Science, Technology, Engineering and Mathematics.
Open Access

FUNCTIONALIZED SEPARATORS FOR LITHIUM-SULFUR BATTERIES: MECHANISMS, MATERIALS, AND PERFORMANCE OPTIMIZATION

Download as PDF

Volume 2, Issue 1, Pp 9-24, 2025

DOI: https://doi.org/10.61784/cit3004

Author(s)

ShuYu Cheng

Affiliation(s)

Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China.

Corresponding Author

ShuYu Cheng

ABSTRACT

Lithium-sulfur batteries, with ultrahigh energy density(2600 Wh kg-1) and cost efficiency, face critical challenges hindering commercialization: poor conductivity of S/Li2S, polysulfide shuttling, Li dendrite growth, and severe volume expansion. Functionalized separators emerge as a pivotal solution, integrating ion-sieving architectures, catalytic conversion, electrostatic repulsion, and chemisorption to suppress polysulfide migration while ensuring Li+ transport. Advanced materials-carbon-based frameworks(graphene, CNTs), conductive polymers(PPy, PANI), porous MOFs/COFs, and inorganic compounds (transition metal oxides/sulfides)—synergistically enhance conductivity, anchor polysulfides, and accelerate redox kinetics. Heteroatom doping and heterostructure designs optimize adsorption and catalytic activity, achieving capacities >900 mAh g-1 and cyclability >1000 cycles. Flexible architectures demonstrate practical viability under mechanical stress. Future priorities include scalable fabrication of ultrathin separators, multifunctional integration (polysulfide suppression, dendrite inhibition), and compatibility with high-sulfur-loading cathodes. Bridging lab-scale innovations to industrial deployment requires harmonizing material design, electrolyte optimization, and advanced characterization to address interfacial instability and energy loss mechanisms.

KEYWORDS

Lithium-sulfur batteries; Functionalized separators; Polysulfide shuttling; Catalytic conversion

CITE THIS PAPER

ShuYu Cheng. Functionalized separators for lithium-sulfur batteries: mechanisms, materials, and performance optimization. Chemical Innovation & Technology. 2025, 2(1): 9-24. DOI: https://doi.org/10.61784/cit3004.

REFERENCES

[1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488(7411): 294-303. DOI: 10.1038/nature11475.

[2] Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972-974. DOI: 10.1126/science.1103197.

[3] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928-935. DOI: 10.1126/science.1212741.

[4] Cao R, Xu W, Lv D, et al. Anodes for rechargeable lithium-sulfur batteries. Advanced Energy Materials, 2015, 5(16): 1402273. DOI: 10.1002/aenm.201402273.

[5] Dahn J R, Zheng T, Liu Y, et al. Mechanisms for lithium insertion in carbonaceous materials. Science, 1995, 270(5236): 590-593. DOI: 10.1126/science.270.5236.590.

[6] Chen Binglin, Zhao Jingquan. Research progress on factors affecting cycle life and mechanism of lithium-ion batteries. Chinese Journal of Power Sources, 2025, 49(01): 57-66. DOI: 10.3969/j.issn.1002-087X.2025.01.006.

[7] Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438.

[8] Whittingham M S. Ultimate limits to intercalation reactions for lithium batteries. Chemical Reviews, 2014, 114(23): 11414-11443. DOI: 10.1021/cr5003003.

[9] Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes. Chemical Society Reviews, 2013, 42(7): 3018-3032. DOI: 10.1039/c2cs35256g.

[10] Adelhelm P, Hartmann P, Bender C L, et al. From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein Journal of Nanotechnology, 2015, 6(1): 1016-1055. DOI: 10.3762/bjnano.6.105.

[11] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage. Nature Materials, 2012, 11(1): 19-29. DOI: 10.1038/nmat3191.

[12] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(16): 2930-2946. DOI: 10.1002/anie.200702505.

[13] Duffner F, Kronemeyer N, Tübke J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6(2): 123-134. DOI: 10.1038/s41560-020-00748-8.

[14] Adelhelm P, Hartmann P, Bender C L, et al. From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein Journal of Nanotechnology, 2015, 6(1): 1016-1055. DOI: 10.3762/bjnano.6.105.

[15] Manthiram A, Fu Y, Chung S H, et al. Rechargeable lithium-sulfur batteries. Chemical Reviews, 2014, 114(23): 11751-11787. DOI: 10.1021/cr500062v.

[16] Zheng D, Zhang X, Wang J, et al. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide. Journal of Power Sources, 2016, 301: 312-316. DOI: 10.1016/j.jpowsour.2015.10.002.

[17] Feng Zhiwei, Fang Xinzuo. Research progress of modified materials for lithium-sulfur battery separators. Shandong Chemical Industry, 2024, 53(13): 134-136+142. DOI: 10.19319/j.cnki.issn.1008-021x.2024.13.049.

[18] Yamin H, Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell. Journal of Power Sources, 1983, 9(3): 281-287. DOI: 10.1016/0378-7753(83)87029-3.

[19] Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200. DOI: 10.1002/anie.201304762.

[20] Evarts E C. Lithium batteries: To the limits of lithium. Nature, 2015, 526(7575): S93-S95. DOI: 10.1038/526s93a.

[21] Cano Z P, Banham D, Ye S, et al. Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 2018, 3(4): 279-289. DOI: 10.1038/s41560-018-0108-1.

[22] Schmuch R, Wagner R, Horpel G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy, 2018, 3(4): 267-278. DOI: 10.1038/s41560-018-0107-2.

[23] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 2009, 8(6): 500-506. DOI: 10.1038/nmat2460.

[24] Wang N, Zhang X, Ju Z, et al. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nature Communications, 2021, 12(1): 4519. DOI: 10.1038/s41467-021-24873-4.

[25] Kim J H, Lee Y H, Cho S J, et al. Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy & Environmental Science, 2019, 12(1): 177-186. DOI: 10.1039/c8ee01879k.

[26] Hou L P, Li Y, Li Z, et al. Electrolyte design for improving mechanical stability of solid electrolyte interphase in lithium-sulfur batteries. Angewandte Chemie International Edition, 2023: e202305466. DOI: 10.1002/anie.202305466.

[27] Elabd A, Kim J, Sethio D, et al. Dual functional high donor electrolytes for lithium-sulfur batteries under lithium nitrate free and lean electrolyte conditions. ACS Energy Letters, 2022, 7(8): 2459-2468. DOI: 10.1021/acsenergylett.2c00874.

[28] Zhao C, Xu G L, Yu Z, et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nature Nanotechnology, 2021, 16(2): 166-173. DOI: 10.1038/s41565-020-00797-w.

[29] Chen Y, Wang T, Tian H, et al. Advances in lithium-sulfur batteries: from academic research to commercial viability. Advanced Materials, 2021, 33(29): 2003666. DOI: 10.1002/adma.202003666.

[30] Choi Y J, Chung Y D, Baek C Y, et al. Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. Journal of Power Sources, 2008, 184(2): 548-552. DOI: 10.1016/j.jpowsour.2008.02.053.

[31] Song M K, Cairns E J, Zhang Y. Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale, 2013, 5(6): 2186-2204. DOI: 10.1039/c2nr33044j.

[32] Ng S F, Lau M Y L, Ong W J. Lithium-sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Advanced Materials, 2021, 33(50): 2008654. DOI: 10.1002/adma.202008654.

[33] Liu G, Sun Q, Li Q, et al. Electrolyte issues in lithium-sulfur batteries: development, prospect, and challenges. Energy & Fuels, 2021, 35(13): 10405-10427. DOI: 10.1021/acs.energyfuels.1c00990.

[34] Zhang J, You C, Lin H, et al. Electrochemical kinetic modulators in lithium-sulfur batteries from defect-rich catalysts to single atomic catalysts. Energy & Environmental Materials, 2022, 5(3) 731-750. DOI: 10.1002/eem2.12250.

[35] Zhang S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources, 2013, 231: 153-162. DOI: 10.1016/j.jpowsour.2012.12.102.

[36] Wang Q, Zheng J, Walter E, et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries. Journal of the Electrochemical Society, 2015, 162(3): A474. DOI: 10.1149/2.0851503jes.

[37] Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200. DOI: 10.1002/anie.201304762.

[38] Zhu J, Cao J, Cai G, et al. Non-trivial contribution of carbon hybridization in carbon-based substrates to electrocatalytic activities in Li-S batteries. Angewandte Chemie International Edition, 2023, 62(3): e202214351. DOI: 10.1002/anie.202214351.

[39] Jiang Y, Liu S, Gao X, et al. Morphology control of Li2S deposition via geometrical effect of cobalt-edged Nickel Alloy to improve performance of lithium-sulfur batteries. Advanced Functional Materials, 2304965. DOI: 10.1002/adfm.202304965.

[40] Kaiser M R, Chou S, Liu H K, et al. Structure-property relationships of organic electrolytes and their effects on Li/S battery performance. Advanced Materials, 2017, 29(48): 1700449. DOI: 10.1002/adma.201700449.

[41] Ma L, Hendrickson K E, Wei S, et al. Nanomaterials: Science and applications in the lithium-sulfur battery. Nano Today, 2015, 10(3): 315-338. DOI: 10.1016/j.nantod.2015.04.011.

[42] Haldar S, Wang M, Bhauriyal P, et al. Porous dithiine-linked covalent organic framework as a dynamic platform for covalent polysulfide anchoring in lithium-sulfur battery cathodes. Journal of the American Chemical Society, 2022, 144(20): 9101-9112. DOI: 10.1021/jacs.2c02346.

[43] Zhang Y, Guo C, Zhou J, et al. Anisotropic ally hybridized porous crystalline Li-S battery separators. Small, 2023, 19(5): 2206616. DOI: 10.1002/smll.202206616.

[44] Guo W, Han Q, Jiao J, et al. In situ construction of robust biphasic surface layers on lithium metal for lithium-sulfide batteries with long cycle life. Angewandte Chemie International Edition, 2021, 133(13): 7343-7350. DOI: 10.1002/anie.202015049.

[45] Evers S, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes. Accounts of Chemical Research, 2013, 46(5): 1135-1143. DOI: 10.1021/ar3001348.

[46] Zhang X, Yang Y, Zhou Z. Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49(10): 3040-3071. DOI: 10.1039/c9cs00838a.

[47] Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review. Chemical Reviews, 2017, 117(15): 10403-10473. DOI: 10.1021/acs.chemrev.7b00115.

[48] Wu H, Zhuo D, Kong D, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nature Communications, 2014, 5(1): 5193. DOI: 10.1038/ncomms6193.

[49] Liu Y, Lin D, Liang Z, et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nature Communications, 2016, 7(1): 10992. DOI: 10.1038/ncomms10992.

[50] Ni X, Qian T, Liu X, et al. High lithium-ion conductivity LiF/GO solid electrolyte interphase inhibiting the shuttle of lithium polysulfides in long-life Li-S Batteries. Advanced Functional Materials, 2018, 28(13): 1706513. DOI: 10.1002/adfm.201706513.

[51] Pope M A, Aksay I A. Structural design of cathodes for Li-S batteries. Advanced Energy Materials, 2015, 5(16): 1500124. DOI: 10.1002/aenm.201500124.

[52] Li Z, Li Y, Bi C X, et al. Construction of organic-rich solid electrolyte interphase for long-cycling lithium-sulfur batteries. Advanced Functional Materials, 2023: 2304541. DOI: 10.1002/adfm.202304541.

[53] Cui Y, Liu S, Wang D, et al. A facile way to construct stable and ionic conductive lithium sulfide nanoparticles composed solid electrolyte interphase on Li metal anode. Advanced Functional Materials, 2021, 31(3): 2006380. DOI: 10.1002/adfm.202006380.

[54] Arora P, Zhang Z. Battery separators. Chemical Reviews, 2004, 104(10): 4419-4462. DOI: 10.1021/cr020738u.

[55] Wang J, Yi S, Liu J, et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. ACS Nano, 2020, 14(8): 9819-9831. DOI: 10.1021/acsnano.0c02241.

[56] Yao W, Zheng W, Xu J, et al. ZnS-SnS@ NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano, 2021, 15(4): 7114-7130. DOI: 10.1021/acsnano.1c00270. DOI: 10.1021/acsnano.1c00270.

[57] Xu J, An S, Song X, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Advanced Materials, 2021, 33(49): 2105178. DOI: 10.1002/adma.202105178.

[58] Yao W, Xu J, Ma L, et al. Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries. Advanced Materials, 2023: 2212116. DOI: 10.1002/adma.202212116.

[59] Huang J Q, Zhuang T Z, Zhang Q, et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS Nano, 2015, 9(3): 3002-3011. DOI: 10.1021/nn507178a.

[60] Wu X, Zhou C, Dong C, et al. Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery. Nano Research, 2022, 15(9): 8048-8055. DOI: 10.1007/s12274-022-4423-2.

[61] Yan J, Liu F Q, Gao J, et al. Low-cost regulating lithium deposition behaviors by transition metal oxide coating on separator. Advanced Functional Materials, 2021, 31(16): 2007255. DOI: 10.1002/adfm.202007255.

[62] Zhang Q, Huang Q, Hao S M, et al. Polymers in lithium-sulfur batteries. Advanced Science, 2022, 9(2): 2103798. DOI: 10.1002/advs.202103798.

[63] Fan B, He Q, Wei Q, et al. Anchoring and catalyzing polysulfides by rGO/MoS2/C modified separator in lithium-sulfur batteries. Carbon, 2023: 118361. DOI: 10.1016/j.carbon.2023.118361.

[64] Yu X, Wu H, Koo J H, et al. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium-sulfur batteries. Advanced Energy Materials, 2020, 10(1): 1902872. DOI: 10.1002/aenm.201902872.

[65] Lagadec M F, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators. Nature Energy, 2019, 4(1): 16-25. DOI: 10.1038/s41560-018-0295-9.

[66] Zhang X, Yang Y, Zhou Z. Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49(10): 3040-3071. DOI: 10.1039/c9cs00838a.

[67] Zhang X, Sahraei E, Wang K. Li-ion battery separators, mechanical integrity and failure mechanisms leading to soft and hard internal shorts. Scientific Reports, 2016, 6(1): 32578. DOI: 10.1038/srep32578.

[68] Dai J, Shi C, Li C, et al. A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes. Energy & Environmental Science, 2016, 9(10): 3252-3261. DOI: 10.1039/c6ee01219a.

[69] Jovanovic P, Mirshekarloo M S, Hill M R, et al. Separator design variables and recommended characterization methods for viable lithium-sulfur batteries. Advanced Materials Technologies, 2021, 6(10): 2001136. DOI: 10.1002/admt.202001136.

[70] Tang W, Chen Z, Tian B, et al. In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes. Journal of the American Chemical Society, 2017, 139(29): 10133-10141. DOI: 10.1021/jacs.7b05371.

[71] Su Y S, Manthiram A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chemical Communications, 2012, 48(70): 8817-8819. DOI: 10.1039/c2cc33945e.

[72] Zhao Y, Liu M, Lv W, et al. Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy, 2016, 30: 1-8. DOI: 10.1016/j.nanoen.2016.09.030.

[73] He J, Chen Y, Manthiram A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy & Environmental Science, 2018, 11(9): 2560-2568. DOI: 10.1039/c8ee00893k.

[74] Guo D, Ming F, Su H, et al. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy, 2019, 61: 478-485. DOI: 10.1016/j.nanoen.2019.05.011.

[75] Imtiaz S, Ali Zafar Z, Razaq R, et al. Electrocatalysis on separator modified by molybdenum trioxide nanobelts for lithium-sulfur batteries. Advanced Materials Interfaces, 2018, 5(15): 1800243. DOI: 10.1002/admi.201800243.

[76] Lai Y, Wang P, Qin F, et al. A carbon nanofiber@mesoporous δ-MnO2 nanosheet-coated separator for high-performance lithium-sulfur batteries. Energy Storage Materials, 2017, 9: 179-187. DOI: 10.1016/j.ensm.2017.07.009.

[77] Li Y, Yan Q, Zhu J, et al. Covalent coupled sulfur-deficient MoS2 nanosheets on carbon nanotubes toward polysulfide catalytic conversion in a lithium sulfur battery. ACS Sustainable Chemistry & Engineering, 2023, 11(3): 1019-1026. DOI: 10.1021/acssuschemeng.2c05699.

[78] Song X, Chen G, Wang S, et al. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2018, 10(31): 26274-26282. DOI:10.1021/acsami.8b07663.

[79] Xu J, An S, Song X, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Advanced Materials, 2021, 33(49): 2105178. DOI: 10.1002/adma.202105178.

[80] Huang J Q, Zhang Q, Peng H J, et al. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy & Environmental Science, 2014, 7(1): 347-353. DOI: 10.1039/c3ee42223b.

[81] Zhang X, Li G, Zhang Y, et al. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy, 2021, 86: 106094. DOI: 10.1016/j.nanoen.2021.106094.

[82]  Shao H, Ai F, Wang W, et al. Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries. Journal of Materials Chemistry A, 2017, 5(37): 19892-19900. DOI: 10.1039/c7ta05192a.

[83] Pei F, Lin L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule, 2018, 2(2): 323-336. DOI: 10.1016/j.joule.2017.12.003.

[84] Ghazi Z A, He X, Khattak A M, et al. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Advanced Materials, 2017, 29(21): 1606817. DOI: 10.1002/adma.201606817.

[85] Kim A, Oh S H, Adhikari A, et al. Recent advances in modified commercial separators for lithium-sulfur batteries. Journal of Materials Chemistry A, 2023 ,11, 7833-7866. DOI: 10.1039/d2ta09266b.

[86] Wang X, Yang L, Li Q, et al. TiO2@chlorella-based biomass carbon modified separator for high-rate lithium-sulfur batteries. Industrial & Engineering Chemistry Research, 2022, 61(4): 1761-1772. DOI: 10.1021/acs.iecr.1c04510.

[87] Yao H, Yan K, Li W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy & Environmental Science, 2014, 7(10): 3381-3390. DOI: 10.1039/c4ee01377h.

[88] Liu X, He Q, Liu J, et al. Dual single-atom moieties anchored on N-doped multilayer graphene as a catalytic host for lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2023, 15(7): 9439-9446. DOI: 10.1021/acsami.2c21620.

[89] Ou X, Yu Y, Wu R, et al. Shuttle suppression by polymer-sealed graphene-coated polypropylene separator. ACS Applied Materials & Interfaces, 2018, 10(6): 5534-5542. DOI: 10.1021/acsami.7b17251.

[90] Qi X, Huang L, Luo Y, et al. Ni3Sn2/nitrogen-doped graphene composite with chemisorption and electrocatalysis as advanced separator modifying material for lithium sulfur batteries. Journal of Colloid and Interface Science, 2022, 628: 896-910. DOI: 10.1016/j.jcis.2022.08.031.

[91] Jing E, Chen L, Xu S, et al. Dual redox catalysis of VN/nitrogen-doped graphene nanocomposites for high-performance lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 64: 574-582. DOI: 10.1016/j.jechem.2021.05.015.

[92] Mo Y, Yang K, Lin J, et al. CoSe2 anchored vertical graphene/macroporous carbon nanofibers used as multifunctional interlayers for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A, 2023, 11(12): 6349-6360. DOI: 10.1016/j.cej.2023.144338. DOI:10.1039/d2ta10020g.

[93] Wang H, Xu C, Du X, et al. Ordered porous metal oxide embedded dense carbon network design as high-performance interlayer for stable lithium-sulfur batteries. Chemical Engineering Journal, 2023: 144338. DOI: 10.1016/j.cej.2023.144338.

[94] Yang B, Guo D, Lin P, et al. Hydroxylated multi-walled carbon nanotubes covalently modified with tris (hydroxypropyl) phosphine as a functional interlayer for advanced lithium-sulfur batteries. Angewandte Chemie International Edition, 2022, 61(28): e202204327. DOI: 10.1002/anie.202204327.

[95] Zhao Q, Zhu Q, An Y, et al. A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries. Applied Surface Science, 2018, 440: 770-777. DOI: 10.1016/j.apsusc.2018.01.162.

[96] Maihom T, Kaewruang S, Phattharasupakun N, et al. Lithium bond impact on lithium polysulfide adsorption with functionalized carbon fiber paper interlayers for lithium-sulfur batteries. The Journal of Physical Chemistry C, 2018, 122(13): 7033-7040. DOI: 10.1021/acs.jpcc.7b09392.

[97] Chung S H, Manthiram A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-batteries. Chemical Communications, 2014, 50(32): 4184-4187. DOI: 10.1039/c4cc00850b.

[98] Kaewruang S, Chiochan P, Phattharasupakun N, et al. Strong adsorption of lithium polysulfides on ethylenediamine-functionalized carbon fiber paper interlayer providing excellent capacity retention of lithium-sulfur batteries. Carbon, 2017, 123: 492-501. DOI: 10.1016/j.carbon.2017.07.096.

[99] Li J, Dai L, Wang Z, et al. Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 67: 736-744. DOI: 10.1016/j.jechem.2021.11.017.

[100]  Park G D, Lee J, Piao Y, et al. Mesoporous graphitic carbon-TiO2 composite microspheres produced by a pilot-scale spray-drying process as an efficient sulfur host material for Li-S batteries. Chemical Engineering Journal, 2018, 335: 600-611. DOI: 10.1016/j.cej.2017.11.021.

[101]  Shao H, Wang W, Zhang H, et al. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. Journal of Power Sources, 2018, 378: 537-545. DOI: 10.1016/j.jpowsour.2017.12.067.

[102]  Ma G, Huang F, Wen Z, et al. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators. Journal of Materials Chemistry A, 2016, 4(43): 16968-16974. DOI: 10.1039/c6ta07198h.

[103]  Li Y, Wang W, Liu X, et al. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Materials, 2019, 23: 261-268. DOI: 10.1016/j.ensm.2019.05.005.

[104]  Zhang Y, Liu X, Wu L, et al. A flexible, hierarchically porous PANI/MnO2 network with fast channels and an extraordinary chemical process for stable fast-charging lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8(5): 2741-2751. DOI: 10.1039/c9ta12135h.

[105]  Jo H, Cho Y, Yoo T, et al. Polyaniline-encapsulated hollow Co-Fe Prussian blue analogue nanocubes modified on a polypropylene separator to improve the performance of lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2021, 13(40): 47593-47602. DOI: 10.1021/acsami.1c12855.

[106]  Bubnova O, Khan Z U, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene). Nature Materials, 2011, 10(6): 429-433. DOI: 10.1038/nmat3012.

[107]  Abbas S A, Ibrahem M A, Hu L H, et al. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries. Journal of Materials Chemistry A, 2016, 4(24): 9661-9669. DOI: 10.1039/c6ta02272c.

[108]  Chakraborty G, Park I H, Medishetty R, et al. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications. Chemical Reviews, 2021, 121(7): 3751-3891. DOI: 10.1021/acs.chemrev.0c01049.

[109]  Bai S, Liu X, Zhu K, et al. Metal-organic framework-based separator for lithium-sulfur batteries. Nature Energy, 2016, 1(7): 1-6. DOI: 10.1038/nenergy.2016.94.

[110]  He Y, Chang Z, Wu S, et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Advanced Energy Materials, 2018, 8(34): 1802130. DOI: 10.1002/aenm.201802130.

[111]  Chang Z, Qiao Y, Wang J, et al. Fabricating better metal-organic frameworks separators for Li-S batteries: Pore sizes effects inspired channel modification strategy. Energy Storage Materials, 2020, 25: 164-171. DOI: 10.1016/j.ensm.2019.10.018.

[112]  Yoo J T, Cho S J, Jung G Y, et al. COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano Letters, 2016, 16(5): 3292-3300. DOI: 10.1021/acs.nanolett.6b00870.

[113]  Yan W, Gao X, Yang J L, et al. Boosting polysulfide catalytic conversion and facilitating Li+ transportation by ion-selective COFs composite nanowire for Li-S batteries. Small, 2022, 18(11): 2106679. DOI: 10.1002/smll.202106679.

[114]  Cheng H, Liu H, Jin H, et al. Suppression of polysulfide shuttling with a separator modified using spontaneously polarized bismuth ferrite for high performance lithium-sulfur batteries. Journal of Materials Chemistry A, 2020, 8(32): 16429-16436. DOI: 10.1039/d0ta05181k.

[115]  Xiao Z, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Advanced Materials, 2015, 27(18): 2891-2898. DOI: 10.1002/adma.201405637.

[116]   Zhou T, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy & Environmental Science, 2017, 10(7): 1694-1703. DOI: 10.1039/c7ee01430a.

[117]  Lv X, Lei T, Wang B, et al. An efficient separator with low Li-ion diffusion energy barrier resolving feeble conductivity for practical lithium-sulfur batteries. Advanced Energy Materials, 2019, 9(40): 1901800. DOI: 10.1002/aenm.201901800.

[118]  Gong Y, Wang Y, Fang Z, et al. Constructing a catalytic reservoir using cobalt nanoparticles-MoS2@ nitrogen doped carbon nanotubes on the separator to immobilize polysulfides and accelerate their conversion for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 446: 136943. DOI: 10.1016/j.cej.2022.136943.

[119]  Liu G, Zeng Q, Sui X, et al. Modulating d-Band electronic structures of molybdenum disulfide via p/n doping to boost polysulfide conversion in lithium-sulfur batteries. Small, 2023: 2301085. DOI: 10.1002/smll.202301085.

[120]  Li Y, Lei D, Jiang T, et al. P-doped Co9S8 nanoparticles embedded on 3D spongy carbon-sheets as electrochemical catalyst for lithium-sulfur batteries. Chemical Engineering Journal, 2021, 426: 131798. DOI: 10.1016/j.cej.2021.131798.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2025 Science, Technology, Engineering and Mathematics.   All Rights Reserved.