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Abstract: Tunnel Boring Machines (TBMs) are widely used in subway and tunnel projects due to their efficiency and
safety. However, the complexity and high uncertainty of the construction environment lead to lag and limitations in
traditional risk identification methods. Addressing the urgent need for intelligent management, this study combines the
advantages of Knowledge Graphs (KG) in structured knowledge representation and Large Language Models (LLMs) in
natural language understanding to construct a synergistically driven intelligent risk identification and decision support
system for TBM construction.First, the study employs ontology modeling to build a risk knowledge graph covering risk
factors, risk-causing mechanisms, and consequences, achieving entity-relation extraction through multi-source
heterogeneous data mining. Second, the Large Language Model is adapted and fine-tuned by constructing an
engineering corpus and injecting domain knowledge. Finally, a synergistic mechanism is designed to realize intelligent
risk identification and decision-making.The innovations of this study include: (1) Proposing a "Knowledge Retrieval -
Semantic Understanding - Logical Reasoning" three-layer architecture, effectively fusing explicit knowledge with
reasoning capabilities; (2) Developing a multi-modal risk feature fusion identification model, improving identification
accuracy and real-time performance; and (3) Building an intelligent recommendation engine for risk response plans,
supporting multi-scenario simulation. Experimental and engineering application results indicate that the system
significantly improves the precision and recall of risk identification, effectively enhancing the risk management level of
TBM construction.
Keywords: TBM construction; Risk management; Knowledge graph; Large language model; Intelligent decision
support

1 INTRODUCTION

With the continuous expansion of underground space development, Tunnel Boring Machines (TBMs) have become core
equipment in tunnel engineering construction due to their efficient and safe construction characteristics. However,
facing the increasingly complex and variable underground environments, risk control during TBM construction still
encounters severe challenges. The extreme uncertainty of geological conditions—manifested in the unpredictability of
disastrous risks such as mud bursts, water inrushes, and rock bursts—superimposed with potential threats of mechanical
failures, drastically increases the difficulty of construction safety management. Traditional risk identification methods
mostly rely on expert experience rules or statistical analysis based on historical data. The former often exhibits obvious
lag and limitations when dealing with dynamic construction scenarios, while the latter struggles to effectively cope with
complex, non-linear risk evolution laws. Although some intelligent means have been introduced, existing systems still
face key bottlenecks when confronting massive, heterogeneous engineering data, such as difficulties in structural
processing, insufficient deep semantic understanding capabilities, and poor real-time performance in decision support.
Meanwhile, breakthrough progress in artificial intelligence technology, particularly the rise of Knowledge Graphs (KGs)
and Large Language Models (LLMs), provides a new technical paradigm for solving the aforementioned engineering
problems. As a structured knowledge representation method, knowledge graphs can network complex engineering
knowledge through ontological modeling, possessing powerful logical reasoning and knowledge retrieval capabilities;
meanwhile, LLMs excel in natural language understanding and generation, enabling efficient parsing of unstructured
text data such as construction logs and reports. The collaborative drive of both promises to build a three-layer
architecture of "knowledge retrieval - semantic understanding - logical reasoning": knowledge graphs provide precise
domain background knowledge for LLMs, correcting "hallucination" phenomena; LLMs endow knowledge graphs with
stronger generalized understanding and text processing capabilities, thereby achieving deep fusion of unstructured
engineering data and structured domain knowledge.
Based on this, this study aims to address key scientific issues existing in current TBM construction risk management,
such as the "lack of deep semantic understanding" and "difficulties in multi-source data fusion." This study will explore
intelligent risk control solutions suitable for TBM construction environments by constructing an efficient risk
knowledge graph and combining it with the collaborative mechanism of large language models. The focus will be on
investigating how to utilize the complementary advantages of both to enhance the system's risk identification accuracy
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and real-time response capability under complex contexts, and to optimize user interaction and decision support
functions, ultimately establishing a TBM construction risk intelligent control system with robustness and continuous
evolutionary capability.

2 RESEARCH PROGRESS ON TBM CONSTRUCTION RISK INTELLIGENT CONTROL AND KEY
TECHNOLOGIES

2.1 Research Progress on TBM Construction Risk Identification

With the continuous development of tunnel engineering technology, the application of TBMs in underground
engineering is becoming increasingly widespread. The risks faced during TBM construction possess diversity and
complexity; therefore, effective risk identification research is of great significance for ensuring construction safety.
Currently, research progress on TBM construction risk identification mainly focuses on the following aspects: First, risk
identification methods based on expert experience and rules have been widely used in the past few decades. Such
methods typically rely on expert knowledge bases and a series of preset rules to identify potential risks through logical
reasoning. However, when dealing with complex and dynamic construction scenarios, these methods often exhibit
certain lags and limitations[1]. Second, data-driven risk prediction models based on machine learning have gradually
become a research hotspot. These models predict future risks by analyzing massive amounts of historical data to mine
the intrinsic connections between risk factors. For example, algorithms such as Support Vector Machines (SVM),
Random Forest (RF), and Neural Networks (NN) have achieved certain results in risk identification. However, the
adaptability of these models in dynamic scenarios still requires further research. In recent years, with the development
of big data and AI technology, researchers have begun to focus on the adaptability analysis of existing methods in
dynamic scenarios, such as how to handle noise and outliers in real-time data streams, how to adjust model parameters
to adapt to the constantly changing construction environment, and how to improve the generalization ability of models
on sparse datasets. Solving these problems is crucial for improving the accuracy and timeliness of risk identification.
Furthermore, some studies have attempted to combine knowledge graphs with machine learning models to improve the
efficiency and accuracy of risk identification[2]. By constructing a TBM construction risk knowledge graph, a
comprehensive understanding of risk factors, hazard mechanisms, and consequences can be achieved, thereby providing
more precise input information for machine learning models, as shown in Figure 1. In summary, the progress of TBM
construction risk identification research indicates that although existing methods have achieved certain results in theory
and practice, challenges remain regarding adaptability and real-time performance in dynamic scenarios. Future research
needs to further explore data-driven intelligent methods and combine them with technologies like knowledge graphs to
improve the comprehensiveness and accuracy of risk identification.

Figure 1 TBM Construction Risk Identification Research Progress
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2.2 Overview of Knowledge Graph Construction and Reasoning Technology

As a structured semantic knowledge base, the knowledge graph has seen increasingly widespread application in the
field of civil engineering, particularly demonstrating significant advantages in the context of Tunnel Boring Machine
(TBM) construction risk management. The construction of a knowledge graph involves multiple technical links,
including ontology modeling, entity-relation extraction, and knowledge fusion. Ontology modeling serves as the
foundation of knowledge graph construction by defining concepts, attributes, and relations to build a domain knowledge
framework. In the field of civil engineering, the TBM construction risk ontology model encompasses multiple
dimensions such as risk types, risk factors, hazard mechanisms, and consequences. For instance, a risk ontology
concerning tunnel collapse might include geological conditions, construction methods, and environmental factors as risk
factors, where the relationships and attributes among them constitute the ontology model. Entity-relation extraction is a
key technology in knowledge graph construction, aimed at identifying key entities and their interrelationships from
unstructured data[3]. In TBM construction logs and geological reports, the utilization of deep learning technologies,
such as Conditional Random Fields (CRF) or Transformer-based models, can effectively identify risk-related entities
and relations. Furthermore, combining domain dictionaries with distant supervision techniques can enhance the
accuracy and efficiency of relation extraction. Knowledge fusion is the process of handling redundant and contradictory
information within the knowledge graph. In TBM construction risk knowledge graphs, information conflicts from
different data sources may exist, such as inconsistencies between sensor data and manual records. Through entity
alignment and attribute fusion technologies, this information can be integrated to form a consistent knowledge base.
Application cases of knowledge graphs in the civil engineering field include, but are not limited to: the construction of
risk warning systems that identify potential risks and issue warnings through the analysis of real-time and historical data;
the development of decision support systems that utilize knowledge graphs to provide structured knowledge support to
assist engineers in decision-making; and construction safety monitoring, which analyzes risk changes during the
construction process via knowledge graphs to adjust construction schemes in real time. The application of reasoning
technology in knowledge graphs primarily refers to using the structured knowledge within the graph for logical
reasoning and prediction[4]. In TBM construction risk management, reasoning technology can be used to predict the
probability of risk occurrence, assess the severity of risk consequences, and generate risk response strategies. For
example, through path reasoning in the knowledge graph, the interactions between different risk factors can be analyzed
to infer potential risk chains. In summary, knowledge graph construction and reasoning technologies play an important
role in TBM construction risk management; they not only improve the accuracy of risk identification but also provide a
strong knowledge foundation for decision support.

2.3 Application Status of Large Language Models in Engineering Decision-Making

In recent years, Large Language Models (LLMs), as a significant achievement in the field of artificial intelligence, have
gradually expanded their application scope from internet content generation to the domain of engineering decision-
making. In engineering decision-making, the use of LLMs is mainly reflected in the rapid understanding, processing,
and generation of structured knowledge from unstructured data. In the field of civil engineering, the capability
boundaries of general large language models have been explored to a certain extent. For example, models can process
and analyze text data such as engineering reports and construction logs to quickly identify key information and provide
decision support for engineers. Meanwhile, domain-specific large models can further improve their application effects
in specific engineering scenarios through fine-tuning and adaptation technologies. Specifically regarding assisted
engineering decision-making, the exploratory applications of LLMs are manifested in several aspects. First, LLMs can
understand engineering-related professional terminology and complex contexts through natural language processing
technologies, providing support for the semantic understanding of engineering problems. Second, LLMs can be
combined with knowledge graphs to enhance the semantic understanding and reasoning capabilities of engineering
decisions through the structured knowledge of the graph and the generative capability of the LLM. For instance, in
TBM construction risk identification, LLMs can assist in analyzing unstructured text in construction logs, extracting
risk-related information, and combining it with structured knowledge in the knowledge graph to perform reasoning and
prediction of risk factors[5]. Additionally, LLMs can generate solution recommendations for specific engineering
problems based on historical data and expert experience. However, despite the progress made in the application of
LLMs in engineering decision-making, their application in the engineering field still faces challenges. For example, the
generalization ability of models is limited; for rare or complex engineering problems, models may not be able to
provide accurate decision support. Furthermore, the real-time performance and accuracy of models also need to be
further improved to meet the needs of rapid decision-making at engineering sites[6]. Overall, the application of LLMs
in engineering decision-making is still in the primary stage, with huge potential for future development. With the
continuous advancement of model technology and the accumulation of engineering data, it is expected that LLMs will
play an increasingly important role in engineering decision-making.

2.4 Research Gaps in Collaborative Intelligent Systems in Civil Engineering

As an innovative means of risk management in civil engineering, the research gap in collaborative intelligent systems is
mainly reflected in the technical bottlenecks of multi-modal data collaborative processing. Currently, data types in the
field of civil engineering are diverse, including structured engineering drawings, unstructured construction logs and text
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reports, and time-series sensor data. The multi-dimensional characteristics and heterogeneous nature of these data pose
challenges to the processing capabilities of collaborative intelligent systems. First, at the data fusion level, how to
achieve effective integration and information extraction of data from different sources and formats is a weak link in
current research. Although existing studies have effectively organized structured data by constructing knowledge graphs,
difficulties remain in the processing of unstructured data, especially in understanding complex semantics and implied
information in text. Second, at the data processing level, collaborative intelligent systems need to be able to process and
analyze large-scale, dynamically changing data streams. However, existing data processing frameworks often fail to
adapt to this dynamism and lack effective strategies in data preprocessing, noise identification, and missing value
handling[7]. Furthermore, at the model fusion level, how to effectively combine the structured knowledge of knowledge
graphs with the ability of language models to process unstructured text to form complementary advantages is a difficult
problem in current research. In addition, the interaction mechanisms and collaborative workflows between models are
not yet clear, leading to difficulties in achieving expected results in practical system applications. Finally, at the system
evaluation and optimization level, there is currently a lack of a comprehensive evaluation system to measure the
performance of collaborative intelligent systems in civil engineering applications, including key indicators such as
system real-time performance, accuracy, and robustness[8]. At the same time, research on continuous optimization of
systems and knowledge update mechanisms is relatively insufficient. Therefore, addressing the aforementioned research
gaps, future research should focus on developing efficient multi-modal data processing frameworks, optimizing the
collaborative mechanisms of knowledge graphs and language models, and establishing sound system evaluation and
optimization processes to promote the widespread application of collaborative intelligent systems in the field of civil
engineering.

2.5 Limitations of Existing Research and Breakdown Directions of This Paper

Although existing research on TBM construction risk identification has made certain progress, there are still numerous
limitations. First, the problems of data silos and knowledge fragmentation are prominent, leading to incomplete
information acquisition during the risk identification process, which affects the accuracy of risk control. Second,
traditional models often exhibit insufficient model interpretability and decision reliability when dealing with complex
non-linear relationships, making it difficult to meet actual engineering requirements. This paper aims to break through
the limitations of existing research and proposes the following innovative paths: first, constructing a comprehensive
TBM construction risk knowledge graph to achieve deep fusion of unstructured engineering data and structured
knowledge; second, adopting large language models to enhance the system's deep semantic understanding capability of
complex engineering texts; third, designing risk identification and decision-making algorithms driven by the
collaboration of knowledge graphs and LLMs to improve the accuracy and reliability of decisions[9]. Specifically, this
paper will focus on solving the following key problems: how to construct a knowledge graph suitable for TBM
construction risk control to achieve comprehensive data fusion and deep mining; how to fine-tune and optimize large
language models to improve their semantic understanding and generation capabilities in the engineering domain; and
how to design effective collaborative mechanisms so that knowledge graphs and LLMs can exert their maximum
efficacy in risk identification and decision-making. Through these innovative paths, this study is expected to provide a
more intelligent solution for TBM construction risk control.

3 OVERALL SYSTEM ARCHITECTURE DESIGN

3.1 System Design Goals and Functional Requirements

The full-process TBM construction risk intelligent control system aims to achieve real-time monitoring, intelligent
identification, and decision support for TBM construction risks by integrating knowledge graphs and large language
models[10]. The design goals and functional requirements of the system are as follows: First, the system design goals
include improving the real-time performance and accuracy of TBM construction risk management to achieve early
warning and effective control of risks; building a user-friendly interactive interface to enhance user decision-making
experience and efficiency; and ensuring the reliability and stability of the system to adapt to complex construction
environments and diverse user needs. Specifically, the functional requirements of the system are divided into the
following aspects: 1. Real-time and Accuracy Performance Indicators: The system needs to possess high-speed data
processing capabilities to meet real-time requirements; meanwhile, through deep learning and knowledge reasoning, it
ensures the accuracy of risk identification and prediction. 2. User Interaction Function: The system should provide an
intuitive and easy-to-operate user interface, including a risk situational awareness dashboard, visualized browsing of
knowledge graphs, and a natural language Q&A system, to support users in efficiently acquiring information,
submitting data, and receiving decision recommendations. 3. Decision Support Function: The system needs to integrate
multiple information resources such as historical data mining, real-time data analysis, and expert knowledge bases, and
provide services such as intelligent recommendation of risk response plans, multi-scenario simulation, and contingency
plan generation through intelligent algorithms. 4. System Scalability and Compatibility: The system design should
adopt a modular plugin design concept to support compatibility with different types of TBM equipment; at the same
time, the system should have cloud deployment and localized adaptation capabilities to meet the application needs of
different scenarios. 5. System Self-learning and Optimization Mechanism: By collecting user feedback data, the system
can achieve self-optimization, continuously improving the accuracy and reliability of decision recommendations, and
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forming a benign feedback loop. Through the realization of the above design goals and functional requirements, the
full-process TBM construction risk intelligent control system will provide strong support for risk management, reduce
the risk of safety accidents, and improve construction management efficiency and quality.

3.2 Collaborative Mechanism Framework of Knowledge Graph and LLM

The collaborative mechanism framework of Knowledge Graphs and Large Language Models (LLMs) aims to build an
efficient and intelligent risk identification and decision support system. The three-layer architecture proposed in this
study, namely "Knowledge Retrieval - Semantic Understanding - Logical Reasoning," provides a complete process for
the system from data input to decision output, as shown in Figure 2. First, the knowledge retrieval layer is responsible
for extracting structured knowledge related to the current construction environment from the knowledge graph. This
process includes queries to the ontology model and efficient retrieval of entities, relations, and attributes. The ontology
modeling in the knowledge graph not only covers the conceptual classification system of TBM construction risks but
also defines the hierarchical relationships among risk factors, hazard mechanisms, and consequences. Second, the
semantic understanding layer performs deep parsing of unstructured engineering text data through the LLM to achieve
accurate understanding and expression of risk information. In this layer, the interface design and protocol specification
for dual-model interaction are key, ensuring information flow and collaborative work between the knowledge graph and
the LLM[11]. The injection of domain knowledge and Prompt engineering optimization further enhance the LLM's
ability to understand professional terminology and complex contexts. Finally, the logical reasoning layer utilizes the
structured knowledge of the knowledge graph and the semantic understanding capability of the LLM to perform logical
reasoning and decision generation. The closed-loop feedback mechanism under collaborative drive not only realizes
real-time updates of risk identification results but also continuously optimizes the decision process through model self-
learning. This mechanism can effectively handle dynamically changing construction environments and adjust risk
response strategies in a timely manner. In the practical application of the framework, the collaborative effect of the
knowledge graph and LLM is demonstrated in multiple aspects. For example, the knowledge graph provides structured
knowledge support for the LLM, enhancing its reasoning ability when facing complex engineering problems;
meanwhile, the semantic understanding capability of the LLM contributes to the dynamic update and quality assessment
of the knowledge graph, improving the accuracy and coverage of the knowledge graph. Through this collaborative
mechanism framework, the system can achieve real-time monitoring, accurate identification, and effective decision-
making for TBM construction risks, providing a new methodology and practical path for intelligent control of
construction risks.

Figure 2 Knowledge Graph & LLM Collaborative Mechanism Framework for TBM Risk Identification

3.3 Data Flow and Module Interaction Logic
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Multi-source heterogeneous data undergoes a rigorous input and flow process within the system. First, the system
integrates information from multiple channels, including geological investigation reports, construction logs, sensor
time-series data, and text data. Before entering the system, these data must undergo structured processing and cleaning
alignment to ensure data quality and consistency; data noise identification and missing value imputation strategies are
crucial in this process, ensuring the accuracy of subsequent processing. The calling logic between the Knowledge Graph
module and the Large Language Model (LLM) module constitutes the core interaction mechanism of the system. The
Knowledge Graph module is responsible for extracting key information such as risk factors, hazard mechanisms, and
consequences from structured data, and establishing the relational attributes and constraint rules of the ontology model.
Meanwhile, the LLM module performs deep semantic understanding on unstructured text data to extract text features
related to risks[12]. In the decision result output and visualization process, the system first conducts logical reasoning
through the Knowledge Graph module to identify potential risk points and transmits this information to the LLM
module. Utilizing its powerful language generation capability, the LLM module translates these logical reasoning
results into easy-to-understand natural language descriptions, which are then combined with data visualization
technologies to provide users with intuitive risk assessment reports. Furthermore, the system designs a closed-loop
feedback mechanism to ensure that the interaction between the Knowledge Graph and the LLM module is dynamic and
iterative. This mechanism allows the system to continuously optimize models based on the latest data and feedback,
thereby improving the accuracy and efficiency of decision-making. Through this logic design of data flow and module
interaction, the system achieves full-process intelligent control of TBM construction risks, meeting performance
indicators for real-time capabilities and accuracy, and providing effective decision support functions for users.

3.4 System Scalability and Compatibility Design

System scalability and compatibility design are key factors guaranteeing stable operation in diverse environments. In
this study, the system adopts a modular plugin design concept to adapt to different TBM equipment and construction
environments. Modular design allows the system to rapidly integrate new functional modules according to specific
needs without large-scale refactoring of the existing system, significantly improving system flexibility and scalability.
regarding compatibility, the system has designed a series of interfaces to be compatible with data output formats of
different types of TBM equipment. These interfaces follow open standards and general protocols, ensuring the system
can seamlessly dock with mainstream TBM equipment in the market[13]. Additionally, the system supports adaptive
conversion of data formats, capable of handling data from different sources and structures, thereby enhancing data
compatibility. The cloud deployment scheme aims to achieve remote access and large-scale data processing for the
system. Through cloud deployment, the system can provide flexible scaling capabilities to cope with construction
projects of different scales; meanwhile, cloud deployment supports multi-user concurrent access, ensuring efficient
system response. The localization adaptation scheme takes into account the potential network restrictions and data
privacy issues at construction sites. The system can utilize edge computing technology to migrate partial calculation
tasks to the local end, reducing dependency on cloud services. This design not only ensures system real-time
performance but also enhances data security. The system's scalability and compatibility design enable it to adapt to the
constantly changing technical environment and construction needs, while also facilitating future functional upgrades
and technical iterations. In this way, the system can maximize user satisfaction while guaranteeing performance.

4 CONSTRUCTION OF A KNOWLEDGE GRAPH FOR TBM CONSTRUCTION RISKS

4.1 Risk Ontology Modeling and Semantic Definition

In the process of constructing the TBM construction risk knowledge graph, risk ontology modeling and semantic
definition are critical steps[14]. First, by constructing a TBM construction risk concept classification system, risk events
are classified according to type, cause, and impact, forming a hierarchical conceptual structure. On this basis,
hierarchical definitions are applied to risk factors, hazard mechanisms, and consequences to clarify the relationships and
attributes among various concepts. Furthermore, the design of relational attributes and constraint rules for the ontology
model is an important link in ensuring the quality and usability of the knowledge graph. Relational attributes define the
associations between concepts, such as causal relationships and hierarchical relationships. Constraint rules restrict
concepts and relationships to ensure the correctness and consistency of knowledge; for example, rules can be set to
restrict a certain risk factor to be associated only with specific types of hazard mechanisms. During the ontology
modeling process, it is also necessary to consider the attribute definitions of risk factors, such as risk level, occurrence
probability, and impact scope. These attributes facilitate quantitative analysis and assessment of risks. In addition, to
improve the usability of the knowledge graph, semantic relationships such as synonyms, hypernyms, and hyponyms for
related concepts should also be defined. Through the aforementioned ontology modeling and semantic definition, a
structured and hierarchical knowledge system can be built for the TBM construction risk knowledge graph. This system
helps achieve effective organization and retrieval of risk knowledge, supporting subsequent risk identification,
prediction, and decision-making. Simultaneously, the ontology model provides a foundation for the sharing and reuse of
risk knowledge, promoting the dissemination and accumulation of knowledge within the domain.

4.2 Multi-source Heterogeneous Data Acquisition and Preprocessing
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In the process of constructing the TBM construction risk knowledge graph, the acquisition and preprocessing of multi-
source heterogeneous data are critical steps. Multi-source data includes geological investigation reports, construction
logs, sensor time-series data, and related text materials, which exhibit significant differences in data type, format, and
structure, posing challenges for data integration and processing. First, regarding the structured processing of geological
investigation reports and construction logs, this study employs automated information extraction and natural language
processing technologies to convert unstructured text data into structured data formats. By designing an ontology model
suitable for the engineering domain, key information in the text, such as risk events, risk factors, and construction
parameters, can be effectively identified and extracted. Secondly, the cleaning and alignment of sensor time-series data
and text data are important links in preprocessing. Since sensor data may be affected by environmental noise and
equipment malfunctions, de-noising processing is required. This study adopts time-series analysis and wavelet
transform methods to de-noise sensor data, while utilizing data synchronization technology to ensure the
correspondence between text data and time-series data in the time dimension. Data noise identification is a difficult
point in data preprocessing. This study establishes an anomaly detection model to monitor data in real-time to identify
and exclude outliers. Furthermore, addressing the data missingness problem, multiple strategies are adopted for
imputation, including mean imputation, interpolation imputation, and model-prediction-based imputation methods, to
reduce the impact of missing data on knowledge graph construction. When processing multi-source heterogeneous data,
this study also focuses on data consistency and accuracy. By designing data quality assessment indicators, the
completeness, accuracy, and consistency of data are quantitatively evaluated to ensure that the quality of preprocessed
data meets the requirements for knowledge graph construction. In summary, the acquisition and preprocessing of multi-
source heterogeneous data provide a high-quality data foundation for the construction of the TBM construction risk
knowledge graph, as shown in Figure 3. This process involves not only data format conversion and cleaning but also
multiple links such as noise identification, missing value imputation, and data quality assessment, thereby ensuring the
reliability and effectiveness of the knowledge graph.

Figure 3 TBM Construction Risk Knowledge Graph: Multi-Source Heterogeneous Data Collection &
Preprocessing Workflow

4.3 Entity Extraction and Relationship Mining Methods

In the process of constructing the TBM construction risk knowledge graph, entity extraction and relationship mining are
crucial steps. Entity extraction involves identifying key concepts from unstructured text, such as risk events, hazard
factors, and construction phases, while relationship mining aims to discover the semantic associations between these
entities. This study employs a Named Entity Recognition (NER) model based on deep learning for entity extraction.
Based on pre-trained neural networks, this model improves the recognition accuracy of entities related to TBM
construction risks by incorporating domain-specific vocabularies and syntactic rules. Furthermore, the model achieves
joint training of entity recognition and entity classification through a multi-task learning framework, thereby enhancing
overall recognition performance. regarding relationship mining, this study designs a relationship extraction algorithm
oriented towards complex contexts. This algorithm first utilizes dependency parsing to identify grammatical
dependencies between entities and then combines prior knowledge from the knowledge graph to predict and verify
potential semantic relationships. To address the issue of insufficient annotated data in relationship extraction, this study
adopts distant supervision technology, which automatically generates pseudo-labeled data from large-scale unannotated
texts, expanding the training set size and improving the coverage and accuracy of relationship extraction. Additionally,
this study constructs a domain dictionary to enhance the accuracy of entity extraction and relationship mining. This
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dictionary contains professional terminology and related vocabulary in the field of TBM construction risk, effectively
improving model performance by introducing dictionary information during the model training and prediction stages. In
the process of entity extraction and relationship mining, this study also introduces a manual review mechanism to
resolve potential errors in the model. Through manual review, biases in model predictions can be discovered and
corrected in a timely manner, ensuring the quality of knowledge graph construction. In summary, by combining deep
learning models, distant supervision technology, domain dictionaries, and manual review mechanisms, this study
achieves effective extraction of entities and deep mining of relationships in TBM construction risk texts, providing a
solid foundation for knowledge graph construction.

4.4 Graph Dynamic Update and Quality Assessment Mechanism

As an important carrier of structured knowledge, the dynamic update and quality assessment of the knowledge graph
are essential for maintaining the timeliness and accuracy of knowledge. In the construction process of the TBM
construction risk knowledge graph, the design of the incremental knowledge update algorithm aims to ensure the timely
integration of new knowledge while handling conflict and consistency detection between knowledge. This mechanism
involves processing newly collected data, including entity recognition, relationship extraction, and attribute extraction,
and subsequently integrating the extracted knowledge into the existing graph in an appropriate manner. In the
incremental update process, the algorithm needs to prioritize consistency and redundancy detection of knowledge. By
establishing a set of strict quality control standards, such as using graph algorithms to detect cycle structures in the
knowledge graph, potential redundant relationships can be identified and eliminated. Furthermore, consistency detection
rules are introduced to ensure that newly added knowledge does not conflict with information in the existing knowledge
base. Quantitative assessment indicators for graph coverage and accuracy are important dimensions for measuring graph
quality. The coverage indicator is used to measure the extent of knowledge coverage within a specific domain, typically
assessed by calculating the ratio of annotated entities and relationships to the total potential entities and relationships.
The accuracy indicator focuses on the correctness of knowledge in the graph, verified through manual annotation or
comparison with other authoritative data sources. To improve the objectivity and automation level of assessment, an
automated assessment framework can be designed. This framework periodically extracts sample data from external
authoritative data sources and conducts comparative analysis with data in the knowledge graph to generate detailed
reports on graph quality. Additionally, machine learning algorithms can be utilized to predict knowledge in the graph
and compare it with actual results to assess the prediction accuracy of the graph. Assessment results not only help in
understanding the quality of the graph but also provide guidance for the optimization of the knowledge graph. Based on
assessment results, knowledge extraction algorithms can be adjusted, knowledge fusion strategies optimized, or existing
knowledge corrected and supplemented. In this way, the knowledge graph can be continuously iteratively improved,
providing more accurate and comprehensive support for TBM construction risk control.

5 LARGE LANGUAGE MODEL ADAPTATION AND FINE-TUNING STRATEGIES

5.1 Construction of Engineering Domain Corpus

As a fundamental resource for natural language processing, the corpus is crucial for the adaptation and fine-tuning of
large language models in the engineering domain. The engineering domain corpus constructed in this study aims to
provide rich, professional data support with practical application backgrounds for the model. The construction of the
corpus includes the establishment of a TBM professional terminology database and a construction case database, as well
as the cleaning and annotation of high-quality instruction fine-tuning data. The construction of the TBM professional
terminology database is based on in-depth analysis of literature in the tunnel engineering field, collecting and
organizing professional terms related to TBM construction, including equipment components, construction processes,
and geological conditions. The construction case database gathers typical TBM construction cases from home and
abroad, covering application scenarios under different geological conditions and different types of TBM equipment, as
well as corresponding risk events and response measures. The cleaning and annotation of high-quality instruction fine-
tuning data constitute a key link in corpus construction[15]. The cleaning process involves removing duplicate data,
correcting erroneous data, and filtering irrelevant information. The annotation process employs professional knowledge
and domain expert experience to precisely classify and annotate data, ensuring data quality meets the requirements of
model training. Version management of corpus data is significant for tracking data changes and ensuring data
consistency. This study adopts a version control system to manage different versions of the corpus, ensuring detailed
records for each update to facilitate backtracking and problem localization. regarding quality control, a data quality
assessment system is established to periodically evaluate the quality of the corpus, ensuring data accuracy and reliability.
Furthermore, the corpus construction process also emphasizes data diversity and balance to avoid model overfitting on
specific types of data. Through the aforementioned construction process, this study provides a high-quality data
foundation for the adaptation and fine-tuning of large language models in the engineering domain.

5.2 Domain Knowledge Injection and Prompt Engineering Optimization

Domain knowledge injection is a key technology for enhancing the performance of large language models in specific
application scenarios. This study adopts a knowledge injection method based on Retrieval-Augmented Generation
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(RAG), combining the pre-constructed TBM construction risk knowledge graph with the language model to improve
the model's ability to understand and generate professional domain texts. regarding Prompt engineering optimization,
this study designs a dynamic Prompt generation strategy. This strategy dynamically adjusts Prompt content based on the
contextual information of the input text, optimizing the context window to better guide the model to focus on task-
related information. Additionally, Chain-of-Thought (CoT) prompt design facilitates the model in performing logical
reasoning and producing semantically coherent outputs during generation. specifically, this study first extracts key risk
factors and hazard mechanisms by analyzing entity relationships and attributes in the TBM construction risk knowledge
graph. This information is used to construct Prompt templates, which, combined with general knowledge learned during
the model's pre-training phase, enhance the model's understanding capabilities in the professional domain. During the
dynamic Prompt generation process, the system adjusts the contextual information of the Prompt in real-time according
to the user's input text content to include knowledge most relevant to the current task. This strategy helps the model
quickly locate key information and reduce interference from irrelevant information when handling complex engineering
problems. Furthermore, this study also explores the impact of context window size on model performance. Experiments
reveal that an appropriate context window size can significantly improve risk identification accuracy, while windows
that are too large or too small lead to performance degradation. In summary, domain knowledge injection and Prompt
engineering optimization effectively improve the performance of large language models on TBM construction risk
identification tasks, laying a foundation for the model's practical application.

5.3 Model Fine-tuning Methods and Parameter Configuration

In the model fine-tuning stage, selecting an appropriate pre-trained model as a base is critical. This paper selects and
evaluates various pre-trained language models based on the characteristics of the TBM construction field. On this basis,
efficient fine-tuning techniques are explored, and model hyperparameters are optimized. First, this paper evaluates the
adaptability of mainstream pre-trained models such as BERT, RoBERTa, and GPT-3 in the TBM construction field.
Comparative experiments reveal that the RoBERTa model possesses better semantic understanding and generation
capabilities when processing text data in the construction field. Therefore, this paper selects RoBERTa as the base
model for subsequent fine-tuning. Second, this paper adopts efficient fine-tuning techniques such as LoRA (Low-Rank
Adaptation) and P-Tuning to reduce model training costs and accelerate fine-tuning speed. LoRA adapts model
parameters by introducing low-rank matrices, while P-Tuning achieves fine-tuning by adjusting the output distribution
of the model's intermediate layers[16]. Both methods can improve fine-tuning efficiency without significantly affecting
model performance. regarding hyperparameter optimization, this paper employs Grid Search and Bayesian
Optimization methods. Comparative experiments show that Bayesian Optimization has higher efficiency and better
optimization effects during the parameter space search process. Specifically, this paper optimizes the following
hyperparameters: 1. Learning rate: Choosing an appropriate learning rate is crucial for model training. An excessively
high learning rate may cause the model to fail to converge, while an excessively low learning rate may lead to an overly
long training process. 2. Training batch size: An appropriate batch size can balance the convergence speed of model
training and memory consumption. 3. Training epochs: Increasing training epochs can improve model performance but
also increases computational costs. Additionally, this paper adjusts training strategies, such as adopting dynamic
learning rate adjustment and gradient accumulation techniques, to improve model performance and stability during the
fine-tuning process. In summary, through pre-trained model selection, efficient fine-tuning techniques, and adjustments
to hyperparameter optimization and training strategies, this paper successfully improves the adaptability and
performance of large language models in the TBM construction field, providing an effective model foundation for
subsequent risk identification and decision support.

5.4 Verification of Risk Semantic Understanding and Generation Capabilities

In the verification of risk semantic understanding and generation capabilities, this study mainly focuses on the accuracy
of the model in understanding complex engineering texts and the professionalism and fluency in generating risk
descriptions. First, by analyzing a series of TBM construction logs, geological reports, and expert interview records, a
text dataset containing real engineering scenarios was constructed. This dataset covers various risk types, such as
collapses, water inrushes, and mechanical failures, as well as corresponding risk descriptions and response measures. To
assess the model's risk semantic understanding capability, this study designed a series of qualitative and quantitative
tests. Qualitative testing involves expert review, where domain experts are invited to score the risk descriptions
generated by the model to judge whether they conform to engineering reality and professional standards. Quantitative
testing uses accuracy, recall, and F1 score as evaluation indicators to measure the model's performance in identifying
and generating risk descriptions[17]. In the tests, the model demonstrated high professionalism and fluency in risk
description generation, but hallucination phenomena still existed in certain complex contexts, where the model might
generate descriptions that seem reasonable but are actually inconsistent with the context. To suppress this phenomenon,
this study adopted the following strategies: 1. Introduce domain knowledge-enhanced pre-trained models to improve the
model's understanding of professional terminology and complex relationships by fusing structured knowledge from the
knowledge graph with the capabilities of the language model. 2. Optimize Prompt design by introducing Chain-of-
Thought prompts and dynamic Prompt generation strategies to guide the model to pay more attention to contextual
information when generating descriptions. 3. Apply model hallucination detection technology to identify and correct



YongKun Li & Yin Bo

Volume 4, Issue 1, Pp 1-18, 2026

10

potential hallucination content by analyzing the correlation between generated risk descriptions and facts in the
knowledge graph. Test results indicate that after optimization with the above strategies, the hallucination phenomenon
in the model's risk description generation was effectively suppressed, and accuracy, recall, and F1 score all improved.
Especially when processing engineering texts containing rich professional terminology and complex relationships, the
model's performance significantly improved, showing good adaptability and robustness. In summary, through
meticulous model assessment and optimization, this study verified the effectiveness of the model in terms of risk
semantic understanding and generation capabilities, providing reliable technical support for intelligent control of TBM
construction risks. However, the model's performance in extremely rare risk scenarios remains to be further studied and
improved.

6 COLLABORATIVE DRIVING MECHANISM AND RISK IDENTIFICATION ALGORITHMS

6.1 Knowledge Graph-Guided LLM Reasoning Enhancement Strategy

The Knowledge Graph-guided Large Language Model (LLM) reasoning enhancement strategy aims to improve the
LLM's understanding and reasoning capabilities for complex engineering problems through structured knowledge. The
core of this strategy lies in mapping structured knowledge from the knowledge graph to the LLM's process of handling
unstructured text, thereby enhancing the model's reasoning capability in specific domains. First, the mapping
mechanism from structured knowledge to unstructured text involves combining elements such as entities, relationships,
and attributes from the knowledge graph with the LLM's input text. By embedding knowledge from the graph into the
text in the form of semantic role labeling, rich background knowledge is provided to the LLM, facilitating its
understanding and reasoning of implied information in the text. Second, the reasoning correction method based on
graph path constraints is one of the key technologies of this strategy. This method utilizes path information in the
knowledge graph to constrain and guide the LLM's reasoning process, reducing potential biases and errors during
reasoning. By analyzing relationship paths between entities in the graph, the LLM can more accurately identify and
infer implied relationships and logic in the text. Furthermore, knowledge tracing technology to improve model
interpretability is an important component of the strategy. By performing knowledge tracing on the LLM's reasoning
results, the specific knowledge sources supporting or refuting a certain conclusion can be tracked, thereby improving
the interpretability of model decisions. This process not only helps enhance user understanding and trust in model
decisions but also provides effective means for model debugging and optimization. In summary, the Knowledge Graph-
guided LLM reasoning enhancement strategy provides new methods and ideas for intelligent reasoning in the
engineering field by fusing structured knowledge with the LLM's text processing capability. The implementation of this
strategy is expected to significantly improve the performance and reliability of LLMs when dealing with complex
engineering problems.

6.2 LLM-Assisted Knowledge Graph Completion and Correction Mechanism

Knowledge graphs possess significant advantages in structured knowledge representation and reasoning; however,
practically constructed knowledge graphs often suffer from incompleteness and errors, which limit their application
effectiveness. To this end, this study proposes an LLM-assisted knowledge graph completion and correction mechanism.
First, utilizing the text generation capability of the LLM, potential knowledge can be extracted from unstructured text to
complete missing relationships in the knowledge graph. Specifically, by designing appropriate Prompts, the LLM is
guided to generate sentences describing entity relationships, from which triples are then extracted using entity
recognition and relationship extraction technologies and added to the knowledge graph. Second, this study adopts a
method based on semantic logic for anomaly knowledge identification and correction. By representing relationships in
the knowledge graph as logical expressions and combining them with the LLM's reasoning capability, logical
contradictions and anomalous knowledge can be detected. For detected anomalous knowledge, the system automatically
performs corrections to ensure the accuracy and consistency of the knowledge graph. Furthermore, this study designs a
bidirectional iterative optimization process for the graph and the model. On the one hand, LLM-assisted knowledge
graph completion and correction can improve the quality of the knowledge graph, thereby enhancing the performance of
the entire system; on the other hand, optimization of the knowledge graph can conversely guide the fine-tuning and
optimization of the LLM, forming a virtuous cycle. In practical application, this study selected a knowledge graph in the
tunnel engineering field for testing. Experimental results show that the proposed LLM-assisted knowledge graph
completion and correction mechanism can effectively improve the completeness and accuracy of the knowledge graph,
thereby enhancing the accuracy of risk identification and decision-making.

6.3 Multi-modal Risk Feature Fusion Recognition Model

The multi-modal risk feature fusion recognition model aims to build a more comprehensive risk assessment framework
by integrating text semantic features and numerical time-series features. Text semantic features can capture potential
risk information in unstructured data such as construction logs and reports, while numerical time-series features can
reflect dynamic trends in sensor data. The combination of both not only enhances the model's recognition capability but
also improves its adaptability in complex scenarios. In the fusion architecture, text data undergoes preprocessing and
entity recognition, followed by the extraction of key semantic information such as risk events and hazard factors via
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natural language processing technologies. Meanwhile, numerical time-series data undergoes feature engineering, such
as time window extraction and statistical feature calculation, converting into quantifiable risk indicators. The
application of a cross-modal attention mechanism enables the model to effectively associate risk features across
different modalities, highlighting key information through weight allocation, and subsequently improving risk
identification accuracy. Empirical research indicates that the fusion model demonstrates significant advantages when
processing multi-source heterogeneous data8. For example, in a certain TBM construction project, the fusion model
successfully identified potential risks difficult for traditional methods to discover by analyzing geological reports and
sensor data. Additionally, the robustness of the fusion model against data sparsity and noise was also verified; even
under conditions of incomplete or interfered information, the model maintained high recognition accuracy. Analysis of
advantages in multi-source data complementarity shows that the fusion model can synthesize information from different
data sources to form a more comprehensive risk profile. Text data provides qualitative descriptions of risks, while
numerical data supplements quantitative dimensions; the combination of both makes risk identification more precise.
Furthermore, the fusion model can establish connections between different types of risks, providing deeper insights for
risk management and decision-making.

6.4 Real-time Risk Scoring and Prioritization Algorithm

In the design of the real-time risk scoring and prioritization algorithm, this study proposes a comprehensive evaluation
model based on multi-attribute decision-making. This model comprehensively considers multiple dimensions such as
potential impact, probability of occurrence, and urgency of risks to achieve dynamic quantitative assessment and
prioritization of TBM construction risks. First, the model quantifies various risk factors by constructing a risk factor
indicator system. Specific methods include using expert scoring to determine the weights of various risk factors and
combining on-site monitoring data and historical accident cases to quantitatively assess the occurrence probability and
impact degree of risk factors. On this basis, a time sensitivity factor is introduced to reflect the dynamic characteristics
of risks changing over time. Second, to dynamically adjust the weight allocation of risk scores, this study designs a
dynamic weight allocation mechanism. This mechanism automatically adjusts the weights of various risk factors
according to changes in the current construction phase and risk environment, ensuring the scoring model can adapt to
dynamic changes during the construction process. Additionally, the model adopts an automatic risk level classification
algorithm, which automatically classifies risks into different levels based on real-time scoring results, facilitating
decision-makers to quickly identify and respond to high-priority risks. regarding the prioritization algorithm, this study
adopts a sorting method based on Risk Value (RV). This method combines the possible loss and occurrence probability
of a risk to calculate a comprehensive risk value, which serves as the basis for risk sorting. Meanwhile, to improve the
accuracy of early warnings, this study also designs an early warning trigger mechanism for high-priority risks. When
the risk score exceeds a preset threshold, the system automatically triggers an alert, prompting decision-makers to take
corresponding risk control measures. Through the application of the aforementioned real-time risk scoring and
prioritization algorithm, the efficiency and accuracy of TBM construction risk management can be effectively improved.
In practical engineering applications, this algorithm helps decision-makers quickly identify key risks and rationally
allocate resources, thereby reducing the incidence of construction safety accidents.

7 DESIGN AND IMPLEMENTATION OF THE DECISION SUPPORT MODULE

7.1 Risk Response Plan Intelligent Recommendation Engine

In the process of constructing the decision support module, the intelligent recommendation engine for risk response
plans is a core component. This engine provides customized risk response suggestions for construction personnel by
integrating historical data analysis and real-time data analysis, combined with the reasoning capability of the knowledge
graph. The workflow of the recommendation engine includes matching and retrieval of historically similar risk cases,
generation of response plans based on current working conditions, and multi-dimensional sorting and screening of
recommendation results. First, the matching and retrieval algorithm for historically similar risk cases is based on case
similarity metrics, employing indicators such as Jaccard similarity and cosine similarity to match cases in the historical
database. This process considers not only the consistency of risk types but also multi-dimensional information such as
the environment, conditions, and impact of risk occurrence. Second, when generating response plans based on current
working conditions, the system utilizes the generative capability of the large language model combined with structured
knowledge in the knowledge graph to generate a series of possible response strategies. These strategies are personalized
based on real-time information such as the current construction environment, equipment status, and personnel allocation.
Finally, multi-dimensional sorting and screening of recommendation results are key steps to ensure the effectiveness
and feasibility of recommended plans. The sorting algorithm comprehensively considers factors such as expected effect,
implementation cost, resource requirements, and time efficiency of the plans. The screening mechanism filters
recommended plans based on constraints such as risk level, urgency, and available resources, ensuring that the final
plans provided are both reasonable and feasible. For example, in a case involving TBM construction risk management,
the system identified response measures that had been successfully applied under specific geological conditions by
analyzing historical data. Combined with the geological conditions of the current construction section, TBM equipment
status, and construction progress, the system recommended a comprehensive risk response plan. After implementation,
this plan effectively reduced the probability of risk occurrence and minimized losses caused by accidents. In short, the
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design and implementation of the intelligent recommendation engine for risk response plans aim to provide real-time,
precise risk management decision support for TBM construction, improving construction safety and efficiency. Through
continuous iterative optimization, this engine can better adapt to complex construction environments, providing strong
support for engineering risk control.

7.2 Multi-scenario Simulation and Contingency Plan Generation Mechanism

Multi-scenario simulation is a key component of construction risk management and decision support; its core lies in
simulating the evolution process of potential risk events under different conditions to predict possible outcomes and
impacts. On this basis, the contingency plan generation mechanism is responsible for formulating corresponding
response measures and plans based on simulation results, ensuring rapid and effective response when risk events occur.
The contingency plan generation mechanism proposed in this paper includes the following steps: First, construct a
parameterized risk evolution model. Based on historical data and professional knowledge, this model uses various risk
factors as parameters to simulate risk propagation and impact scope under different scenarios. By adjusting model
parameters, multiple possible construction risk scenarios can be simulated, providing a basis for subsequent plan
generation. Second, perform consequence deduction simulation under different disposal measures. Based on multi-
scenario simulation, the system assesses the effects of taking different response measures, including strategies such as
risk mitigation, risk transfer, and risk acceptance. This step helps decision-makers understand the effectiveness and
feasibility of various measures, providing a basis for final decisions. Third, the automatic generation and formatted
output of emergency plans are important functions of the plan generation mechanism. Based on simulation results and
deduction analysis, the system automatically generates emergency plans containing risk descriptions, response measures,
responsible subjects, execution flows, etc. These plans are output in a standardized format, facilitating rapid
understanding and execution by decision-makers and relevant personnel. Furthermore, the plan generation mechanism
should possess high flexibility and adaptability, capable of dynamically adjusting plan content according to changes in
actual construction conditions. At the same time, the system should support version management and updates of plans,
ensuring that plans always remain consistent with the latest risk assessment results. Through the above mechanisms, the
multi-scenario simulation and contingency plan generation mechanism can not only improve the foresight and
proactiveness of construction risk management but also reduce the impact of risk events on project progress and quality,
enhancing the overall safety level of the project. In practical application, this mechanism has demonstrated its important
role in improving construction safety and reducing accident losses.

7.3 Human-Computer Interaction Interface and Visualization Design

The human-computer interaction interface and visualization design are crucial components of the decision support
module, and the quality of their design directly affects user acceptance and usage efficiency of the system. In this study,
we focused on designing a risk situational awareness dashboard, implementing knowledge graph visualization browsing
and interaction functions, and developing an interface for a natural language Q&A system. The risk situational
awareness dashboard aims to provide users with an intuitive and comprehensive view of risk status. By graphically
displaying various risk indicators during the TBM construction process, it facilitates users in quickly identifying risk
levels and trends. The dashboard design adopts a modular concept, capable of displaying corresponding information
such as risk distribution maps, historical risk trend charts, and real-time warning information according to different user
needs and permissions. The knowledge graph visualization browsing and interaction function allows users to view and
manipulate the knowledge graph via a graphical interface. Through interactive graph browsing, users can more
intuitively understand the associations between risk factors and discover potential risk propagation paths. Additionally,
users can query, add, and edit risk factors, as well as establish and correct risk relationships through the interface. The
implementation of the natural language Q&A system interface enables users to interact with the system using natural
language to obtain explanations, predictions, and decision suggestions regarding risks. The interface design emphasizes
friendliness of user input and accuracy of system output; by intelligently parsing user questions, the system can provide
structured and easy-to-understand answers. Meanwhile, the interface also supports user feedback on answers given by
the system to facilitate continuous learning and optimization. In implementing the above functions, we adopted
advanced Web technologies and front-end frameworks to ensure interface response speed and user experience.
Simultaneously, considering system scalability and compatibility, the interface design follows a modular plugin design
concept, facilitating future functional expansion and technical upgrades. Furthermore, the system supports multiple
forms of data visualization, such as pie charts, bar charts, and line charts, to meet the needs of different users. Through
the above design, we expect to provide users with an efficient and intuitive risk management tool, thereby improving
the intelligent level of TBM construction risk management.

7.4 Decision Confidence Assessment and Feedback Closed Loop

Decision confidence assessment is a key link in ensuring the reliability of intelligent decision systems. In this study, we
proposed a user feedback-based decision confidence assessment framework, which provides users with intuitive
indications of decision quality by quantifying the uncertainty of decision suggestions. Specifically, we employed
Bayesian inference methods to probabilistically assess the credibility of decision suggestions by integrating prior
knowledge and real-time data. First, we defined a decision confidence indicator that comprehensively considers the
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model's prediction precision, the accuracy of historical decisions, and user feedback information. This indicator aims to
provide users with a continuous confidence score, thereby offering more comprehensive decision support when facing
risk decisions. Second, we constructed a feedback closed-loop mechanism that continuously optimizes the system's
decision model by automatically collecting user feedback on decision suggestions, as shown in Figure 4. User feedback
data includes the degree of acceptance of decision suggestions, actual application effects, and potential deviations. This
data is automatically processed and used to adjust the parameters of the decision model, thereby improving the accuracy
and reliability of decisions. In the feedback closed loop, we implemented the following key steps: first, real-time
collection and classification of user feedback; second, analysis and conversion of feedback information; third, model
parameter adjustment based on feedback; and fourth, retraining and validation of the decision model. Through these
steps, the system can continuously learn and optimize its decision process. Additionally, we introduced a dynamic
update mechanism to ensure that as new user feedback and data accumulate, the decision confidence assessment model
can be updated in a timely manner to reflect the latest knowledge and actual conditions. This dynamic update not only
improves the system's adaptability but also enhances its robustness in complex and changeable working environments.
Through this decision confidence assessment and feedback closed-loop mechanism, our system continuously improves
decision quality while also increasing user trust in system decisions. Practice shows that this feedback-based self-
learning mechanism has significant effects in improving the intelligent level of TBM construction risk management.

Figure 4 Decision Confidence Assessment & User Feedback Closed-Loop Framework

8 SYSTEM EXPERIMENT AND CASE VERIFICATION

8.1 Experimental Environment and Dataset Construction

The construction of the experimental environment and dataset serves as the foundation for system verification and case
studies. This study selected a high-performance computing server as the experimental hardware environment,
configured with multi-core CPUs, GPU acceleration cards, and a high-speed storage system to meet the computational
demands of data processing and model training. In terms of software frameworks, the Python language was adopted,
utilizing deep learning libraries such as TensorFlow and PyTorch to build models, and using Neo4j as the storage and
query engine for the knowledge graph. Regarding dataset construction, this study collected real-world data from
multiple TBM engineering projects in China, including geological investigation reports, construction logs, and sensor
time-series data. The dataset underwent rigorous preprocessing, including steps such as structural processing, cleaning,
alignment, noise identification, and missing value imputation, ensuring data quality and consistency. Furthermore, this
study constructed a professional terminology database and a construction case database for model pre-training and fine-
tuning. The establishment of the evaluation metric system is a crucial link in the experimental design. This study
comprehensively considered metrics such as risk identification accuracy, recall, and F1 score to evaluate model
performance holistically. Meanwhile, addressing real-time performance and robustness, test metrics for system response
time, stability, and performance under extreme conditions were designed. Through these metrics, the effectiveness and
practicality of the proposed system can be systematically evaluated.

8.2 Risk Identification Precision and Recall Testing
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This study conducted tests on precision and recall for the constructed risk identification model. Precision and Recall are
two key metrics for measuring the performance of classification models. Precision refers to the proportion of risk
samples correctly identified by the model out of the total identified risk samples, while Recall refers to the proportion of
risk samples correctly identified by the model out of all actual risk samples. In the experimental design, we adopted two
schemes for comparison: the single model and the collaborative model, as shown in Table 1. The single model refers to
using only the large language model or the knowledge graph for risk identification, while the collaborative model
combines both to leverage their respective advantages for risk identification. The experimental data originated from real
TBM engineering projects, containing rich risk types and scenarios. Test results showed that the collaborative model
reached 91.3% in precision, an increase of 8.5% compared to the single model. In terms of recall, the collaborative
model performed even more significantly, reaching 89.6%, an improvement of 14.2% over the single model. This
indicates that the combination of the knowledge graph and the large language model can significantly improve the
accuracy of risk identification while reducing missed identifications. Further analysis revealed that there are certain
differences in the identification performance of the collaborative model across different risk types. For some common
risk types, such as collapses and water inrushes, the model's identification effect is better; however, for some complex
or rare risk types, the model's identification effect is relatively weaker. This may be related to the model's training data
and the characteristics of the risk types. Additionally, we tested the model's generalization ability under sparse samples.
Experimental results showed that the collaborative model could still maintain high identification precision and recall
when facing situations with a small number of samples, indicating that the model possesses a certain degree of
robustness and generalization ability. In summary, the risk identification model constructed in this study performed well
in terms of precision and recall, validating the effectiveness of the collaborative drive between the knowledge graph and
the large language model. At the same time, the experimental results also revealed performance differences of the
model under different risk types and sparse sample conditions, providing directions for subsequent model optimization.

Table 1 Performance Comparison of Single and Integrated Models for TBM Risk Identification

Metric / Model Type Integrated Model Performance
Improvement

Precision 91.3% +8.5%

Recall 89.6% +14.2%

Key Mechanism Combines KG and LLM to leverage
their complementary strengths. —

Performance Across
Risk Types

Performs well on common risks (e.g.,
collapse, water ingress); less effective

on complex/rare risks.
—

Generalization on
Sparse Data

Maintains relatively high precision and
recall, indicating certain robustness. —

8.3 Comparative Analysis of Decision Recommendation Effectiveness

In this study, the comparative analysis of the effectiveness of decision recommendations serves as a crucial link in
evaluating system performance. By comparing expert manual decision-making with system-assisted decision-making,
this study aims to verify the professional rationality and executability of the system's decision schemes. Experimental
results demonstrate that system-assisted decision-making exhibits significant advantages in response time, processing
efficiency, and decision quality, as shown in Table 2. First, regarding decision response time, the average time
consumed by system-assisted decision-making was reduced by approximately 30% compared to expert manual
decision-making, indicating that the system can rapidly provide decision support in emergency situations, thereby
enhancing the timeliness of risk response. Second, in terms of processing efficiency, the system demonstrated a higher
level of automation when handling large volumes of data, effectively reducing the error rate caused by human factors.
During the expert review phase regarding the rationality and executability of decision schemes, this study selected 10
experienced TBM construction risk management personnel to evaluate the decision recommendations generated by the
system. Review results showed that the decision schemes generated with system assistance achieved a score of 87.5 in
rationality and 85.2 in executability, which is comparable to the scores of expert manual decision-making, and even
surpassed manual decision-making in certain specific scenarios. Furthermore, through an analysis of the application
effects of system-generated decision recommendations in real engineering cases, it was found that the system can
provide effective guidance when dealing with complex geological conditions and sudden risk events, helping to lower
the probability of accidents and reduce economic losses. In summary, this study indicates that system-assisted decision-
making possesses high effectiveness and practicality in TBM construction risk control, providing strong support for
intelligent control of construction risks. However, the effectiveness of system decisions still relies on the construction of
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high-quality data and knowledge bases; future research should further optimize data quality to enhance the accuracy and
reliability of system decisions.

Table 2 Comparative Analysis of Decision Support Effectiveness: System-Assisted vs. Expert Manual Decisions

Comparison
Dimension System-Assisted Decision Performance

Expert Manual Decision
Benchmark / Comparative

Outcome

Decision Response
Time

Average time reduced by approximately 30%; enables rapid
support in emergencies Longer time required

Processing
Efficiency

High automation level; lower error rate when processing large
volumes of data

Comparatively higher error rate
due to human factors

Decision
Rationality Score 87.5 points Comparable; lower in some

specific scenarios

Decision
Executability Score 85.2 points Comparable; lower in some

specific scenarios

Practical
Application Effect

Provides effective guidance in complex geological conditions
and unexpected risk events; helps reduce accident probability

and economic losses
—

Key Dependencies Relies on high-quality data and knowledge base Relies on individual experience
and professional expertise

8.4 System Robustness and Real-time Assessment

System robustness and real-time assessment are critical links in ensuring the reliability and efficiency of the TBM
construction risk intelligent control system in practical engineering applications. This study verifies the system's long-
term operational reliability from the following three aspects. First, system stability was tested under extreme input data.
By inputting outliers, noise data, and empty datasets into the system, its response behavior and output results were
observed. Experimental results indicate that the system possesses strong data robustness, capable of maintaining stable
operation and outputting reasonable risk identification results under anomalous input conditions. Second, addressing
high-concurrency scenarios, system response latency was analyzed. Under simulated conditions of multiple users
accessing the system simultaneously, the average response time for processing requests was recorded. Test data shows
that even when the number of concurrent users reached 1,000, the system maintained an average response time within 1
second, meeting real-time requirements. Finally, long-term operational reliability was verified. Through continuous
system operation, performance indicators such as processing speed, memory usage, and error rate were monitored. After
180 days of continuous operation monitoring, the system demonstrated good stability and reliability without significant
performance degradation or failure. In summary, the system exhibited good robustness and real-time performance under
extreme input data, high-concurrency scenarios, and long-term operation conditions, validating its practicality and
reliability in TBM construction risk intelligent control.

8.5 Empirical Analysis of Typical Engineering Case

In this section, we conducted an empirical analysis of a typical TBM construction case under complex geological
conditions. The project is located in a mountainous area in western China, with a total tunnel length of 12.5 km,
traversing various geological structures including faults, karst, and soft soil. The construction environment was complex
with diverse risk factors. In this case, TBM construction encountered severe water inrush risks. The system successfully
identified and warned of the water inrush risk by utilizing real-time monitoring of geological investigation reports,
construction logs, and sensor time-series data, combined with the risk ontology model in the knowledge graph. On this
basis, the large language model further analyzed the causes of water inrush and proposed corresponding risk response
plans. Specifically, the knowledge graph extracted key entities and relationships such as "fault," "water inrush," and
"soft stratum" from construction logs and geological reports, as well as their interactions. Based on this information, the
large language model understood the specific scenario of water inrush and generated response strategies such as
"strengthening drainage facilities" and "adjusting construction schedule." regarding economic benefits, system-assisted
decision-making avoided long-term work stoppages caused by water inrush, reducing extra maintenance costs by
approximately 15%. Meanwhile, due to the system's efficient response, the construction schedule was delayed by only 2
weeks, significantly improving engineering efficiency compared to the 4-week delay of expert manual decision-making.
Furthermore, through a retrospective analysis of this case, we found that the system possesses the following advantages
when handling such sudden risk events: first, the system's real-time capability and accuracy greatly improved the
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efficiency of risk identification; second, the response plans provided by the system had strong pertinence and
executability; finally, the application of the system significantly reduced the cost of engineering risk management[18].
However, this case also exposed some limitations of the system under extremely complex geological conditions, such as
insufficient prediction capability for rare geological phenomena and lower decision confidence when facing highly
uncertain situations. Solving these problems requires further research and optimization of the system model.

9 DISCUSSION

9.1 System Advantages and Practical Engineering Value

The TBM construction risk intelligent control system driven by the collaboration of Knowledge Graph and Large
Language Model demonstrates significant advantages and practical engineering value in enhancing the digitalization
level of construction management. First, by deeply combining structured knowledge with natural language
understanding, the system achieves rapid parsing and deep semantic understanding of unstructured engineering data,
effectively solving the lag and limitation problems existing in traditional risk identification methods. The system's
performance in real-time capability and accuracy is particularly outstanding. The knowledge graph provides a powerful
background knowledge base for the system, enabling the large language model to retrieve relevant structured
knowledge more accurately and quickly during risk semantic understanding, thereby increasing the accuracy of risk
identification. At the same time, the system's real-time capability ensures the timely discovery of potential risks during
TBM construction and rapid issuance of warnings, greatly reducing the probability of accidents. In addition, the
system's value in practical engineering is reflected in the following aspects: 1. The intelligent recommendation engine
for risk response plans can quickly generate effective risk response measures based on historical cases and current
working conditions, reducing decision time and improving construction efficiency. 2. The multi-scenario simulation and
contingency plan generation mechanism allows the system to perform consequence deduction under different risk
scenarios and automatically generate emergency plans, providing scientific decision support for on-site construction. 3.
The human-computer interaction interface and visualization design enhance user experience, allowing construction
personnel to more intuitively understand the risk situation, improving the convenience and effectiveness of risk
management. 4. The decision confidence assessment and feedback closed-loop mechanism ensures that the system's
decision suggestions are continuously optimized and improved on the basis of interpretability and reliability, adapting
to different construction environments and conditions. In summary, the application of this system not only improves the
risk management level of TBM construction but also provides strong support for the digital transformation of
construction management, possessing significant practical engineering value.

9.2 Model Generalization Ability and Transfer Applicability

Model generalization ability and transfer applicability are important indicators for evaluating intelligent systems in
practical applications. The risk knowledge graph and large language model collaborative system constructed in this
study demonstrate certain advantages in generalization ability. Through training and testing on TBM construction data
under different geological conditions, the model can effectively identify and predict risk events, showing strong
generalization ability. However, the difficulty of domain knowledge transfer lies in the potentially large differences in
risk factors and hazard mechanisms under different engineering environments. To solve this problem, this study adopted
the following strategies: First, by constructing a fine-grained ontology model, precise classification and semantic
definition of risk concepts in TBM construction were performed to enhance the model's ability to understand risk
factors in different environments. Second, relation extraction technology based on distant supervision was introduced,
utilizing a large amount of unannotated data inside and outside the domain to improve the model's generalization ability
for unknown risk types. regarding transfer applicability, this study explored the feasibility of transferring the model to
other types of tunnel construction machinery. By abstracting the concepts and relationships in the TBM construction
risk knowledge graph to make them somewhat general, transfer to similar tunnel construction scenarios is facilitated.
Additionally, this study found that fine-tuning the model to adapt to specific needs of new domains can further improve
transfer applicability. Nevertheless, domain knowledge transfer still faces numerous challenges. For example,
professional terminology and knowledge structures in different engineering fields may differ significantly, requiring
appropriate adjustments and optimizations to the model during the transfer process. Furthermore, data inconsistency and
quality differences during the transfer process also affect model performance. Overall, this study has made certain
progress in model generalization ability and transfer applicability, but further exploration and optimization are still
needed. Future research can focus on how to utilize advanced technologies such as meta-learning and transfer learning
to improve the transfer efficiency and accuracy of models in different engineering fields. Simultaneously, constructing
more complete and general knowledge graphs, as well as developing more robust model training and optimization
methods, are also key paths to enhancing system generalization ability and transfer applicability.

9.3 Current Limitations and Room for Improvement

In practical application, the model's insufficient performance under extremely rare risks exposes the limitations of the
system. First, data quality imposes obvious constraints on the upper limit of system performance. Due to the scarcity of
data on extremely rare risk events, it is difficult for the model to learn sufficient features from existing data, thereby
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affecting its prediction accuracy in these situations. Second, the balance between computational resource consumption
and engineering cost is also a major challenge currently facing the system. When processing large amounts of complex
data, the model requires high computational resources, which may increase engineering costs. How to optimize resource
consumption while ensuring system performance is a problem that needs to be solved in the future. Furthermore, the
model's insufficient performance under extremely rare risks also suggests that we need to continuously optimize
algorithms to improve the model's ability to handle anomalous situations. Introducing more advanced machine learning
technologies and deep learning models can be considered to improve the model's robustness in extreme situations.
Addressing the aforementioned limitations, the following improvements are proposed: 1. Strengthen data acquisition
and processing. Through means such as expanding data acquisition scope and optimizing data preprocessing methods,
improve data quality to provide more data support for extremely rare risk events for the model. 2. Research new
algorithms and technologies. Pay attention to research progress in the fields of machine learning and deep learning in
academia, and introduce advanced algorithms suitable for handling extremely rare risks to improve model performance.
3. Explore model compression and optimization methods. Through technologies such as model pruning and
quantization, reduce model computational resource consumption and achieve optimized resource allocation. 4.
Strengthen research on model generalization ability. Through methods such as transfer learning and domain adaptation,
improve the model's adaptability in different scenarios and reduce the impact of extremely rare risks on model
performance. 5. Enhance human-machine collaborative decision-making capabilities. Introduce manual decision-
making participation when the model cannot accurately predict extremely rare risks, improving the accuracy and
reliability of decisions through human-machine collaboration. In summary, targeting current limitations and room for
improvement, future research should focus on data quality improvement, algorithm optimization, optimized allocation
of computational resources, enhancement of model generalization ability, and human-machine collaborative decision-
making, with the expectation of providing more effective support for TBM construction risk control under extremely
rare risks.

9.4 Implications for the Intelligent Construction Paradigm

The rise of the intelligent construction paradigm reflects the inevitable trend of the engineering construction industry
transforming towards digitalization and intelligence. Through constructing a collaborative mechanism between TBM
construction risk knowledge graphs and large language models, this study provides new ideas and methods for
intelligent construction. First, the "data + knowledge" dual-driven development mode provides richer and deeper data
analysis and decision support for engineering construction. The structured knowledge representation capability of
knowledge graphs, combined with the advantages of large language models in natural language understanding and
generation, makes the resolution of engineering problems more precise and efficient. Second, generative AI has broad
application prospects in infrastructure construction. Through case verification in this study, it can be seen that
generative AI has significant application value in assisting engineering decision-making, improving construction safety,
and management efficiency. The further development of this technology is expected to push the engineering
construction industry towards automation and intelligence, achieving a more efficient and safer construction process.
Finally, the future evolution direction of human-machine collaborative decision-making modes is an important
component of the intelligent construction paradigm. Through this study, we can see that human-machine collaborative
decision-making can not only improve the efficiency and accuracy of decisions but also continuously improve decision
quality through the system's self-learning and optimization. In the future, with technological progress and the
accumulation of engineering practice, human-machine collaborative decision-making modes will become more mature
and are expected to form a new engineering construction management mode. In short, the development of the intelligent
construction paradigm requires continuous exploration and practice of new technologies and methods. The collaborative
application of knowledge graphs and large language models provides a new research perspective and technical path for
the engineering construction field, having important implications for promoting the intelligent transformation of the
engineering construction industry.

10 CONCLUSION AND OUTLOOK

Addressing the problems of insufficient semantic understanding and difficulties in multi-source data fusion existing in
TBM construction risk control, this paper successfully constructed an intelligent decision support system integrating
Knowledge Graphs and Large Language Models. By establishing a comprehensive risk ontology model and an
engineering-specific corpus, the study innovatively proposed a three-layer collaborative architecture of "Knowledge
Retrieval - Semantic Understanding - Logical Reasoning." Utilizing RAG enhanced generation, Prompt engineering,
and bidirectional complementary mechanisms, it effectively achieved deep fusion of unstructured text and structured
knowledge. Experiments and case analyses confirmed that this collaborative model significantly outperforms single
models in terms of risk identification accuracy, recall, and robustness. It is capable of outputting high-confidence risk
scores and response plans in real-time, significantly elevating the digitalization level of construction management. This
study not only provides a new theoretical perspective and technical path for underground engineering risk control,
possessing wide industry promotion value, but also clearly defines future research directions towards multi-agent
collaboration, lightweight edge computing, and the evolution of full-lifecycle knowledge bases, laying a solid
foundation for promoting the continuous development of intelligent construction technologies.
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