Science, Technology, Engineering and Mathematics.
Open Access

SYNTHESIS OF TWO-DIMENSIONAL ORGANIC FRAME MATERIALS: CLASSIFICATION, APPLICATIONS, PROBLEMS AND MODIFICATION APPROACHES

Download as PDF

Volume 3, Issue 1, Pp 7-19, 2025

DOI: https://doi.org/10.61784/wjms3009

Author(s)

Yao Long

Affiliation(s)

Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China.

Corresponding Author

Yao Long

ABSTRACT

Organic framework materials, including MOFs and HOFs, are widely used in multiple fields. MOFs are formed by the self-assembly of inorganic metal centers and organic ligands, and there are various types such as IRMOFs and ZIFs. Post-synthetic modification (PSM) can expand their functional groups. HOFs connect building units through hydrogen bonds. They have advantages like mild preparation conditions and good solution-processing performance, but the characteristics of hydrogen bonds also limit their development. Two-dimensional MOFs combine the advantages of MOFs and ultrathin two-dimensional materials. There are two preparation strategies: "top-down" and "bottom - up". The "top-down" method, including physical and chemical exfoliation methods, can exfoliate bulk MOFs into nanosheets, but there are problems such as uneven product thickness and low yield. The "bottom-up" methods, such as the solvothermal method, interface synthesis method, and auxiliary synthesis method, can prepare nanosheets with uniform thickness, but each has its pros and cons. Overall, organic framework materials have broad prospects, but they still face challenges in synthesis, performance optimization, etc., and further research and improvement are needed.

KEYWORDS

Organic framework materials; MOFs; HOFs; Synthesis methods; Two-dimensional MOFs

CITE THIS PAPER

Yao Long. Synthesis of two-dimensional organic frame materials: classification, applications, problems and modification approaches. World Journal of Materials Science. 2025, 3(1): 7-19. DOI: https://doi.org/10.61784/wjms3009.

REFERENCES

[1] Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378(6558): 703-706. DOI: 10.1038/378703a0.

[2] Pan Y, Liu Y, Zeng G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 2011, 47(7): 2071-2073. DOI: 10.1039/c0cc05002d.

[3] Qian J, Sun F, Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 2012, 82: 220-223. DOI: 10.1016/j.matlet.2012.05.077.

[4] Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276-279.DOI: 10.1038/46248.

[5] Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040-2042. DOI: 10.1126/science.1116275.

[6] Prestipino C, Regli L, Vitillo J G, et al. Local structure of framework Cu(II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chemistry of Materials, 2006, 18(5): 1337-1346. DOI: 10.1021/cm052191g.

[7] Luo J, Wang J W, Zhang J H, et al. Hydrogen-bonded organic frameworks: design, structures and potential applications. CrystEngComm, 2018, 20(39): 5884-5898. DOI: 10.1039/c8ce00655e.

[8] Hisaki I, Xin C, Takahashi K, et al. Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angewandte Chemie International Edition, 2019, 58(33): 11160-11170. DOI: 10.1002/anie.201902147.

[9] Lin R B, He Y, Li P, et al. Multifunctional porous hydrogen-bonded organic framework materials. Chemical Society Reviews, 2019, 48(5): 1362-1389. DOI: 10.1039/c8cs00155c.

[10] Yang J, Wang J, Hou B, et al. Porous hydrogen-bonded organic frameworks (HOFs): from design to potential applications. Chemical Engineering Journal, 2020, 399: 125873. DOI: 10.1016/j.cej.2020.125873.

[11] Wang B, Lin R B, Zhang Z, et al. Hydrogen-bonded organic frameworks as a tunable platform for functional materials. Journal of the American Chemical Society, 2020, 142(34): 14399-14416. DOI: 10.1021/jacs.0c06473.

[12] Lü J, Cao R. Porous organic molecular frameworks with extrinsic porosity: a platform for carbon storage and separation. Angewandte Chemie International Edition, 2016, 55(33): 9474-9480. DOI: 10.1002/anie.201602116.

[13] Duchamp D J, Marsh R E. The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid). Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1969, 25(1): 5-19. DOI: 10.1107/s0567740869001713.

[14] Simard M, Su D, Wuest J D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. Journal of the American Chemical Society, 1991, 113(12): 4696-4698. DOI: 10.1021/ja00012a057.

[15] Wang X, Simard M, Wuest J D. Molecular tectonics. Three-dimensional organic networks with zeolitic properties. Journal of the American Chemical Society, 1994, 116(26): 12119-12120. DOI: 10.1021/ja00105a089.

[16] Hu Y X, Li W J, Jia P P, et al. Supramolecular artificial light-harvesting systems with aggregation-induced emission. Advanced Optical Materials, 2020, 8(14): 2000265. DOI: 10.1002/adom.202000265.

[17] Feng S, Shang Y, Wang Z, et al. Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation. Angewandte Chemie International Edition, 2020, 59(10): 3840-3845. DOI: 10.1002/anie.201914548.

[18] Hu F, Liu C, Wu M, et al. An ultrastable and easily regenerated hydrogen-bonded organic molecular framework with permanent porosity. Angewandte Chemie International Edition, 2017, 56(8): 2101-2104. DOI: 10.1002/anie.201610901.

[19] Lin Z J, Cao R. Porous hydrogen-bonded organic frameworks (HOFs): current status and challenges. Acta Chimica Sinica, 2020, 78(12): 1309-1335. DOI: 10.6023/A20080359.

[20] Alezi D, Belmabkhout Y, Suyetin M, et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. Journal of the American Chemical Society, 2015, 137(41): 13308-13318. DOI: 10.1021/jacs.5b07053.

[21] Karmakar A, Illathvalappil R, Anothumakkool B, et al. Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials. Angewandte Chemie International Edition, 2016, 55(36): 10667-10671. DOI: 10.1002/ange.201604534.

[22] Liang W, Carraro F, Solomon M B, et al. Enzyme encapsulation in a porous hydrogen-bonded organic framework. Journal of the American Chemical Society, 2019, 141(36): 14298-14305. DOI: 10.1021/jacs.9b06589.

[23] Yao M S, Xiu J W, Huang Q Q, et al. Van der waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angewandte Chemie International Edition, 2019, 131(42): 15057-15061. DOI: 10.1002/anie.201907772.

[24] Chen X, Tong R, Shi Z, et al. MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Applied Materials & Interfaces, 2018, 10(3): 2328-2337. DOI: 10.1007/s10904-024-03173-6.

[25] Sorrenti A, Jones L, Sevim S, et al. Growing and shaping metal-organic framework single crystals at the millimeter scale. Journal of the American Chemical Society, 2020, 142(20): 9372-9381. DOI: 10.1021/jacs.0c01935.

[26] Huang Q, Li W, Mao Z, et al. An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities. Nature Communications, 2019, 10(1): 3074. DOI: 10.1038/s41467-019-10575-5.

[27] Li Y L, Alexandrov E V, Yin Q, et al. Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors. Journal of the American Chemical Society, 2020, 142(15): 7218-7224. DOI: 10.1021/jacs.0c02406.

[28] Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. DOI: 10.1021/ja8057953.

[29] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941): 705-714. DOI: 10.1038/nature01650.

[30] Shearer G C, Chavan S, Ethiraj J, et al. Tuned to perfection: ironing out the defects in metal-organic framework UiO-66. Chemistry of Materials, 2014, 26(14): 4068-4071. DOI: 10.1021/cm501859p.

[31] Sletten E M, Bertozzi C R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angewandte Chemie International Edition, 2009, 48(38): 6974-6998. DOI: 10.1002/anie.200900942.

[32] Sletten E M, Bertozzi C R. From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts of Chemical Research, 2011, 44(9): 666-676. DOI: 10.1021/ar200148z.

[33] Nguyen J G, Cohen S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. Journal of the American Chemical Society, 2010, 132(13): 4560-4561. DOI: 10.1021/ja100900c.

[34] Aguado S, Canivet J, Farrusseng D. Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chemical Communications, 2010, 46(42): 7999-8001. DOI: 10.1039/c0cc02045a.

[35] Cohen S M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chemical Reviews, 2012, 112(2): 970-1000. DOI: 10.1021/cr200179u.

[36] Cohen S M. The postsynthetic renaissance in porous solids. Journal of the American Chemical Society, 2017, 139(8): 2855-2863. DOI: 10.1021/jacs.6b11259.

[37] Wang Z, Cohen S M. Postsynthetic modification of metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1315-1329. DOI: 10.1039/b802258p.

[38] Tanabe K K, Cohen S M. Postsynthetic modification of metal-organic frameworks-a progress report. Chemical Society Reviews, 2011, 40(2): 498-519. DOI: 10.1039/c0cs00031k.

[39] Kalaj M, Denny Jr M S, Bentz K C, et al. Nylon-MOF composites through postsynthetic polymerization. Angewandte Chemie International Edition, 2019, 131(8): 2358-2362. DOI: 10.1002/anie.201812655.

[40] Hwang Y K, Hong D Y, Chang J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angewandte Chemie International Edition, 2008, 120(22): 4212-4216. DOI: 10.1002/anie.200705998.

[41] Demessence A, D’Alessandro D M, Foo M L, et al. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. Journal of the American Chemical Society, 2009, 131(25): 8784-8786. DOI: 10.1021/ja903411w.

[42] Kondo M, Furukawa S, Hirai K, et al. Coordinatively immobilized monolayers on porous coordination polymer crystals. Angewandte Chemie International Edition, 2010, 49(31): 5327-5330. DOI: 10.1002/anie.201001063.

[43] Wang S, McGuirk C M, d'Aquino A, et al. Metal-organic framework nanoparticles. Advanced Materials, 2018, 30(37): 1800202. DOI: 10.1002/adma.201800202.

[44] Wang S, McGuirk C M, Ross M B, et al. General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticle//Spherical Nucleic Acids. Jenny Stanford Publishing, 2020: 671-682. DOI: 10.1021/jacs.7b05633.

[45] Liu W, Yin R, Xu X, et al. Structural engineering of low-dimensional metal-organic frameworks: synthesis, properties, and applications. Advanced Science, 2019, 6(12): 1802373. DOI: 10.1002/advs.201802373.

[46] Zhao M, Lu Q, Ma Q, et al. Two-dimensional metal-organic framework nanosheets. Small Methods, 2017, 1(1-2): 1600030. DOI: 10.1002/smtd.201600030.

[47] Flores-Figueroa A, Pape T, Feldmann K O, et al. Template-controlled synthesis of a planarane-P2CNHC2 macrocycle. Chemical Communications, 2010, 46(2): 324-326. DOI: 10.1039/b920474a.

[48] Li P Z, Maeda Y, Xu Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chemical Communications, 2011, 47(29): 8436-8438. DOI: 10.1039/c1cc12510a.

[49] Coleman J N. Liquid exfoliation of defect-free graphene. Accounts of Chemical Research, 2013, 46(1): 14-22. DOI: 10.1021/ar300009f.

[50] Kumar R, Jayaramulu K, Maji T K, et al. Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics. Dalton Transactions, 2014, 43(20): 7383-7386. DOI: 10.1039/c3dt53133c.

[51] Beldon P J, Tominaka S, Singh P, et al. Layered structures and nanosheets of pyrimidinethiolate coordination polymers. Chemical Communications, 2014, 50(30): 3955-3957. DOI: 10.1039/c4cc00771a.

[52] Xu H, Gao J, Qian X, et al. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. Journal of Materials Chemistry A, 2016, 4(28): 10900-10905. DOI: 10.1039/c6ta03065c.

[53] Foster J A, Henke S, Schneemann A, et al. Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets. Chemical Communications, 2016, 52(69): 10474-10477. DOI: 10.1039/c6cc05154e.

[54] Zheng J, Zhang H, Dong S, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications, 2014, 5(1): 2995. DOI: 10.1038/ncomms3995.

[55] Joensen P, Frindt R F, Morrison S R. Single-layer MoS2. Materials Research Bulletin, 1986, 21(4): 457-461. DOI: 10.1016/0025-5408(86)90011-5.

[56] Dresselhaus M S. Intercalation in layered materials. MRS Bulletin, 1987, 12: 24-28. DOI: 10.1007/978-1-4757-5556-5.

[57] Ding Y, Chen Y P, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. Journal of the American Chemical Society, 2017, 139(27): 9136-9139. DOI: 10.1021/jacs.7b04829.

[58] Huang H, Zhu J, Li D, et al. Pt nanoparticles grown on 3D RuO2-modified graphene architectures for highly efficient methanol oxidation. Journal of Materials Chemistry A, 2017, 5(9): 4560-4567. DOI: 10.1039/B920474A.

[59] Yang R, Fan Y, Mei L, et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nature Synthesis, 2023, 2(2): 101-118. DOI: 10.1038/s44160-022-00232-z.

[60] Jeong S, Yoo D, Ahn M, et al. Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nature Communications, 2015, 6(1): 5763. DOI: 10.1038/ncomms6763.

[61] Vallés C, Drummond C, Saadaoui H, et al. Solutions of negatively charged graphene sheets and ribbons. Journal of the American Chemical Society, 2008, 130(47): 15802-15804. DOI: 10.1021/ja808001a.

[62] Cullen P L, Cox K M, Bin Subhan M K, et al. Ionic solutions of two-dimensional materials. Nature Chemistry, 2017, 9(3): 244-249. DOI: 10.1038/nchem.2650.

[63] Joensen P, Frindt R F, Morrison S R. Single-layer MoS2. Materials Research Bulletin, 1986, 21(4): 457-461. DOI: 10.1016/0025-5408(86)90011-5.

[64] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Letters, 2011, 11(12): 5111-5116. DOI: 10.1021/nl201874w.

[65] Kang Y J, Jung S C, Choi J W, et al. Important role of functional groups for sodium ion intercalation in expanded graphite. Chemistry of Materials, 2015, 27(15): 5402-5406. DOI: 10.1021/acs.chemmater.5b02024.

[66] Parvez K, Wu Z S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 2014, 136(16): 6083-6091. DOI: 10.1021/ja5017156.

[67] Liu N, Kim P, Kim J H, et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano, 2014, 8(7): 6902-6910. DOI: 10.1021/nn5016242.

[68] Lu J, Yang J, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8): 2367-2375. DOI: 10.1021/nn900546b.

[69] Liu Z, Sun Y, Cao H, et al. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nature Communications, 2020, 11(1): 3917. DOI: 10.1038/s41467-020-17622-6.

[70] Yang J, Zeng Z, Kang J, et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nature Materials, 2019, 18(9): 970-976. DOI: 10.1038/s41563-019-0415-3.

[71] Liu Y Y, Jiang Y Y, Yang J, et al. Syntheses, structures and photoluminescence of zinc(II) and silver(I) coordination polymers based on 1,1′-(1,4-butanediyl) bis (2-methylbenzimidazole) and different carboxylate ligands. CrystEngComm, 2011, 13(20): 6118-6129. DOI: 10.1039/c0ce00990c.

[72] Huang X, Sheng P, Tu Z, et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nature Communications, 2015, 6(1): 7408. DOI: 10.1038/ncomms8408.

[73] Huang Y, Zhao M, Han S, et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Advanced Materials, 2017, 29(32): 1700102. DOI: 10.1002/adma.201700102.

[74] Zhuang L, Ge L, Liu H, et al. A surfactant-free and scalable general strategy for synthesizing ultrathin two-dimensional metal-organic framework nanosheets for the oxygen evolution reaction. Angewandte Chemie International Edition, 2019, 131(38): 13699-13706. DOI: 10.1002/anie.201907600.

[75] Tian M, Pei F, Yao M, et al. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Materials, 2019, 21: 14-21. DOI: 10.1016/j.ensm.2018.12.016.

[76] Makiura R, Motoyama S, Umemura Y, et al. Surface nano-architecture of a metal-organic framework. Nature Materials, 2010, 9(7): 565-571. DOI: 10.1038/nmat2769.

[77] Motoyama S, Makiura R, Sakata O, et al. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. Journal of the American Chemical Society, 2011, 133(15): 5640-5643. DOI: 10.1021/ja110720f.

[78] Kambe T, Sakamoto R, Hoshiko K, et al. π-Conjugated nickel bis (dithiolene) complex nanosheet. Journal of the American Chemical Society, 2013, 135(7): 2462-2465. DOI: 10.1021/ja312380b.

[79] Clough A J, Yoo J W, Mecklenburg M H, et al. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. Journal of the American Chemical Society, 2015, 137(1): 118-121. DOI: 10.1021/ja5116937.

[80] Sakamoto R, Hoshiko K, Liu Q, et al. A photofunctional bottom-up bis (dipyrrinato) zinc(II) complex nanosheet. Nature Communications, 2015, 6(1): 6713. DOI: 10.1038/ncomms7713.

[81] Pham M H, Vuong G T, Fontaine F G, et al. A route to bimodal micro-mesoporous metal-organic frameworks nanocrystals. Crystal Growth & Design, 2012, 12(2): 1008-1013. DOI: 10.1021/cg201483y.

[82] Makiura R, Konovalov O. Interfacial growth of large-area single-layer metal-organic framework nanosheets. Scientific Reports, 2013, 3(1): 2506. DOI: 10.1038/srep02506.

[83] Choi E Y, Wray C A, Hu C, et al. Highly tunable metal-organic frameworks with open metal centers. CrystEngComm, 2009, 11(4): 553-555. DOI: 10.1039/b819707p.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2025 Science, Technology, Engineering and Mathematics.   All Rights Reserved.