contexts [13].

This review paper examines the current state of research and practice regarding the application of PA to TP
determination and compliance, with particular emphasis on the regulatory implications of these technological
developments. The analysis addresses several key research questions that have emerged as central to understanding the
transformative potential and limitations of PA in this domain. First, what specific PA methodologies have proven most
effective for different aspects of TP analysis, and what are their respective strengths and limitations? Second, how are
tax authorities incorporating PA into their compliance and enforcement strategies, and what implications does this have
for MNEs' approach to TP risk management? Third, what regulatory and legal frameworks are emerging to govern the
use of algorithmic analyses in TP contexts, and how do these frameworks balance innovation with established principles
of tax law? Fourth, what implementation challenges do organizations face when deploying PA for TP purposes, and
what best practices have emerged for addressing these challenges? The structure of this paper proceeds through
comprehensive literature review, examination of specific PA methodologies, analysis of regulatory implications, and
discussion of implementation considerations.

2 LITERATURE REVIEW

The intersection of PA and TP represents an emerging research domain that has gained substantial attention since 2019,
reflecting the broader trend toward digitalization in tax administration and corporate tax planning. Early foundational
work in this area focused on establishing the theoretical compatibility between ML methodologies and the ALP, with
researchers examining whether algorithmic approaches could satisfy existing legal and regulatory requirements for TP
documentation [14]. These initial studies demonstrated that supervised learning techniques could effectively replicate
and in many cases improve upon traditional comparable selection and pricing methodologies, while maintaining
adherence to OECD guidelines when properly implemented and documented [15].

A significant stream of literature has examined the application of various PA techniques to the fundamental challenge of
comparable company identification and selection, which represents a critical step in applying TNMM and other
traditional TP methods. Research by Chen and colleagues demonstrated that ensemble methods combining RF and
GBM achieved superior performance in identifying appropriate comparable companies compared to manual screening
approaches, with particular improvements in handling high-dimensional financial and operational data [16]. This work
highlighted the ability of ML algorithms to simultaneously consider multiple comparability factors including functional
profile, asset intensity, risk profile, and market characteristics, thereby addressing one of the most subjective and
contentious aspects of traditional TP practice. Subsequent research extended these findings by incorporating NLP
techniques to analyze business descriptions and segment reporting data, enabling more nuanced functional
comparability assessments [17].

The application of NN to TP analysis has generated considerable research interest, particularly regarding deep learning
architectures capable of modeling complex value chain relationships and pricing dynamics. Studies have demonstrated
that convolutional neural networks (CNN) and recurrent neural networks (RNN) can effectively capture temporal
patterns in TP data, enabling more accurate forecasting of appropriate intercompany prices under varying market
conditions [18]. However, this research also identified significant challenges related to model interpretability, as the
black box nature of deep learning approaches conflicts with documentation requirements that necessitate clear
explanations of pricing methodology [19]. This tension between predictive performance and regulatory acceptability
has emerged as a central theme in the literature, with researchers exploring various approaches to explainable Al that
can reconcile advanced modeling techniques with transparency requirements. Recent advances in knowledge-guided
expert mixture architectures have demonstrated that domain-adapted large language models incorporating
retrieval-augmented generation can achieve both high classification accuracy and interpretable outputs in tax analysis
contexts, offering a promising approach for addressing similar challenges in transfer pricing applications [20].

Research examining regulatory perspectives on PA in TP contexts reveals substantial variation across jurisdictions in
both the acceptance of algorithmic analyses and the standards applied to evaluate such methodologies. Comparative
studies of tax authority guidance documents and audit practices indicate that while some jurisdictions have explicitly
endorsed the use of advanced analytics subject to appropriate documentation standards, others maintain more
conservative positions requiring primary reliance on traditional methods [21]. The BEPS Action 13 CbCR data has
created new opportunities for tax authorities to deploy PA for risk assessment purposes, and research examining these
applications demonstrates that predictive models can effectively identify high-risk TP arrangements warranting detailed
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examination [22]. However, concerns have been raised about potential biases in algorithmic risk scoring systems and
the implications for taxpayer rights when automated systems drive audit selection decisions [23].

The economic substance analysis required under modern TP frameworks has also benefited from PA applications, with
research demonstrating that ML techniques can enhance the identification and quantification of value drivers within
complex global value chains. Studies employing classification algorithms and clustering techniques have shown
promise in mapping functional contributions and risk allocations across multinational enterprises (MNEs), providing
more systematic and data-driven support for profit allocation decisions [24]. This work addresses particularly
challenging areas such as the valuation of intangible assets and the appropriate compensation for risk assumption, where
traditional methodologies often rely heavily on subjective assessments [25]. Research has also examined how
regression-based PA models can improve the estimation of arm's length returns by incorporating broader datasets and
more sophisticated adjustment mechanisms for differences between controlled and uncontrolled transactions [26].
Literature addressing implementation challenges for PA in TP contexts identifies several critical success factors that
determine whether organizations can effectively leverage these technologies. Data quality and availability emerge as
primary concerns, with research demonstrating that the performance of ML models depends critically on access to
comprehensive, accurate, and relevant financial and operational data spanning multiple years and jurisdictions [27].
Studies examining MNEs' experiences with PA implementation reveal that organizations often underestimate the data
infrastructure requirements and the effort needed to integrate TP data with enterprise resource planning (ERP) systems
and other corporate databases [28]. The importance of cross-functional collaboration between tax professionals, data
scientists, and business units has been emphasized as essential for developing models that appropriately balance
technical sophistication with practical applicability and regulatory defensibility [29].

Research on specific ML algorithms applied to TP problems has generated insights into the relative performance
characteristics of different modeling approaches. Comparative studies evaluating support vector machines (SVM),
decision trees, and ensemble methods for comparable selection tasks indicate that while ensemble approaches generally
achieve superior predictive accuracy, simpler models may offer advantages in terms of interpretability and
computational efficiency [30]. The application of unsupervised learning techniques including principal component
analysis (PCA) and clustering algorithms has been explored for dimensionality reduction and pattern identification in
complex TP datasets [31]. Research has also examined the potential of reinforcement learning approaches for dynamic
TP optimization, though these applications remain largely theoretical due to regulatory constraints on prospective
pricing optimization [32].

The regulatory implications of PA adoption extend beyond technical considerations to fundamental questions about the
evolution of TP principles and administrative practices. Legal scholarship has examined whether existing regulatory
frameworks adequately address the use of algorithmic decision-making in tax contexts, identifying potential gaps in
areas such as algorithmic transparency requirements, standards for model validation and testing, and procedures for
challenging automated determinations [33]. Research analyzing recent tax disputes involving PA-based TP analyses
reveals emerging judicial perspectives on the evidentiary weight accorded to algorithmic studies and the standards
applied in evaluating their reliability [34]. These cases highlight the importance of comprehensive documentation not
only of modeling results but also of model development processes, including data sources, algorithm selection rationale,
and validation procedures [35].

Studies examining the use of BDA in TP contexts have explored both opportunities and risks associated with
incorporating increasingly granular transaction-level data into pricing analyses. Research demonstrates that access to
detailed operational data can enable more precise comparable adjustments and more accurate profit allocations,
particularly for complex value chains involving multiple jurisdictions and products [36]. However, concerns have been
raised about potential privacy implications of extensive data collection and the challenges of managing cross-border
data transfers in compliance with data protection regulations such as the European Union GDPR [37]. The intersection
of TP compliance requirements and data privacy obligations represents an emerging area requiring further research and
policy development [38].

Literature addressing the organizational change management aspects of PA implementation in TP functions reveals that
successful adoption requires not only technical capabilities but also cultural shifts in how tax teams approach their work.
Research examining change management practices identifies resistance to algorithmic decision-making as a significant
barrier, particularly among experienced TP professionals who may view PA as threatening established expertise and
professional judgment [39]. Studies highlight the importance of appropriate training programs that enable tax
professionals to understand PA methodologies sufficiently to evaluate their appropriateness and interpret their results,
even without developing deep technical expertise in data science [40]. The need for new roles bridging tax and analytics
expertise has been identified, with research exploring optimal organizational structures for integrating these capabilities
[41].

3 PREDICTIVE ANALYTICS METHODOLOGIES IN TRANSFER PRICING

The application of predictive analytics (PA) to transfer pricing (TP) encompasses a diverse array of methodologies,
each offering distinct advantages for addressing specific analytical challenges within the TP process. Understanding the
technical characteristics, appropriate applications, and limitations of these methodologies is essential for both
practitioners seeking to implement these tools and regulators evaluating their use. Supervised learning algorithms
represent the most widely adopted category of PA methodologies in TP applications, as they align naturally with the
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fundamental objective of predicting appropriate arm's length prices or profit margins based on historical data from
comparable independent transactions [42]. These algorithms learn mapping functions from input features to output
predictions through training on labeled datasets, where the labels represent known arm's length outcomes such as profit
margins from independent companies or prices from uncontrolled transactions.

Random forests (RF) have emerged as particularly effective for comparable company selection and screening tasks
within TP benchmarking studies. RF algorithms construct multiple decision trees during training and output the mode of
the classes for classification tasks or mean prediction for regression tasks across individual trees [43]. The ensemble
nature of RF provides several advantages for TP applications, including robustness to overfitting, ability to handle both
numerical and categorical features without extensive preprocessing, and natural capacity to assess feature importance
which aids in understanding which comparability factors most significantly influence outcomes. Research has
demonstrated that RF models can effectively automate the initial screening of potential comparable companies by
learning from historical selections made by TP experts, achieving classification accuracy rates exceeding 85 percent
while significantly reducing the time required for comparable searches [44]. The interpretability of RF through feature
importance scores also supports documentation requirements, as analysts can explain which characteristics drove
inclusion or exclusion decisions for particular companies.

Gradient boosting machines (GBM), including popular implementations such as XGBoost and LightGBM, represent
another powerful ensemble approach that has shown superior performance for regression tasks in TP contexts. GBM
algorithms build models sequentially, with each new model attempting to correct errors made by the previous ensemble,
resulting in highly accurate predictions for continuous outcomes such as profit margins or pricing levels [45]. The
application of GBM to arm's length range determination has demonstrated particular promise, as these models can
capture complex non-linear relationships between financial ratios, functional characteristics, and market conditions that
influence appropriate comparable margins. Studies comparing GBM performance to traditional linear regression
approaches for estimating arm's length ranges report improvements in both predictive accuracy and reduction in the
width of predicted confidence intervals, suggesting more precise targeting of appropriate pricing levels [46].

Support vector machines (SVM) offer advantages for classification tasks in TP analysis, particularly when dealing with
high-dimensional feature spaces and limited training data. SVM algorithms find optimal hyperplanes that maximize the
margin between different classes in feature space, and through kernel tricks can efficiently handle non-linear decision
boundaries [47]. In TP applications, SVM has been successfully employed for tasks such as classifying transactions into
appropriate TP method categories, identifying high-risk pricing arrangements requiring detailed review, and predicting
audit outcomes based on transaction characteristics. The mathematical rigor of SVM and its relatively transparent
decision boundaries contribute to regulatory acceptability, though the choice of kernel function and hyperparameters
requires careful validation to avoid overfitting [48].

Neural networks (NN), particularly deep learning architectures, represent the most sophisticated category of PA
methodologies applied to TP, though their adoption faces significant challenges related to interpretability and regulatory
acceptance. Deep NN with multiple hidden layers can learn hierarchical representations of data, potentially capturing
subtle patterns in value creation and pricing dynamics that simpler models miss [49]. Recurrent neural networks (RNN)
and long short-term memory (LSTM) networks have been explored for modeling temporal dependencies in TP data,
such as how intercompany pricing should adjust in response to changing market conditions over multi-year periods.
Convolutional neural networks (CNN) have been adapted for analyzing structured financial data and identifying
patterns in multi-dimensional TP datasets. However, the black box nature of deep learning models creates substantial
documentation challenges, as explaining precisely how a deep NN arrived at a particular pricing recommendation may
be impossible even for the data scientists who built the model [50]. This opacity conflicts fundamentally with TP
regulations requiring clear articulation of pricing methodology and economic reasoning.
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Figure 1 Comparison of ML Algorithm Performance Across Accuracy, Interpretability, Computational Efficiency, and
Regulatory Acceptance for Transfer Pricing Applications

To address the interpretability challenge while retaining predictive power, researchers and practitioners have
increasingly adopted explainable Al (XAI) techniques in TP applications. SHapley Additive exPlanations (SHAP) and
Local Interpretable Model-agnostic Explanations (LIME) represent two prominent XAI approaches that can generate
explanations for predictions made by complex ML models [51]. SHAP values, grounded in cooperative game theory,
quantify the contribution of each input feature to a particular prediction, enabling TP practitioners to understand and
document which factors drove a specific pricing recommendation. LIME generates locally faithful explanations by
fitting interpretable models around individual predictions, providing insight into model behavior for specific
transactions even when the global model is highly complex. The integration of XAI techniques with advanced PA
models represents a promising path toward reconciling predictive performance with regulatory transparency
requirements [52].

Figure 1 compares four primary ML algorithms across key performance dimensions for TP applications. Random
forests and gradient boosting machines achieve high accuracy while maintaining moderate interpretability through
feature importance scores, making them well-suited for comparable selection tasks. Support vector machines offer
strong regulatory acceptance due to transparent decision boundaries but show lower accuracy for complex pricing
analyses. Neural networks demonstrate superior accuracy for intricate value chain modeling but score lowest on
interpretability and regulatory acceptance due to their black-box nature. This trade-off analysis informs algorithm
selection decisions, emphasizing that optimal choices depend on specific application requirements and jurisdictional
regulatory expectations.

Unsupervised learning methodologies play complementary roles in TP analytics, particularly for exploratory analysis
and pattern discovery in situations where labeled training data is limited or unavailable. Clustering algorithms such as
k-means, hierarchical clustering, and density-based spatial clustering of applications with noise (DBSCAN) can identify
natural groupings within populations of potential comparable companies or transactions, helping analysts understand
the structure of available data and identify potential peers that might not emerge from traditional screening criteria [53].
Principal component analysis (PCA) and other dimensionality reduction techniques enable visualization and exploration
of high-dimensional TP datasets, helping analysts identify which combinations of features best distinguish between
different groups of comparables or explain variation in arm's length outcomes. These unsupervised approaches often
serve as valuable preprocessing steps that enhance the performance and interpretability of subsequent supervised
learning models.

4 REGULATORY IMPLICATIONS AND COMPLIANCE CHALLENGES

The integration of predictive analytics (PA) into transfer pricing (TP) practices creates profound regulatory implications
that extend across multiple dimensions of tax administration, compliance, and policy development. Tax authorities
worldwide face the dual challenge of evaluating PA-based analyses submitted by multinational enterprises (MNEs)
while simultaneously deploying similar technologies for their own enforcement and compliance activities. This parallel
adoption creates a dynamic regulatory environment characterized by evolving standards, jurisdictional variations, and
ongoing debates about the appropriate role of algorithmic decision-making in tax determination [54]. Understanding
these regulatory implications is essential for MNEs seeking to leverage PA effectively while managing compliance risks
and maintaining defensible positions.

The fundamental question of whether PA-based analyses satisfy the arm's length principle (ALP) and comply with
Organisation for Economic Co-operation and Development (OECD) Transfer Pricing Guidelines has been addressed
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differently across jurisdictions. Some tax authorities have issued guidance explicitly acknowledging that advanced
statistical methods and machine learning (ML) algorithms may be acceptable for certain aspects of TP analysis,
provided that the methodologies are properly documented, validated, and applied in a manner consistent with
established TP principles [55]. These jurisdictions typically require that PA applications supplement rather than replace
traditional analyses, with algorithmic results subject to expert review and adjustment based on qualitative factors not
captured in models. Other jurisdictions have maintained more conservative positions, expressing concerns about the
transparency and auditability of complex algorithms and requiring primary reliance on conventional methodologies with
PA serving only as supporting evidence [56].

Documentation requirements represent a critical compliance challenge for MNEs employing PA in TP contexts, as
standard documentation practices developed for traditional analyses may not adequately address the unique
characteristics of algorithmic approaches. Tax authorities generally expect documentation to explain not only the results
of PA models but also the model development process, including data sources and quality, feature selection rationale,
algorithm choice justification, training and validation procedures, and testing for potential biases or errors [57]. This
level of detail requires close collaboration between tax and data science teams and may necessitate disclosure of
technical information that organizations consider proprietary or commercially sensitive. The challenge is particularly
acute for MNEs using proprietary or licensed PA tools, where full transparency regarding algorithmic implementation
may be limited by vendor restrictions [58].

The evidentiary standards applied to PA-based analyses in tax disputes and litigation have begun to emerge through
case law and administrative proceedings, though this body of precedent remains limited. Early decisions suggest that
courts and tribunals are generally willing to consider algorithmic analyses as evidence, but apply rigorous standards
regarding the quality of data inputs, appropriateness of methodology for the specific application, and qualifications of
experts who developed and interpreted the models [59]. Cases have emphasized the importance of independent
validation of PA models, with particular scrutiny applied to prevent overfitting or other forms of model bias that could
generate misleading results. The burden of proof considerations in TP disputes may be affected by PA adoption, as
taxpayers employing sophisticated analytical methods may face heightened expectations regarding the rigor and
comprehensiveness of their supporting evidence [60].

Data privacy and cross-border data transfer regulations create additional compliance complexity for MNEs seeking to
implement PA for TP purposes, particularly for organizations operating across multiple jurisdictions with varying data
protection requirements. The application of PA typically requires aggregating and analyzing transaction-level data from
multiple entities and jurisdictions, which may involve transfer of personal data subject to restrictions under regulations
such as the European Union General Data Protection Regulation (GDPR) and similar frameworks in other regions [61].
MNEs must ensure that their PA systems comply with data localization requirements, obtain necessary consents for data
processing, and implement appropriate technical and organizational measures to protect data security. The tension
between TP compliance requirements demanding comprehensive data analysis and data privacy regulations limiting
data collection and transfer represents an ongoing challenge requiring careful legal and technical navigation [62].

Table 1 Regulatory Positions on Predictive Analytics in Transfer Pricing across Major Tax Jurisdictions showing
Acceptance Levels, Documentation Requirements, and Key Restrictions

Jurisdiction Key Guidance Document Acceptance Documentatlon Key Restrictions/Notes
Level Requirement
United States IRS Revenue Procedure 2015-41  Medium Moderate Requires ceonomie
substance analysis
United Kingdom HMRC Transfer Pricing High Detailed Expllqltly endorses advanced
Guidelines analytics
.. . - . . Primary reliance on
Germany BMF Administrative Principles 2~ Medium High traditional methods
France BOI-BIC-BASE-80-10-20 Medium-High Moderate Accepts with proper
documentation
. . . . Strong focus on CbCR data
China SAT Bulletin [2017] No.6 High Very High analytics
Singapore IRAS e-Tax Guide (5th Edition) High Moderate Encourages innovative
approaches
Australia ATO PCG 2019/1 Medium High Requires transparency and
validation

Tax authority adoption of PA for audit selection and risk assessment creates a parallel set of implications for MNE
compliance strategies. Many tax administrations have deployed predictive models to analyze country-by-country
reporting (CbCR) data and other information returns, identifying taxpayers with TP arrangements that warrant detailed
examination [63]. These risk assessment systems typically employ ML algorithms to identify patterns associated with
aggressive TP planning, such as high-value intangible transfers to low-tax jurisdictions, profit allocations inconsistent
with functional analysis, or outlier financial results compared to industry norms. While these systems can enhance the
efficiency and effectiveness of tax administration by directing resources toward highest-risk cases, they also raise
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concerns about algorithmic bias, lack of transparency in audit selection decisions, and potential for false positives that
subject compliant taxpayers to burdensome audits [64].

The advance pricing agreement (APA) process represents an area where PA both offers significant opportunities and
presents unique challenges. PA models can support APA applications by providing more robust forecasts of appropriate
pricing ranges over multi-year periods, potentially reducing uncertainty and controversy [65]. However, tax authorities
evaluating APA requests based on PA may require extensive information about model construction, assumptions, and
sensitivity analysis to assess the reliability of forecasts. The ongoing maintenance and updating of PA models
throughout APA terms creates additional considerations, as models may require recalibration in response to changing
business conditions or data availability. Questions about what level of deviation from PA-based forecasts would
constitute APA non-compliance, and how such deviations should be addressed, represent emerging issues in APA
practice.

Table 1 synthesizes regulatory stances toward PA in TP across seven major jurisdictions. The United Kingdom
demonstrates the most progressive position with explicit HMRC endorsement, while Germany maintains the most
conservative approach requiring primary reliance on traditional methods. Documentation requirements vary
significantly, with China and Australia mandating extensive technical specifications including algorithm validation
procedures. These jurisdictional variations create substantial compliance challenges for MNEs operating across multiple
tax regimes, necessitating tailored documentation strategies. The trend toward conditional acceptance—requiring PA to
supplement rather than replace traditional analyses—reflects regulators balancing innovation encouragement with
established ALP interpretation principles.

5 IMPLEMENTATION CONSIDERATIONS AND BEST PRACTICES

Successful implementation of predictive analytics (PA) in transfer pricing (TP) requires careful attention to technical,
organizational, and strategic considerations that extend beyond algorithm selection and model development.
Organizations that have effectively integrated PA into TP functions typically follow systematic approaches addressing
data infrastructure, governance frameworks, capability development, and stakeholder engagement. The foundation of
any PA implementation is adequate data infrastructure capable of collecting, storing, and processing the diverse
financial and operational data required for TP analysis. MNEs must assess whether their existing enterprise resource
planning (ERP) systems and data warchouses can support PA requirements, including transaction-level detail,
multi-year historical data, and integration of both internal financial data and external market information [66]. Data
quality initiatives focusing on completeness, accuracy, consistency, and timeliness are essential prerequisites, as PA
model performance degrades significantly when trained on incomplete or erroneous data.

Governance frameworks for PA in TP should address key questions about model ownership, validation requirements,
update frequencies, and decision-making authority. Leading organizations typically establish cross-functional
governance committees including representatives from tax, finance, IT, and data analytics functions to oversee PA
deployments [67]. These committees define standards for model documentation, establish protocols for model
validation and testing, determine circumstances under which PA results require expert review before application, and
manage the balance between algorithmic recommendations and professional judgment. Clear governance helps ensure
that PA tools are applied appropriately and consistently while preventing over-reliance on models without adequate
human oversight.

Stage 1: Needs Assessment & Data Audit

Activities: Gap analysis, data quality review, Infrastructure assessment

Stage 2: Model Development & Validation

Activities: Algorithm selection, training, validation, documentation

Jutcome: Validatad PA models

'

Stage 3: Pilot Testing

Activities: Limited rollout, performance monitoring, refinement

Stage 4: Full Deployment
d

Activities: E . training,

Stage 5: C: g & Opt

Activities: Performance tracking, model updates, regulatary compliance review

Participants: Governance comuities

Figure 2 Five-Stage Implementation Framework for Predictive Analytics in Transfer Pricing Functions showing needs
Assessment through Continuous Optimization
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Capability development represents a critical success factor, as effective PA implementation requires building new skills
within tax teams and fostering productive collaboration between tax and analytics professionals. MNEs approach
capability building through various strategies including hiring data scientists with specialized training in tax
applications, upskilling existing tax professionals through targeted analytics training programs, or establishing centers
of excellence combining deep tax and analytics expertise [68]. The optimal approach depends on organizational size,
resource availability, and strategic importance of PA to overall TP risk management. Regardless of structure, successful
implementations emphasize the importance of tax professionals developing sufficient analytical literacy to evaluate PA
outputs critically and understand their limitations, even without becoming expert data scientists themselves.

Figure 2 presents a five-stage framework for PA implementation in TP functions. Stage 1 involves needs assessment
and data audit to identify high-value applications. Stage 2 focuses on model development with close collaboration
between data scientists and TP experts to ensure regulatory defensibility. Stage 3 conducts pilot testing against
traditional methods. Stage 4 executes enterprise-wide deployment with comprehensive training and governance
frameworks. Stage 5 establishes continuous monitoring and optimization. The feedback loop connecting Stage 5 back to
Stage 2 reflects the iterative nature of PA systems requiring periodic recalibration as business conditions and regulatory
standards evolve.

Change management and stakeholder engagement processes help address resistance to PA adoption and ensure that new
analytical capabilities are effectively integrated into existing workflows. Experienced TP professionals may initially
view PA as threatening established expertise or may be skeptical about the reliability of algorithmic approaches
compared to traditional judgment-based methods [69]. Addressing these concerns requires transparent communication
about the role of PA as enhancing rather than replacing professional expertise, demonstration of PA value through pilot
projects showing concrete improvements in accuracy or efficiency, and involvement of senior TP leaders as champions
for analytics adoption. Engagement with external stakeholders including auditors and tax authorities helps ensure that
PA implementations will be accepted in compliance and dispute contexts.

6 CONCLUSION

The application of predictive analytics to transfer pricing represents a transformative development with significant
potential to enhance accuracy, efficiency, and defensibility of intercompany pricing practices. This review has
demonstrated that diverse PA methodologies including random forests, gradient boosting machines, support vector
machines, and neural networks offer substantial capabilities for addressing traditional challenges in comparable
selection, arm's length range determination, and economic analysis. These technologies enable processing of larger
datasets, identification of more nuanced patterns, and more systematic approaches to aspects of TP analysis that have
historically relied heavily on subjective judgment[70]. The documented performance improvements in various TP
applications suggest that PA will become increasingly integral to how sophisticated MNEs approach TP compliance and
how tax authorities conduct risk assessment and audit activities.

However, successful PA adoption requires navigating significant regulatory, technical, and organizational challenges.
The regulatory landscape remains fragmented, with varying levels of acceptance and divergent documentation
expectations across jurisdictions. Tax authorities and policymakers must develop clearer guidance regarding acceptable
PA applications, appropriate transparency standards, and evidentiary requirements that balance innovation with
established legal principles[71]. The interpretability challenge inherent in sophisticated ML models demands continued
development and adoption of explainable Al techniques that can reconcile predictive power with regulatory
transparency requirements. Documentation practices must evolve to adequately address the unique characteristics of
algorithmic analyses while remaining practical for resource-constrained tax functions.

The parallel adoption of PA by both taxpayers and tax authorities creates a dynamic environment where technological
capabilities on both sides of the compliance relationship are rapidly evolving. This development offers opportunities for
more efficient administration and reduced compliance costs, but also raises important questions about algorithmic
fairness, procedural justice, and appropriate safeguards against potential biases in automated decision-making systems.
The intersection of TP compliance requirements with data privacy regulations presents ongoing challenges requiring
coordination between tax and legal functions[72]. Organizations must carefully design PA implementations to respect
data protection principles while meeting analytical requirements.

Implementation success depends critically on adequate data infrastructure, robust governance frameworks, appropriate
capability development, and effective change management. MNEs should approach PA adoption strategically,
beginning with pilot applications in well-defined use cases, building internal expertise through training and hiring, and
developing documentation practices that will withstand regulatory scrutiny. Cross-functional collaboration between tax,
finance, IT, and data analytics teams is essential for developing solutions that balance technical sophistication with
practical applicability and regulatory defensibility.

Looking forward, continued research is needed in several areas to support responsible PA adoption in TP contexts.
Development of industry-specific benchmarks and validation standards would provide useful reference points for
assessing model quality and appropriateness. Further empirical studies examining the accuracy of PA approaches
compared to traditional methods across diverse transaction types and industries would build evidence supporting
broader adoption. Research addressing algorithmic fairness and bias detection in TP applications could help ensure that
PA deployment promotes rather than undermines equitable international taxation. Exploration of emerging technologies
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including blockchain for real-time TP documentation and quantum computing for complex optimization problems may
reveal additional opportunities for innovation.

The transformation of TP practice through PA is inevitable given the clear performance advantages these technologies
offer and their increasing adoption by both taxpayers and authorities. The challenge for stakeholders is to guide this
transformation in directions that preserve fundamental tax principles while enabling beneficial innovation. With
appropriate attention to regulatory frameworks, technical standards, and implementation practices, PA can enhance the
effectiveness and fairness of the international TP system for all participants.
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