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Abstract: Smart classrooms continuously generate large volumes of visual data that enable educational big data
analytics, including learner-state assessment and classroom activity understanding. In practice, however,
bandwidth-constrained and noise-impaired wireless links render conventional compress-then-transmit pipelines
inefficient: pixel-fidelity-oriented compression typically requires high transmission rates to sustain downstream
recognition performance. This paper studies a task-oriented semantic communication framework for image analytics
over additive white Gaussian noise (AWGN) channels. We develop a unified multi-SNR, multi-rate training and
evaluation protocol and benchmark a learned semantic link against a conventional DCT-based link under matched rate
budgets. The proposed semantic link integrates (i) an encoder that extracts task-relevant latent representations, (ii) a
rate-controllable channel-selection bottleneck that regulates the transmitted feature budget, and (iii) a decoder that
reconstructs images for a fixed downstream classifier. Using CIFAR-10 as a reproducible testbed, we report task
performance alongside perceptual quality metrics across a grid of SNR and rate settings. Experimental results indicate
that the semantic link consistently sustains higher classification accuracy in low-to-medium SNR and low-rate regimes.
In addition, PSNR/SSIM do not necessarily exceed the DCT baseline, revealing a task-perception mismatch that favors
task-driven transmission. Overall, the proposed framework offers a practical methodology for designing communication
pipelines that better support educational big data image analytics.
Keywords: Educational big data; Smart classroom; Semantic communication; Image classification

1 INTRODUCTION

Educational big data emphasizes continuous recording and computational analysis of the teaching–learning process to
enable classroom diagnosis, learning analytics, and instructional optimization. With the deployment of smart classrooms,
visual data collection has become routine and large-scale; images and videos are now key modalities for characterizing
learning states and teaching activities. In addition, when edge devices upload captured content to edge or cloud servers,
transmission is often constrained jointly by bandwidth budgets and channel noise. Conventional visual transmission
pipelines typically prioritize pixel-level reconstruction quality: the source is first compressed, then transmitted over a
noisy channel, and finally reconstructed at the receiver. Under low bit rates or low signal-to-noise ratios (SNRs), this
paradigm is prone to structural distortions and noise amplification, which can impair the discriminative cues required by
downstream recognition models. As a result, task performance may fluctuate, undermining the reliability and stability of
educational visual analytics.
Semantic communication follows the principle of “transmit for the task.” Instead of targeting pixel fidelity, the
transmitter extracts and conveys task-relevant semantic representations so that the receiver can maintain usable
task-level performance under limited bandwidth and time-varying channels. Compared with reconstruction-centric
pipelines, semantic communication focuses on preserving and robustly delivering information that is most relevant to
the target task, and therefore has the potential to offer a better trade-off between task performance and resource
consumption in educational visual analytics.
In this work, we focus on image classification as a fundamental visual analytics task. We establish a unified training and
grid-based evaluation framework across multiple SNR and rate operating points. Under matched rate budgets and
identical channel conditions, we compare the end-to-end performance of a learned semantic transmission pipeline
against a conventional DCT-based pipeline. To ensure reproducibility and benchmark alignment, we conduct systematic
evaluations on the CIFAR-10 dataset and report Top-1 accuracy together with PSNR/SSIM, thereby analyzing the
relationship—and potential mismatch—between task performance and perceptual quality. The overall end-to-end
evaluation pipeline is illustrated in Figure 1.
The main contributions of this paper are summarized as follows:

 We propose an end-to-end comparative framework for semantic communication in educational visual
analytics, enabling fair evaluation of learned semantic pipelines and conventional pipelines under a unified
channel model and a unified rate scale.
 We develop a joint training and evaluation protocol over a multi-SNR×multi-rate grid, covering discrete
operating conditions and systematically reporting Top-1 accuracy and PSNR/SSIM.
 On CIFAR-10, we provide an in-depth comparison between the semantic pipeline and the DCT-based
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 pipeline in the low-to-medium SNR and low-rate regimes, revealing that task accuracy and PSNR/SSIM may
be inconsistent, and offering methodological insights for designing visual transmission links in educational big
data systems.

Figure 1 End-to-end Evaluation Pipeline for Task-oriented Image Transmission

2 RELATEDWORK

2.1 Task-Oriented Transmission for Visual Analytics

Conventional multimedia communication pipelines are typically designed for reconstructability, optimizing pixel-level
distortion metrics. However, in smart-classroom “capture–transmit–analyze” pipelines, the value of visual data is
ultimately determined by downstream recognition and understanding tasks. Under joint constraints of low bit rates and
noisy channels, improvements in pixel fidelity do not necessarily translate into better task performance; compression
artifacts and channel noise may distort discriminative structures and degrade the statistics of task-relevant features,
resulting in a “perceptual quality–task performance mismatch.”
Task-oriented communication shifts the optimization objective from “pixel readability” to “task usability.” A common
approach is to directly transmit task-relevant representations via end-to-end learning and explicitly model the
rate–relevance trade-off to improve edge inference under limited bandwidth[1]. In multi-device cooperative sensing,
task-relevance constraints are further exploited to suppress redundant feature transmissions, reducing communication
cost while controlling inference degradation[2]. Importantly, transmitting semantic features does not automatically
guarantee privacy: under threats such as model inversion, feature-level leakage remains possible, which motivates joint
optimization of privacy constraints and task utility for sensitive classroom visual data[3].

2.2 Semantic Communication Systems

Semantic communication emphasizes “conveying meaning” or “transmitting task-relevant information.” Its core
workflow is to extract semantic representations at the transmitter, deliver them robustly over the channel, and recover
semantic elements at the receiver that are sufficient to support task-level decisions. End-to-end learning-based system
frameworks provide a unified modeling paradigm for semantic encoding/decoding and training mechanisms[4]. Beyond
individual models, survey studies systematically organize the field from the perspectives of semantic metrics,
knowledge modeling, cross-layer co-design, and resource orchestration, and argue that semantic communication should
be evaluated using multi-dimensional criteria—task utility, robustness, latency, and privacy—rather than relying solely
on distortion measures[5–7]. These insights also motivate reproducible experimental protocols such as multi-SNR and
multi-rate grid-based evaluations with end-to-end metric alignment[6].

2.3 Learned JSCC and Visual Semantic Links

Deep joint source–channel coding (Deep JSCC) integrates compression and channel adaptation through end-to-end
learning. A key advantage is its graceful degradation behavior under varying SNR, making it well suited for wireless
image transmission in uncertain channel conditions. Recent efforts largely follow two directions. The first develops
controllable rate capacity mechanisms to enable a single model to operate across multiple working points and facilitate
practical deployment [8]. The second extends Deep JSCC to more realistic and challenging channels (e.g., MIMO) and
adopts stronger representation learning designs to improve robustness and generalization[9]. In addition, incorporating
auxiliary semantics or guidance information to form complementary semantic spaces has been shown to enhance
semantic effectiveness and noise resilience, offering reusable building blocks for task-relevant semantic
enhancement[10]. Overall, while these studies establish important foundations for end-to-end semantic links,
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systematically achieving scalability in signaling overhead, low latency, and task utility in dynamic multi-hop or
cooperative settings remains an open challenge.
To summarize these research streams and clarify how they inform our study, Table 1 provides a taxonomy across three
directions, highlighting their objectives, representative methodological patterns, and key for the design and evaluation
of task-oriented image transmission.

Table 1 ATaxonomy of Related Work across three Research Directions
Research Direction Objective Method

Task-oriented transmission
for visual analytics [1]–[3]

Transmit task-relevant representations;
maximize task utility rather than pixel

fidelity; explicitly balance privacy and utility

End-to-end learned feature encoding/decoding with
channel-robust mapping; relevance constraints for
multi-device cooperation; privacy regularization and

adversarial learning
Semantic communication
systems and evaluation
frameworks [4]–[7]

Convey meaning and task-relevant
information; rely on knowledge and semantic

metrics; require cross-layer co-design

End-to-end semantic transceiver frameworks; system
architectures with protocol and resource coordination;
multi-SNR and multi-task evaluation methodologies

Learned JSCC and visual
semantic links [8]–[10]

End-to-end integration of compression and
channel adaptation; graceful degradation
across SNR; pursue rate adaptivity and

semantic enhancement

Adaptive coding across rate points; MIMO-aware
adaptive JSCC; auxiliary semantics for robustness and

utility

3 METHODS

3.1 Problem Setup and Channel Model

Let the input image be x∈ℝH×W×3 with class label y∈{1,…,K} . The receiver performs classification on the
reconstructed image using a pre-trained and fixed classifier C(⋅ )throughout all comparative evaluations. The predicted
label is y�, and we report Top-1 accuracy as task-level metrics.
We consider an additive white Gaussian noise (AWGN) channel for transmitting the latent representation:

s�=s+ε,ε∼ N(0,σ2I). （1）
For each discrete signal-to-noise ratio (SNR) operating point, σ2is set accordingly to reflect the desired noise level. The
end-to-end performance is evaluated over a predefined SNR set to capture robustness under channel variations.
We apply an average power constraint to the transmitted latent symbols. Specifically, for each mini-batch we normalize
zr to satisfy E[∥s∥2

2]/n=1, where n is the number of transmitted scalar symbols. Under this normalization, the noise
variance is set as σ2=10−SNR/10for a given SNR in dB.

3.2 Semantic Communication Link with a Rate-Controllable Bottleneck

Our semantic link consists of an encoder fθ , a rate-controllable bottleneck Gr(⋅ ), an AWGN channel, and a decoder
gϕ. The encoder extracts a latent semantic representation:

z=fθ(x). （2）
3.2.1Rate control via channel-wise bottleneck
To enable controllable rate operation, we introduce a bottleneck operator Gr(⋅ ) parameterized by a retention ratio
r∈(0,1 . Given r, the bottleneck forms a compressed representation

zr=Gr(z;r), （3）
where Gr(⋅ )can be implemented as (i) top-k channel selection or (ii) randomized gating , with k=⌈ r⋅ d⌉ for a latent
dimension d . This mechanism provides a unified “rate knob” that maps directly to the fraction of transmitted latent
channels.
3.2.2Channel transmission and reconstruction
The compressed latent zris transmitted over the AWGN channel, producing z�. The decoder reconstructs the image:

x�=gϕ(z�). （4）
Finally, the receiver obtains the task prediction using the fixed classifier:

y�=C(x�). （5）
Figure 2 illustrates the overall semantic link architecture.

Figure 2 Semantic Link Architecture
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3.3 End-to-End Training Objective

During training, we optimize fθ gϕ end-to-end while keeping C(⋅ ) fixed. To balance reconstructability and task
usability, we adopt a weighted combination of reconstruction loss and task loss:

ℒ=λ1∥x−x�∥2
2+λ2 CE(C(x�),y), （6）

where CE(⋅ )denotes cross-entropy loss and λ1,λ2 control the trade-off between perceptual fidelity and classification
performance. This objective encourages the learned link to preserve information that is both visually meaningful and
discriminative for the downstream task under channel and rate constraints.

3.4 Unified Multi-SNR and Multi-Rate Training and Grid-Based Evaluation

To ensure robustness across operating conditions, we adopt a unified multi-condition training strategy. For each
mini-batch during training, we randomly sample an SNR value and a rate ratio r , and apply the corresponding noise
level and bottleneck setting. This forces the semantic link to learn representations that generalize across heterogeneous
channel qualities and communication budgets.
At evaluation time, we perform a grid traversal over all SNR–rate combinations. For each pair SNR r , we compute:

Task metrics: Top-1 accuracy from C(x�);
Perceptual metrics: PSNR/SSIM between xand x� , to quantify reconstruction quality and analyze potential
mismatch with task accuracy.

The discrete operating sets used in our experiments are summarized in Table 2.

Table 2 Configuration of SNR and Rate Operating Points
Item Setting

Rate set r 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
SNR set (dB) -5,0,5,10,15,20,30

4 EXPERIMENTS AND DATAANALYSIS

4.1 Dataset and Experimental Setup

We conduct experiments on CIFAR-10, a widely used benchmark for image classification. CIFAR-10 contains 60,000
color images of size 32×32 spanning 10 categories. Its standardized setting and moderate scale make it suitable for
evaluating both the robustness and reproducibility of visual transmission pipelines under controlled conditions.
CIFAR-10 is adopted as a reproducible benchmark to isolate the effect of link design; extending to classroom-specific
datasets and tasks is left as future work.
To ensure that performance differences are attributable to transmission impairments rather than variations in the
recognition backend, the receiver-side classifier C(⋅ )is first trained on the original CIFAR-10 training set under a clean
setting, i.e., without channel noise or link-induced distortions, and is then kept fixed throughout all comparative
experiments. The semantic link adopts convolutional residual architectures for both the encoder and decoder. Rate
control is implemented via a Top-k channel selection bottleneck aligned with the retention ratio r . Training uses the
AdamW optimizer with a linear warm-up followed by cosine annealing, and the total number of training epochs is set to
80.
To cover diverse operating conditions, we evaluate the link over a discrete grid of SNR and rate points. Specifically, the
retention-ratio set is r∈{0.1,0.2,…,0.9} , and the SNR set is −5,0,5,10,15,20,30 dB. All results reported below are
computed on this unified grid.

4.2 Evaluation Metrics

We assess performance from two complementary perspectives: task utility and perceptual quality. Task utility is
primarily measured by Top-1 accuracy, reflecting the receiver’s classification capability after transmission. Perceptual
quality is quantified using PSNR and SSIM between the reconstructed image and the original input, capturing
pixel-level fidelity and structural similarity, respectively. Importantly, all metrics are computed under identical settings
to ensure a fair and consistent comparison across links.

4.3 Comparative Results and Discussion

Across the multi-SNR and multi-rate grid, the semantic link exhibits stronger task robustness in the low-to-medium
SNR and low-rate regimes. When ris small or channel quality is poor, the degradation of Top-1 accuracy is noticeably
more gradual, indicating that task performance remains relatively stable under stringent communication budgets and
adverse channel conditions. In contrast, the conventional baseline is more susceptible to the compounded effect of
aggressive information reduction and channel noise, which can lead to the loss of key structural cues and an
amplification of perturbations at the receiver. Consequently, classification accuracy tends to deteriorate more rapidly at
low SNR or low rate. These observations suggest that transmitting task-oriented representations is more effective in
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preserving discriminative information that directly supports classification under constrained and noisy links. Figure 3
presents the Top-1 accuracy curves as a function of the retention ratio runder multiple SNR levels.

Figure 3 Top-1 Accuracy Versus Rate under Multiple Snr Levels on CIFAR-10.

From the perspective of perceptual quality, both PSNR and SSIM generally increase as r becomes larger, which is
consistent with the intuition that retaining more information improves reconstruction fidelity. However, the semantic
link is not necessarily superior to the conventional baseline in PSNR/SSIM across all operating points. This behavior is
expected because the semantic link is optimized not only for reconstruction but also for task performance via an
end-to-end objective; therefore, it may allocate limited rate resources preferentially to preserving task-critical semantic
structures rather than uniformly enhancing pixel-level fidelity. As a result, there exist conditions where perceptual
metrics are not dominant while classification accuracy remains higher. Figures 4 and 5 report PSNR and SSIM as
functions of runder multiple SNR levels, respectively, to further illustrate this trade-off.

Figure 4 PSNR Versus Rate under Multiple SNR Levels on CIFAR-10.
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Figure 5 SSIM Versus Rate under Multiple SNR Levels on CIFAR-10

Taken together, the results indicate that the semantic link’s advantage is most pronounced in the low-to-medium SNR
and low-rate region, while perceptual quality does not necessarily improve in a uniformly consistent manner. This leads
to an observable task-perception mismatch at certain operating points: task accuracy can remain high even when
PSNR/SSIM is not superior. For smart-classroom educational visual analytics, where stable and reliable task outputs are
often the primary objective, relying solely on perceptual metrics such as PSNR/SSIM is insufficient to characterize
end-to-end utility. A more informative evaluation should jointly report task metrics and perceptual metrics on a unified
SNR-rate grid, thereby revealing the trade-off boundary among task performance, perceptual quality, and
communication resource consumption in a reproducible and deployment-relevant manner.

5 CONCLUSION

This paper targets the visual analytics requirements of education big data in smart classrooms and develops a
task-oriented semantic communication link for image transmission. Under a unified channel model and a matched rate
scale, we conduct a systematic comparison against a conventional DCT-based baseline. Extensive grid-based
evaluations on CIFAR-10 across multiple SNR and rate operating points show that the proposed semantic link
maintains substantially higher Top-1 accuracy in the low-to-medium SNR and low-rate regimes, demonstrating
improved robustness to channel noise and severe rate constraints. At the same time, we observe that perceptual metrics
do not consistently correlate with task accuracy, indicating that pixel-level or structural fidelity alone is insufficient for
characterizing end-to-end utility in task-driven educational visual transmission. These findings underscore a central
implication for smart-classroom deployments: link design and benchmarking should be guided by task-level objectives
and assessed under deployment-relevant operating grids, rather than being dominated by reconstruction-centric criteria.
Looking forward, we will extend this framework to classroom-relevant vision tasks and end–edge collaborative
inference workflows, where temporal dynamics, multi-camera views, and heterogeneous devices introduce additional
constraints and opportunities. An important future direction is the investigation of adaptive rate-control mechanisms
under more realistic channels and time-varying resource budgets, toward achieving a principled and scalable balance
among task utility, robustness, latency, and privacy in practical smart-classroom systems.
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