Science, Technology, Engineering and Mathematics.
Open Access

QUANTUM TELEPORTATION: THE CURRENT STATE OF RESEARCH

Download as PDF

Volume 2, Issue 1, Pp 6-12, 2025

DOI: https://doi.org/10.61784/asat3009

Author(s)

Alamgir Khan*, Jamal Shah

Affiliation(s)

Department of physics, Abdul Wali Khan University, Mardan, 23200 KPK, Pakistan.

Corresponding Author

Alamgir Khan

ABSTRACT

Through the process of quantum teleportation, a transfer of quantum information takes place from one particle to another while maintaining zero physical movement between the two. Quantum teleportation requires two entangled particles along with projective measurements followed by exchanging two bits of classical information. The process requires quantum mechanics principles which combine superposition with entanglement. Quantum entanglement occurs when two or more particles create an inseparable relationship that cuts off a separate description of an individual particle. Experimental realizations of quantum teleportation continue to operate on different physical platforms which include photons as well as atoms and superconducting circuits. Applications of Quantum teleportation includes quantum computing, secure communication, and cryptography. In future Scientists believe that a breakthrough in quantum computing technology could make teleportation a reality, including the ability to teleport a whole human. This paper provides the present research in quantum teleportation, including the theoretical framework, experimental implementations, and potential applications. We also discuss the challenges and limitations of quantum teleportation and propose future directions for research.

KEYWORDS

Quantum teleportation; Quantum entanglement; Quantum decoherence; Quantum technology; Quantum computing

CITE THIS PAPER

Alamgir Khan, Jamal Shah. Quantum teleportation: the current state of research. Journal of Trends in Applied Science and Advanced Technologies. 2025, 2(1): 6-12. DOI: https://doi.org/10.61784/asat3009.

REFERENCES

[1] Pirandola, S, Eisert, J, Weedbrook, C, et al. Advances in quantum teleportation. Nature Photon, 2015, 9(10): 641-652. DOI: https://doi.org/10.1038/nphoton.2015.154.

[2] Bouwmeester, D, Pan, Jian-Wei, Mattle, Klaus, et al. Experimental quantum teleportation. Nature, 1997, 390(6660): 575-579. DOI: https://doi.org/10.1038/37539.

[3] Hu, X M, Guo, Yu, Liu, B H, et al. Progress in quantum teleportation. Nat Rev Phys, 2023, 5(6): 339-353. DOI: https://doi.org/10.1038/s42254-023-00588-x.

[4] Zeilinger, A. Quantum teleportation. 2000, 282(4): 50-59.

[5] Ren, J G, Xu, Ping, Yong, H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549(7670): 70-73. DOI: https://doi.org/10.1038/nature23675.

[6] Sherson, J F, Krauter, Hanna, Olsson, R K, et al. Quantum teleportation between light and matter. Nature, 2006, 443(7111):  557-560. DOI: https://doi.org/10.1038/nature05136.

[7] Riebe, M, Haffner, H, Rooset, C F, et al. Deterministic quantum teleportation with atoms. 2004, Nature, 429(6993): 734-737. DOI: https://doi.org/10.1038/nature02570.

[8] Nielsen, M A, Knill, E, Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature, 1998, 396(6706): 52-55.

[9] Agrawal, P, Pati, A K. Probabilistic quantum teleportation. Physics Letters A, 2002, 305(1-2): 12-17.

[10] Luo, Y H, Zhong, H S, Erhard, Manuel, et al. Quantum teleportation in high dimensions. Phys. Rev. Lett., 2019, 123(7): 070505.

[11] Yonezawa, H, Aoki, T, Furusawa, A. Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431(7007): 430-433.

[12] Ursin, R, Jennewein, Thomas, Aspelmeyer, Markus, et al. Quantum teleportation across the Danube. Nature, 2004, 430(7002): 849-849.

[13] Jin, X M, Ren, J G,  Yang, Bin, et al. Experimental free-space quantum teleportation. Nature Photon, 2010, 4(6): 376-381.

[14] Joo, J, Park, Y J, Ohet, Sangchul, et  al. Quantum teleportation via a W state. New Journal of Physics, 2003, 5(1): 136.

[15] Zhang, T C, Goh, K W, Chou, C W, et al. Quantum teleportation of light beams. Phys. Rev. A, 2003, 67(3): 033802.

[16] Olmschenk, S, Matsukevich, D N, Maunz, P, et al. Quantum teleportation between distant matter qubits. Science, 2009, 323(5913): 486-489.

[17] Friedman, J R, Patel, Vijay, Chen, W, et al. Quantum superposition of distinct macroscopic states. Nature. 2000, 406(6791): 43-46.

[18] Romero-Isart, O, Juan, Mathieu L,  Quidant, Romain, et al, Toward quantum superposition of living organisms. New Journal of Physics, 2010, 12(3): 033015.

[19] Kovachy, T, Asenbaum, P, Asenbaum, C, et al. Quantum superposition at the half-metre scale. Nature, 2015, 528(7583): 530-533.

[20] Marshall, W, Simon, Christoph,  Penrose, Roger, et al. Towards quantum superpositions of a mirror. Phys. Rev. Lett, 2003, 91(13): 130401.

[21] Nimmrichter, S, Hornberger, K. Macroscopicity of mechanical quantum superposition states. Phys. Rev. Lett, 2013, 110(16): 160403.

[22] Christodoulou, M, Rovelli, C.  On the possibility of laboratory evidence for quantum superposition of geometries. Physics Letters B, 2019, 792: 64-68.

[23] Cirac, J I, Lewenstein, M, Molmer, K, et al. Quantum superposition states of Bose-Einstein condensates. Phys. Rev. A, 1998, 57(2): 1208.

[24] Romero-Isart, Oriol. Quantum superposition of massive objects and collapse models. Phys. Rev. A, 2011, 84(5): 052121.

[25] Feix, A, Araújo, M, Brukner, Caslav. Quantum superposition of the order of parties as a communication resource. Phys. Rev. A, 2015, 92(5): 052326.

[26] Myatt, C J, King, B E, Turchette, Q A, et al. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature, 2000, 403(6767): 269-273.

[27] Laszlo, Ervin. The interconnected universe: Conceptual foundations of transdisciplinary unified theory. World Scientific, 1995.

[28] Love II, A W. Quantum Warping: The Enigma of Parallel Universes through Synthesis of Dark Matter and Hawking Radiation. 2024. DOI: 10.13140/RG.2.2.34111.48806.

[29] Sandua, David. Deciphering Quantum Mechanics. 2024.

[30] Jamwal, Arpita. Into Modern Physics: A Journey into the Quantum Realm. Journal of Advanced Research in Applied Physics and Applications, 2023, 6(1): 8-13.

[31] Leong, David. Quantum Emptiness: A Scientific Exploration of the Heart Sūtra. 2023. DOI: http://dx.doi.org/10.2139/ssrn.4539856.

[32] Youvan, D C. The Fractal Universe: A Revised Cosmological Principle and its Implications for Physics and Cosmology. 2024. DOI: 10.13140/RG.2.2.28755.80164.

[33] Butto, Nader. Unraveling the Quantum Web: The Vortex Theory of Mass and Matter Formation. Journal of High Energy Physics, Gravitation and Cosmology, 2024, 10(3): 1195-1225.

[34] Youvan, D C. Quantum Mechanics and Theology: Exploring the Fundamental Interconnectedness of Reality. 2024.

[35] Aczel, A D. Entanglement: the greatest mystery in physics. Raincoast Books. 2002.

[36] Meijer, D K, Franco Ivaldi, José Diez Faixat, et al. Mechanisms for information signalling in the universe: the integral connectivity of the fabric of reality revealed. 2021.

[37] Bozdemir, B S. 3rd Dimension and Human (Volume II). Prof. Dr. Bilal Semih Bozdemir. 2024.

[38] Malin, Shimon. Nature loves to hide: Quantum physics and the nature of reality, a western perspective. World Scientific. 2012.

[39] Musser, George. Spooky Action at a Distance: The Phenomenon that Reimagines Space and Time--and what it Means for Black Holes, the Big Bang, and Theories of Everything. Macmillan. 2015.

[40] Tegmark, Max. Our mathematical universe: My quest for the ultimate nature of reality. Vintage. 2015.

[41] Shakya, I L. Beyond the Edge of the Universe. 2024.

[42] Ranjeet, Kumar. Advaita Quantum Physics and the Nature of Consciousness. 2024. DOI: https://doi.org/10.20944/preprints202411.0897.v1.

[43] Kakade, Vaishnav. From Black Holes to the Big Bang: How General Relativity Transformed Our Understanding of the Cosmos. 2024. DOI: https://ssrn.com/abstract=4894384.

[44] Azarian, Bobby. The romance of reality: How the universe organizes itself to create life, consciousness, and cosmic complexity. Benbella books. 2022.

[45] Metcalf, B J, Spring, Justin B, Humphreys, Peter C, et al. Quantum teleportation on a photonic chip. Nature Photonics, 2014, 8(10): 770-774.

[46] Steffen, L, Salathe, Y, Oppliger, M, et al. Deterministic quantum teleportation with feed-forward in a solid state system. Nature, 2013, 500(7462): 319-322.

[47] Pfaff, W, Hensen, B J, Bernien, H, et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science, 2014, 345(6196): 532-535.

[48] Cacciapuoti, A S, Meter, Rodney Van, Hanzo, L, et al. When entanglement meets classical communications: Quantum teleportation for the quantum internet. IEEE Transactions on Communications, 2020, 68(6): 3808-3833.

[49] Khalfaoui, K, Boudjedaa, T, Kerkouche, El Hillali. Automatic design of quantum circuits: generation of quantum teleportation protocols. Quantum Information Processing, 2021, 20(9): 283.

[50] Caha, L, Coiteux-Roy, X, Koenig, Robert. Single-qubit gate teleportation provides a quantum advantage. Quantum, 2024, 8: 1548.

[51] Garcia, B. Quantum Telecloning Circuits: Theory & Practice. New Mexico State University. 2022.

[52] Barrett, M D,  Chiaverini, J, Schaetz, T, et al. Deterministic quantum teleportation of atomic qubits. Nature, 2004, 429(6993): 737-739.

[53] Ghonaimy, M A. An overview of quantum information systems. 2013 8th International Conference on Computer Engineering & Systems (ICCES). IEEE. 2013.

[54] Foresaw, A, Loock, P, Van. Quantum teleportation and entanglement: a hybrid approach to optical quantum information processing. John Wiley & Sons. 2011.

[55] Liu, T. The applications and challenges of quantum teleportation. in Journal of Physics: Conference Series.  IOP Publishing. 2020.

[56] Bang, J, Ryu, Junghee, Kaszlikowski, Dagomir. Fidelity deviation in quantum teleportation. Journal of Physics A: Mathematical and Theoretical, 2018, 51(13): 135302.

[57] Ghosal, A, Das, Debarshi Roy, Saptarshi. Fidelity deviation in quantum teleportation with a two-qubit state. Journal of Physics A: Mathematical and Theoretical, 2020, 53(14): 145304.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2025 Science, Technology, Engineering and Mathematics.   All Rights Reserved.