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Abstract: This study proposes a Partial Nonlinear Functional Regression Model (PNFLR) specifically designed to
handle complex datasets where the Continuous Scalar Response Variable depends on a mixture of Vector-valued
Covariates and Functional Covariates. The structural heterogeneity of these predictors is addressed by assuming a
hybrid relationship: the vector components follow a standard Linear Association, whereas the functional inputs exhibit a
complex Nonlinear Association with the response. To rigorously model this non-linearity within a Reproducing Kernel
Hilbert Space (RKHS), the methodology departs from traditional single-kernel methods often characterized by rigid
selection bias. Instead, the framework implements Model Averaging through an Ensemble Learning paradigm to
facilitate the Adaptive Selection of kernel functions, thereby enhancing model flexibility. To ensure numerical stability
and effective Regularization, a Truncated Approximation strategy is utilized. This process involves projecting the high-
dimensional functional data onto a finite subspace via Functional Principal Component Basis Expansion, effectively
mitigating overfitting risks while retaining essential structural information. By integrating kernel theory with ensemble
mechanics, the PNFLR framework bridges the gap between theoretical function estimation and practical predictive
modeling. Empirical evaluations on the Tecator dataset confirm that the architecture articulated herein yields superior
Generalization Performance and lower error variance compared to conventional benchmark models across various
prediction tasks, demonstrating robustness in real-world analytical scenarios.
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1 INTRODUCTION

The explosive growth of data acquisition hardware has fundamentally altered the statistical landscape, inundating
researchers with high-frequency functional datasets. This shift positions functional regression not merely as a
theoretical exercise, but as the operational core of Functional Data Analysis (FDA). Consider the financial domain,
where the objective is to map high-frequency exchange rate trajectories directly onto option implied volatility surfaces.
Such modeling captures the intricate Nonlinear Association governing how volatility dynamics drive option pricing.
However, treating these continuous structures merely as discrete High-dimensional Time Series is methodologically
flawed. This reductionist approach discards essential smoothness properties and the strong Autocorrelation inherent in
the data. Standard multivariate machine learning models therefore struggle, as they fail to account for the infinite-
dimensional nature of the input. Developing a regression framework that explicitly respects this functional topology is
thus mandatory.
Recent methodological advancements in functional regression have addressed increasingly specific structural challenges.
Luo et al. integrated Functional Principal Component Basis Expansion with the Polya-Gamma Transformation to
construct a Functional Cumulative Logistic Regression Model[1]. This framework employs a Gibbs Sampling
Algorithm to implement precise Bayesian Estimation. Focusing on local geometric structures, Liu et al. derived kernel
weights from curve distances to achieve locally weighted fitting of the Response Variable. Addressing data
incompleteness[2]. Yang et al. proposed a Functional Nonparametric Quantile Regression Model robust to random
missingness[3]. In geodetic applications, Tomohisa and Yukitoshi utilized ABIC basis expansion to estimate strain rate
fields from GNSS datasets[4].
Empirical observation frequently indicates that the Response Variable is influenced jointly by Functional Covariates
and scalar or Vector-valued Covariates. This hybrid dependency defines the structure of the Partial Functional
Regression Model. In longitudinal medical studies, for instance, prognostic outcomes depend on the interaction between
continuous physiological monitoring curves and static variables such as age and comorbidities. Similarly, in
environmental science, Air Quality Indices reflect both high-frequency meteorological fluctuations and discrete socio-
economic determinants like industrial output. To address these mixed inputs, Li et al. combined Functional Principal
Component Analysis (FPCA) with Maximum Likelihood Estimation (MLE) to estimate coefficients for Vector-valued
Covariates[5]. They further utilized Local Linear Regression to approximate the link function, facilitating adaptive
modeling. Ling et al. developed a k-Nearest Neighbor Estimation (k-NN) method to integrate functional linear
components with nonlinear vector segments[6]. Regarding statistical diagnostics, Wen examined the Homogeneity of
Variance Test within this framework[7]. Huang et al. focused on estimation paradigms under measurement error
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conditions, while Zhu et al. investigated Model Averaging mechanics[8,9]. Additionally, Liu et al. proposed a
Composite Quantile Regression framework for varying-coefficient models[10]. However, the majority of extant
research relies on the restrictive assumption of a strict Linear Association between the Functional Covariate and the
Response Variable. This premise often contradicts empirical reality, where Nonlinear Association is pervasive rather
than anomalous. Consequently, relaxing this linearity constraint represents a necessary theoretical advancement.
This study investigates the Nonlinear Association between Functional Covariates and the Response Variable. We model
this nonlinearity using Reproducing Kernel theory. Since the choice of kernel function is critical for Generalization
Performance, relying on a single kernel carries significant risk. Therefore, we avoid singular model selection in favor of
Model Averaging. By employing Ensemble Learning, we achieve the Adaptive Selection of optimal kernels. The
procedure is as follows: first, we construct a set of base models, each using a different kernel function. These models
are trained in parallel, and their outputs are integrated into the ensemble framework. This aggregation produces a final
prediction with enhanced Robustness. By balancing the trade-off between bias and variance, this approach effectively
mitigates both Overfitting and Underfitting. Empirical results confirm that this architecture consistently outperforms
conventional benchmark methods.

2 THEORY AND METHODOLOGY

Formally, the Partial Nonlinear Functional Regression Model (PNFLR) advanced herein is defined as:
  zTY f x t    (1)
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Within this Hilbert space H, the distance metric between any two functional elements, denoted as    1 2,x t x t , is

formally defined as:
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Subsequently, by subjecting the aforementioned expression to a Basis Expansion procedure.
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The Formulation is resolved into:
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We define the coefficient vectors 1 11 12 1( , , , )ja a a a  and 2 21 22 2( , , , )ja a a a  , alongside the basis function

vector 1 2( ( ), ( ), , ( ))Jt t t     . Consequently, the following structural relationships are established for the
model:
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Here, the weight vector alpha is defined as  1,
T

n    , and Phi represents the kernel transformation vector

1( ( ( ), ( )), , ( ( ), ( )))TnK x t x t K x t x t   . By substituting the n sets of observational data into the previous

formulation, we obtain the following system for i = 1, 2, ..., n: ( , ( ( ))) ( )
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To estimate the unknown parameters, we employ Penalized Least Squares. This optimization approach allows us to
solve for both the linear coefficients and the nonlinear expansion weights simultaneously. Specifically, the objective
function is constructed as follows:
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Solving this minimization problem yields the final Parameter Estimation for the model.
Next, noting that the choice of kernel function directly affects model performance and that a single kernel often fails
to adapt to complex structural patterns in the data—leading to overfitting or underfitting—this paper adopts an
ensemble learning framework. We select M different kernel functions ,and construct corresponding
regularized regression estimators to obtain a set of heterogeneous base models. The predictions of these base models on
the training data

(9)
are combined into the feature matrix

(10)
which is used as input to train a meta-regression model . Finally, the prediction for a new sample (x,z) is
given in ensemble form as

(11)
By fusing heterogeneous information from multiple kernel mappings, this approach effectively improves the model’s
robustness and generalization performance.

3 EMPIRICAL ANALYSIS

3.1 Data Sources and Experimental Configuration

We analyze the meat processing dataset obtained from the Tecator archive (http://lib.stat.cmu.edu/datasets/tecator). The
data comprises n 240 samples, each documenting moisture, fat, and protein content. Additionally, Near-Infrared
(NIR) absorbance spectra are recorded across the 850–1050 nm range. Given the 2 nm sampling interval, each spectrum
consists of 100 discrete points. The goal is to predict protein content using these spectral curves alongside the scalar
physicochemical measurements.
A preliminary visual inspection of the dataset is presented in Figure 1. The left panel delineates the multi-curve trend,
capturing the global morphology, fluctuation modes, and dynamic range of the samples. Observably, the curves exhibit
a high degree of morphological consistency, attesting to the superior quality of the dataset, which is devoid of
conspicuous outliers. Complementarily, the right panel displays a correlation heatmap illustrating the interrelationships
among distinct features. The visualization reveals an intensely high correlation structure, strongly signaling the presence
of severe multicollinearity and data redundancy. Under such conditions, the application of conventional linear
regression models would likely result in unstable coefficient estimates and diminished generalization capabilities.
Consequently, to mitigate these methodological risks, this study adopts a Functional Data Regression modeling
approach.

Figure 1 Visual Characterization of the Meat Data Structure

We designed three experimental configurations to rigorously evaluate the model. In the first scenario, Protein serves as
the predictor for Fat and Water. The second scenario uses Fat to predict Protein and Water, while the third employs
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Water to predict Fat and Protein. The analysis includes 216 samples. To capture various data structures, we utilize
Gaussian, Polynomial, Linear, and Laplacian kernels. A Random Forest model then acts as an ensemble meta-learner to
integrate these kernel outputs. Validation follows a Monte Carlo Cross-Validation protocol. We randomly partition the
dataset into training and testing sets over repeated iterations. We aggregate the resulting error metrics to calculate the
Mean and Standard Deviation (SD). A lower Mean signifies better accuracy, while a smaller SD indicates improved
stability. Consequently, we rely on the Mean Squared Error (MSE) and its deviation to quantify performance.

3.2 Comparative Experimental Results

Tables 1-3 summarize the Mean and Standard Deviation (SD) for the three sub-tasks, while Figures 2-4 display the
corresponding boxplots. The results demonstrate that the PNFLR method consistently achieves the lowest Mean and SD.
The boxplots further corroborate this stability, showing that PNFLR maintains the narrowest interquartile range
compared to other methods. This performance advantage stems from two key factors. First, we strictly treat multi-
dimensional time series as Functional Data rather than discrete points. Second, the model explicitly captures the
intrinsic Nonlinear Association between functional covariates and predictors. Furthermore, by integrating Ensemble
Learning, the framework avoids the limitations of single-kernel approaches, thereby significantly enhancing both
Generalization Performance and robustness.

Table 1 Experimental Results Utilizing Protein as the Predictor Variable
Methods Mean Standard Deviation
NPFLR 0.1485 0.0352
XGBoost 0.4799 0.0833

RF 0.4834 0.0494
SVR 0.6967 0.0975

ElasticNet 0.9942 0.0996
GPR 0.7775 0.1245

Table 2 Experimental Results Utilizing Water as the Predictor Variable
Methods Mean Standard Deviation
NPFLR 0.019 0.006
XGBoost 0.3415 0.0978

RF 0.3353 0.0828
SVR 0.51 0.0993

ElasticNet 0.9976 0.1202
GPR 0.8522 0.1422

Table 3 Experimental Results Utilizing Fat as the Predictor Variable
Methods Mean Standard Deviation
NPFLR 0.0224 0.0051
XGBoost 0.3881 0.0653

RF 0.3715 0.0845
SVR 0.5372 0.0722

ElasticNet 0.9713 0.0848
GPR 0.8144 0.1012
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Figure 2 Visualization of Prediction Outcomes with Protein Content as the Response Variable

Figure 3 Visualization of Prediction Outcomes with Water Content as the Response Variable

Figure 4 Visualization of Prediction Outcomes with Fat Content as the Response Variable

4 CONCLUSION

The Partial Nonlinear Functional Regression Model (PNFLR) established in this study successfully integrates
Reproducing Kernel theory with Ensemble Learning to address complex data structures comprising both functional and
vector-valued covariates. By accommodating the nonlinear dependency between the response and functional predictors,
the model utilizes kernel functions to rigorously fit intrinsic data patterns. Crucially, the framework moves beyond the
limitations of single-kernel selection by implementing an Ensemble Learning strategy. This Model Averaging approach
not only yields robust predictions but also effectively balances the trade-off between bias and variance, thereby
enhancing the model's stability and Generalization Performance. Empirical evidence from real-world data analysis
substantiates the efficacy of this architecture, demonstrating predictive accuracy superior to that of prevailing
benchmark techniques.
Reflecting on these findings highlights several distinct avenues for future inquiry. One primary challenge lies in the
functional data processing stage, specifically regarding the truncated approximation via Principal Component Analysis
(PCA). The theoretical determination of an optimal truncation threshold remains a non-trivial issue; future
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investigations will focus on resolving this by incorporating cross-validation techniques or information criteria to
conduct quantitative research and establish rigorous standards. Furthermore, the current assumption that vector-valued
covariates maintain a strictly linear relationship with the response may be relaxed. Subsequent work should explore
more sophisticated fitting methodologies to capture potential nonlinearities within this vector segment. Lastly, the scope
of the ensemble framework warrants expansion. Designing comprehensive comparative protocols to benchmark
alternative Ensemble Learning architectures constitutes a vital step toward further methodological refinement.
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