Science, Technology, Engineering and Mathematics.
Open Access

REPRODUCE LONG-TAIL CURRENT HYSTERESIS IN PEROVSKITE SOLAR CELLS BASED ON AN IONIC CAPACITOR MODELLED BY A VOLTAGE-RELATED INITIAL CURRENT TIMES THE LINEAR COMBINATION OF THREE EXPONENTIAL DECAY TERMS

Download as PDF

Volume 3, Issue 2, Pp 1-7, 2025

DOI: https://doi.org/10.61784/wjer3022

Author(s)

Biao Peng, RongXin Wu, YueWen Chen, MuYun Li, YingFeng Li*

Affiliation(s)

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206, China.

Corresponding Author

YingFeng Li

ABSTRACT

It has been reported that the current-voltage (J-V) hysteresis loop of perovskite solar cells (PSCs) could be reproduced by incorporating extra resistances or capacitors in the equivalent circuits of PSCs. However, the exponential decay long-tail current in the hysteresis phenomenon, lasting about 2-5 seconds, remains inadequately modeled, yet it is crucial for maximum power point tracking in PSCs. We propose an ionic capacitor model to describe the impact of ion migration on the current of PSCs, which is composed of a voltage-related initial current multiplies by the linear combination of three exponential decay terms over time. The initial current term is formulated as the product of the voltage step size and a voltage-related conductance. The three exponential terms, each associated with a specific time constants τ, correspond to the migration of electron, iodine ions, and other ions with lower mobilities, respectively. Based on this model, an equivalent circuit for PSCs is constructed, and corresponding parameters were numerical fitted based on available J-V data and current-time response curves. Numerical simulations demonstrate that the proposed model accurately reproduces both the J-V hysteresis loop and the exponential decay long-tail current. This work lays the foundation for the development of MPPT tracking algorithms tailored for PSCs.

KEYWORDS

Perovskite solar cells; Hysteresis; Long-tail current; Ionic capacitor

CITE THIS PAPER

Biao Peng, RongXin Wu, YueWen Chen, MuYun Li, YingFeng Li. Reproduce long-tail current hysteresis in perovskite solar cells based on an ionic capacitor modelled by a voltage-related initial current times the linear combination of three exponential decay terms. World Journal of Engineering Research. 2025, 3(2): 1-7. DOI: https://doi.org/10.61784/wjer3022.

REFERENCES

[1] Wu S, Liu M, Jen AKY. Prospects and challenges for perovskite-organic tandem solar cells. Joule, 2023, 7(3): 484-502.

[2] Yang C, Hu W, Liu J, et al. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light: Science & Applications, 2024, 13(1).

[3] Aydin E, Allen TG, De Bastiani M, et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science, 2024, 383(6679).

[4] Du S, Huang H, Lan Z, et al. Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells. Nature Communications, 2024, 15(1).

[5] National Renewable Energy Laboratory. 2025. https://www.nrel.gov/pv/cell-efficiency.html.

[6] Sarvi M, Azadian A. A comprehensive review and classified comparison of MPPT algorithms in PV systems. Energy Systems, 2022, 13(2): 281-320.

[7] Verma D, Nema S, Shandilya AM, et al. Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, 2016, 54: 1018-1034.

[8] B S, SKP D, S S, et al. Steady Output and Fast Tracking MPPT (SOFT-MPPT) for P&O and InC Algorithms," IEEE Trans. Sustain. Energy, 2021, 12(1): 293-302.

[9] Kang DH, Park NG. On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis. Advanced Materials, 2019, 31(34): 1805214 (2019).

[10] Kim H, Park N. Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. The Journal of Physical Chemistry Letters, 2014, 5(17): 2927-2934.

[11] Tress W, Marinova N, Moehl T, et al. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 2015, 8(3): 995-1004.

[12] Anghel DV, Nemnes GA, Pintilie I, et al. Modelling J-V hysteresis in perovskite solar cells induced by voltage poling. Physica Scripta, 2019, 94 (12): 125809.

[13] Tang S, Yan J, Chen L, et al. Circuit modeling and analysis of hysteresis effect of perovskite photovoltaic cells. Solar Energy Materials and Solar Cells, 2024, 278: 113182.

[14] Seki K. Equivalent circuit representation of hysteresis in solar cells that considers interface charge accumulation: Potential cause of hysteresis in perovskite solar cells. Applied Physics Letters, 2016, 109(3): 33905.

[15] Gottesman R, Haltzi E, Gouda L, et al. Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. The Journal of Physical Chemistry Letters, 2014, 5(15): 2662-2669.

[16] Hernández Balaguera E, Bisquert J. Time Transients with Inductive Loop Traces in Metal Halide Perovskites. Advanced Functional Materials, 2024, 34(6).

[17] Lopez-Varo P, Jiménez-Tejada JA, García-Rosell M, et al. Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment. Advanced Energy Materials, 2018, 8(14): 1702772.

[18] Chen B, Yang M, Zheng X, et al. Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 2015, 6(23): 4693-4700.

[19] Bisquert J. Hysteresis, Impedance, and Transients Effects in Halide Perovskite Solar Cells and Memory Devices Analysis by Neuron‐Style Models. Advanced Energy Materials, 2024, 14(26).

[20] O'Kane SEJ, Richardson G, Pockett A, et al. Measurement and modelling of dark current decay transients in perovskite solar cells. Journal of Materials Chemistry C, 2017, 5(2): 452-462.

[21] Ravishankar S, Almora O, Echeverría Arrondo C, et al. Surface Polarization Model for the Dynamic Hysteresis of Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 2017, 8(5): 915-921.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2025 Science, Technology, Engineering and Mathematics.   All Rights Reserved.