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Abstract: Stroke rehabilitation is going through some pretty major changes right now. We're seeing a gradual move
away from those subjective clinical scales toward more objective, automated assessments—though it's not happening as
fast as some people hoped. Traditional methods like the Fugl-Meyer Assessment (FMA) are still considered the gold
standard in clinics, but they've got some real problems. They're time-consuming, different raters often give different
scores, and they tend to hit ceiling effects that miss subtle improvements patients are making.This review looks at
important studies from 2016 to 2025. We trace how automated detection systems evolved from those lab-based depth
sensors to RGB cameras you can use at home and wearable IMUs. We compare different sensing technologies and look
at public datasets. There's also this "sim-to-real" gap issue - basically, models trained on healthy actors often don't work
well with real patients, which is a big problem. The algorithms have changed a lot too, going from traditional machine
learning to foundation models. Clinical metrics have also expanded beyond simple detection to things like severity
grading.At the end, we talk about what this all means for tele-rehabilitation and why getting clinicians to actually adopt
these technologies is still really challenging. We suggest a roadmap that focuses on privacy-preserving collaboration
and long-term validation studies, though honestly implementing all of this won't be easy.
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1 INTRODUCTION
1.1 The Global Burden and Pathophysiology of Stroke

Stroke is one of the leading causes of adult disability around the world. While medical advances have helped reduce
how many people die from strokes, the burden has kind of shifted toward chronic rehabilitation needs. Here's something
sobering: up to 80% of stroke survivors develop acute upper limb hemiparesis, and about 50-60% still have persistent
motor impairments six months after their stroke [1]. Those numbers are pretty concerning when you think about it.
There's this fundamental challenge in rehabilitation that involves trying to tell the difference between true motor
recovery and compensatory strategies. Cirstea and Levin showed how stroke survivors frequently develop movement
adaptations - like using excessive trunk flexion during reaching tasks when their elbow extension is limited[2]. These
compensatory patterns let them complete the task right away, but the long-term effects aren't good. When people keep
relying on compensation, it contributes to something called "learned non-use," which actually inhibits neuroplasticity.
That's why contemporary rehabilitation approaches emphasize not just whether you can complete a task, but Quality of
Movement (QoM) - basically how you're executing the movement matters.

1.2 Why Traditional Assessments Fall Short

Clinical practice still relies heavily on observational scales like the FMA, which are considered gold standards even
though they have some inherent limitations. The scoring accuracy depends on what the therapist observes, which results
in inter-rater variability. These scales also exhibit ceiling effects that fail to detect fine motor improvements and subtle
compensatory deviations - Gladstone et al. talked about this[3].

A fundamental limitation of these assessments is their snapshot nature within clinical settings. They don't really capture
how patients perform during daily activities at home, which is arguably what we should care most about.

1.3 The Move Toward Automation

To try and address these limitations, researchers have been developing automated systems. The past decade has seen
substantial technological advances - we've gone from marker-based optical motion capture (OMC) to markerless
tracking systems, and from laboratory equipment to portable sensors that work in different environments. This review
takes a narrative approach, focusing on studies that introduced novel sensing technologies, algorithmic innovations, and
validation with actual patient populations (not just healthy volunteers pretending to have impairments).
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2 BUILDING BLOCKS: DATASETS AND THE SIM-TO-REAL PROBLEM

High-quality annotated data is critical for deep learning applications in stroke rehabilitation - you really can't do much
without it. The KIMORE dataset is a key resource here, with recordings from 78 subjects and clinical assessment scores
from trained clinicians[4]. The UI-PRMD dataset takes a different approach by explicitly including both correct and
incorrect movements performed by healthy subjects, which helps with training binary classifiers[5].

But here's where things get tricky. There's a critical limitation in relying on simulated data. Zhi et al. identified this
"sim-to-real gap" in their Kinect-based monitoring study[6]. They compared classifiers (SVM and RNN) trained on
simulated healthy subject data versus actual patient data. While the models showed high performance on simulated
movements, accuracy dropped substantially with real stroke survivors. This happened because pathological movements
are highly variable, there's frequent occlusion, and the complexity is just inherently different.

This finding really emphasizes that algorithms need to be validated on clinical populations, not just on healthy actors
simulating impairments. It seems obvious in hindsight, but a lot of early work didn't do this properly.

3 SENSING TECHNOLOGIES: FROM LABS TO LIVING ROOMS
3.1 Making Vision Accessible

The period from 2021 to 2025 saw a decisive shift to RGB-only solutions using standard cameras without those
specialized depth sensors. Lin et al. demonstrated that you could deploy compensatory detection on standard tablet
devices, achieving 92% accuracy for shoulder elevation detection[8]. Yamamoto et al. established that single-camera
RGB analysis could provide enough precision to actually guide clinical interventions - specifically for ankle-foot
orthosis (AFO) adjustment in stroke patients, which was pretty impressive[9].

There have been some condition-specific innovations too. Zheng et al. addressed a practical challenge in cervical
spondylotic myelopathy (CSM) assessment[11]. Clinicians manually count rapid hand movements during the
"10-second grip and release" test, which is tedious. Their intelligent video system based on 3D-MobileNetV2 automated
the test grading with 97.40% accuracy, giving clinicians an objective screening tool that actually saves time.

Novel camera placement strategies have helped with occlusion problems and limited viewing angles in home settings.
Dousty and Zariffa developed an egocentric vision system for cervical spinal cord injury patients - the camera goes on
the user to capture a first-person perspective[12]. By combining hand detection with RNN-based arm orientation
estimation, they could detect "tenodesis grasp," which is a specific compensatory strategy. This represents a significant
advance in monitoring daily activities outside the clinic.

For pediatric assessment, Sohn et al. designed something called the "MAGIC Table.[7]" It's a low-cost portable device
using a standard camera to track objects like magnetic cups and rolling balls. The system quantifies upper-limb function
in children with cerebral palsy through gamification, which kids respond well to. No expensive motion capture
equipment or specialized lab facilities needed.

3.2 Wearable Sensors and Daily Function

While camera-based systems face line-of-sight limitations (someone has to be in view of the camera), wearable sensors
enable continuous monitoring. Okita et al. demonstrated that a single wrist-worn IMU could distinguish impairment
levels through sample entropy analysis of movements[13]. Just one sensor on the wrist - that's pretty remarkable.

Recent research has focused on specific functional impairments. Lu et al. used IMUs to assess frozen shoulder during
daily activities like hair washing[14]. Movement smoothness metrics (SPARC) successfully distinguished patients from
healthy controls, though they had to segment tasks into sub-tasks to reveal fine-grained dysfunctions. The sub-task
segmentation adds complexity but seems necessary.

Fatigue-related compensation during home rehabilitation is another challenge that doesn't get enough attention. Chua et
al. developed a flexible strain-sensor patch using carbon nanofibers for shoulder placement[15]. It detects skin
deformation when patients elevate their shoulder to compensate during bicep curl exercises. The sensor output showed
high correlation with EMG and optical motion capture while being much more comfortable for remote monitoring,
which matters a lot for patient adherence.

For comprehensive analysis, multimodal sensor fusion is still the gold standard, though it's more complex to implement.
S. Gao et al. introduced a "Physical Priori Network" that integrates surface EMG (sEMQG) and pressure data with
physical constraints incorporated into the loss function[16]. This enabled them to distinguish between active and
passive movements with 94.7% accuracy, which is important for detecting learned non-use patterns.

4 ALGORITHM EVOLUTION
4.1 When Simple Works Better
Traditional machine learning approaches continue to be useful in specific scenarios - deep learning isn't always the
answer. Ding et al. found that K-Nearest Neighbors (KNN) with engineered features actually outperformed deep

learning models for severity grading using limited IMU data, achieving an Fl-score of 96.8%[17]. Sometimes the
simpler approach works better, especially with limited data.
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The scope of algorithms has expanded beyond just detection. Wu et al. developed an adaptive control strategy for a soft
elbow exoskeleton[18]. They feed SEMG signals into a neural network that compensates for the non-linear behavior of
soft materials. The system automatically switches between passive, active, and assist-as-needed modes based on patient
intent and impairment level. This enables real-time coupling of detection and intervention, which is where the field
needs to go.

4.2 Advanced Architectures and Annotation-Efficient Learning

Recurrent Neural Networks (RNNs) are effective at handling complex temporal patterns. Zhu et al. designed an
Encoder-Decoder GRU to reconstruct missing frames during wireless data transmission loss[19]. This ensures system
robustness during real-time operation, which is critical when you're dealing with wireless sensors that might drop
packets.

A significant trend in 2025 addresses the annotation costs associated with frame-by-frame labeling, which is extremely
expensive and time-consuming. Cdias et al. proposed a weakly supervised learning (WSL) framework that learns from
video-level labels rather than frame-level annotations[21]. They use saliency maps to generate frame-level
pseudo-labels. Validation on the SERE dataset showed effective real-time detection of trunk and shoulder
compensations with good generalization across patients, without requiring dense manual annotation. This could really
help with scalability.

Foundation models are beginning to emerge in this domain too. Mesquita et al. adapted MOMENT, a time-series
foundation model, and demonstrated superior zero-shot generalization compared to task-specific models when tested on
previously unseen patients[20]. Foundation models might be the future here, though they require substantial
computational resources.

5 VISUAL OVERVIEW AND COMPARISON

Figure 1 (conceptual) shows the timeline. We start with Kinect-based benchmarks in 2016. By 2024-2025, we see
egocentric vision and weakly supervised learning becoming mainstream.

Stroke Rehab Detection Evolution (2018-2025)

2021-2023 2024-2025
v
Egocentric Vision Weakly Supervised
(First-Persen) [12] Learning [21]
CSM Video Analysis Foundation Models
[11] (MOMENT) [20]
Tablet-based Vision Physical Priori
[8]

Multimodal Fusion
6

Soft Exo Neural
Control [18] Wearable Strain
. Sensors [15]

\ v \J

Figure 1 Technology Evolution Timeline

Table 1 provides a systematic comparison of the representative studies we've discussed, including the newly integrated
literature.
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Table 1 Comparison of Representative Studies
Study Sensors Used Method What They Measured Key Results
sEMG + Soft Neural Network Exoskeleton control . Smart .sw1tch1.ng between
Wu [18] active/passive/assist modes; better
Exoskeleton Control modes .
tracking
0 . _
Zheng [11] RGB video 3D-MobileNetV2 CSM severity assessment 97.40% accuracy "flutoma_tmg the "grip
and release" counting test
Chua [15] Flexible strain Statistical correlation Fatigue-induced Detected shoulder lift via skin stretch;

sensor

First-person

compensation

matched gold-standard EMG
First system to catch this

Dousty [12] camera Hand detection + RNN Tenodesis grasp compensatory grasp from user's
viewpoint
1 . 0/ . 1 1
Céias [21] RGB video Weakly superv1sed Stroke rehab exercises F1: 80._5 %; trained on video labels,_ not
learning expensive frame-by-frame annotations
Zhi [6] Kinect depth SVM / RNN Robot-assisted rehab Exposed the §1m-to-real p_roblem:
sensor models fail on real patients
RGB (MAGIC .. Low-cost portable system using
Sohn [7] Table) Computer vision Cerebral palsy assessment tracked objects and games
Movement smoothness Detected dysfunction in daily tasks
Lull4] MU (SPARC) Frozen shoulder when broken into sub-movements
Mesquita [20] Body keypoints MOMENT foundation Cross—patlf_:nt AUC: 0.73; workf?d on p_at_lents it
model generalization never saw during training
Yamamoto [9] Single RGB OpenPose Gait analys_ls for AFO Precise enough to guide orthosis
camera tuning adjustments

Pilla-Barroso

RGB-D hybrid

Curvature-based

Joint angle estimation

Error < 6.8°; automatically switches

[10] switching between RGB/depth when occluded
. KNN with PCA . . F1: 96.8%; simple approach beat deep
Ding [17] 3 IMUs features Severity grading learning on limited data
0, 1 1 0,
Zhu [19] IMU Encoder-decoder GRU Handling data loss 31.5% error reduction even with 50%
packet loss
S. Gao [16] sEMG + Physics-informed Active vs. passive 94.7% accuracy distinguishing learned
’ pressure sensors network movement non-use patterns
. Single wrist . Strong effect size (Cohen's D: 0.99)
Okita [13] IMU Movement entropy Movement quality separating impairment levels
0 -
Lin [8] Tablet camera XGBoost Home-based detection 92% accuracy on consumer tablets

no special hardware needed

6 WHAT THIS MEANS CLINICALLY

6.1 Beyond Binary Detection

Algorithmic advances have enabled a transition from simple binary classification (compensating or not) to more
granular quantification. Modern systems can provide severity grading and assess specific conditions like CSM and
frozen shoulder [11, 14, 17]. The integration of control algorithms suggests future systems might simultaneously detect
compensation and adjust robotic assistance levels - basically concurrent assessment and intervention, which would be a
big step forward[18].

6.2 Design Considerations for Clinical Implementation

Single-tablet solutions and wearable patches demonstrate that simplicity really does promote adherence in home
settings[8, 15]. The MAGIC Table shows that rehabilitation can be gamified and made portable, which reduces barriers
especially for pediatric patients who need extra motivation[7].

However, complex multi-sensor setups with multiple electrodes continue to see high abandonment rates. Patients get
frustrated, caregivers have difficulties with system setup, and people just stop using them. Technology usability directly
impacts clinical adoption - this can't be overstated.

6.3 Barriers to Clinical Adoption

Technical success doesn't guarantee clinical implementation, which is frustrating for researchers. The sim-to-real gap
that Zhi et al. identified remains a significant obstacle[6]. Algorithms trained on healthy actors performing simulated
impaired movements just don't generalize well to actual patients. Future research really needs to prioritize collecting
data from authentic patient populations, like the recent work on CSM and stroke datasets has done[11, 21]. But this
requires interdisciplinary collaboration between engineers and clinicians, which isn't always easy to coordinate.
Regulatory and liability frameworks present additional challenges that often get overlooked. Who's responsible when an
Al system guides a clinical decision that turns out badly? These questions need answers before widespread adoption can
happen.
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