Science, Technology, Engineering and Mathematics.
Open Access

ROLE OF APE1/REF-1 IN CARDIOVASCULAR DISEASES

Download as PDF

Volume 3, Issue 1, Pp 15-23, 2020

Author(s)

Runmin Guo1,2, Yue Wei3, Guoda Ma2, Jinfeng Zhang4, Zhiqiang Wang2,5*

Affiliation(s)

1Department of Medicine, Shunde Women and Children's Hospital, Guangdong Medical  University, Foshan,528300, P.R. China. 

2Matenal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong  Medical University, Foshan,528300, P.R. China. 

3Department of Ultrasound, Shunde Women and Children's Hospital, Guangdong Medical  University, Foshan,528300, P.R. China. 

4Newborns' diseases screening center, Shunde Women and Children's Hospital, Guangdong  Medical University, Foshan City, 528300, Guangdong, P.R. China. 

5Clinical Research Center, the Affiliated Hospital of Guangdong Medical University, Zhanjiang,  524001, Guangdong, P.R. China.

Corresponding Author

Zhiqiang Wang

ABSTRACT

Apurinic/apyrimidinic endonuclease 1/redox effector factor-1  (APE1/Ref-1) is a multifunctional protein involved in the DNA base excision  repair pathway, redox regulation, inflammation, and survival pathways.  APE1/Ref-1 could inhibit the production of reactive oxygen species (ROS).  Excessive ROS production could lead to DNA damage and cell apoptosis, which  is viewed as the cause of cardiovascular diseases. Recent advances of molecular  studies have demonstrated that APE1/Ref-1 is involved in the pathogenesis of  cardiovascular diseases. In this review, we will introduce the multifunctional role  of APE1/Ref-1 and its potential usefulness as a therapeutic target in  cardiovascular diseases.

KEYWORDS

APE1/Ref-1, cardiovascular diseases, base excision repair, redox  regulation

CITE THIS PAPER

Runmin Guo, Yue Wei, Guoda Ma, Jinfeng Zhang, Zhiqiang Wang. Role of APE1/Ref-1 in cardiovascular diseases. Acta Translational Medicine. 2020, 3(1): 15-23.

REFERENCES

[1] Demple B, Harrison L. Repair of  oxidative damage to DNA:  enzymology and biology. Annu  Rev Biochem 1994; 63: 915-48.  eng. 

[2] D'Errico M, Parlanti E, Dogliotti E.  Mechanism of oxidative DNA  damage repair and relevance to  human pathology. Mutat Res 2008;  659 (1-2): 4-14. eng. 

[3] Bhakat KK, Mantha AK, Mitra S.  Transcriptional Regulatory  Functions of Mammalian APEndonuclease (APE1/Ref-1), an  Essential Multifunctional Protein.  Antioxid Redox Signal 2009; 11  (3): 621-37. 

[4] Bauer CE, Elsen S, Bird TH.  Mechanisms for redox control of gene expression. Annu Rev  Microbiol 1999; 53: 495-523. eng. 

[5] Tell G, Quadrifoglio F, Tiribelli C,  Kelley MR. The many functions of  APE1/Ref-1: not only a DNA  repair enzyme. Antioxid Redox  Signal 2009; 11 (3): 601-20. eng. 

[6] Xanthoudakis S, Miao GG, Curran  T. The redox and DNA-repair  activities of Ref-1 are encoded by  nonoverlapping domains. Proc Natl  Acad Sci USA 1994; 91 (1): 23-27.  eng. 

[7] Choi S, Joo HK, Jeon BH.  Dynamic Regulation of APE1/Ref- 1 as a Therapeutic Target Protein.  Chonnam Med J 2016; 52 (2): 75- 80. 

[8] Moris D, Spartalis M, Spartalis E,  Karachaliou G-S, Karaolanis GI,  Tsourouflis G, et al. The role of  reactive oxygen species in the  pathophysiology of cardiovascular  diseases and the clinical  significance of myocardial redox.  Annals of Translational Medicine  2017; 5 (16). en. 

[9] Hegde ML, Mantha AK, Hazra TK,  Bhakat KK, Mitra S, Szczesny B.  Oxidative genome damage and its  repair: implications in aging and  neurodegenerative diseases. Mech  Ageing Dev 2012; 133 (4): 157-68.  eng. 

[10] Thakur S, Dhiman M, Tell G,  Mantha AK. A review on proteinprotein interaction network of  APE1/Ref-1 and its associated  biological functions. Cell Biochem  Funct 2015; 33 (3): 101-12. eng. 

[11] Mol CD, Izumi T, Mitra S, Tainer  JA. DNA-bound structures and  mutants reveal abasic DNA binding  by APE1 and DNA repair  coordination [corrected]. Nature  2000; 403 (6768): 451-56. eng. 

[12] Kanazhevskaya LY, Koval VV,  Zharkov DO, Strauss PR, Fedorova  OS. Conformational transitions in  human AP endonuclease 1 and its  active site mutant during abasic site  repair. Biochemistry 2010; 49 (30):  6451-61. eng. 

[13] Jackson EB, Theriot CA,  Chattopadhyay R, Mitra S, Izumi T.  Analysis of nuclear transport  signals in the human  apurinic/apyrimidinic endonuclease  (APE1/Ref1). Nucleic Acids Res  2005; 33 (10): 3303-12. eng. 

[14]Chattopadhyay R, Das S, Maiti AK,  Boldogh I, Xie J, Hazra TK, et al.  Regulatory role of human APendonuclease (APE1/Ref-1) in YB- 1-mediated activation of the  multidrug resistance gene MDR1.  Mol Cell Biol 2008; 28 (23): 7066- 80. eng. 

[15] Luo M, Zhang J, He H, Su D, Chen  Q, Gross ML, et al.  Characterization of the redox  activity and disulfide bond  formation in apurinic/apyrimidinic  endonuclease. Biochemistry 2012;  51 (2): 695-705. eng. 

[16] Cesselli D, Aleksova A, Sponga S,  Cervellin C, Di Loreto C, Tell G, et  al. Cardiac Cell Senescence and  Redox Signaling. Front Cardiovasc  Med 2017; 4.Thakur S, Sarkar B,  Cholia RP, Gautam N, Dhiman M,  Mantha AK. APE1/Ref-1 as an  emerging therapeutic target for  various human diseases:  phytochemical modulation of its  functions. Experimental &  Molecular Medicine 2014; 46 (7):  e106. 

[17] Beckman KB, Ames BN. Oxidative  decay of DNA. J Biol Chem 1997;  272 (32): 19633-

[18] 36. eng. 

[19] Slupphaug G, Kavli B, Krokan HE.  The interacting pathways for  prevention and repair of oxidative  DNA damage. Mutat Res 2003;  531 (1-2): 231-51. eng. 

[20] Hegde ML, Hazra TK, Mitra S.  Early Steps in the DNA Base  Excision/Single-Strand Interruption  Repair Pathway in Mammalian  Cells. Cell Res 2008; 18 (1): 27-47. 

[21] Doetsch PW, Cunningham RP. The  enzymology of  apurinic/apyrimidinic  endonucleases. Mutat Res 1990;  236 (2-3): 173-201. eng. 

[22] Xanthoudakis S, Miao G, Wang F,  Pan YC, Curran T. Redox  activation of Fos-Jun DNA binding  activity is mediated by a DNA repair enzyme. EMBO J 1992; 11  (9): 3323-35. eng. 

[23] Abate C, Patel L, Rauscher FJ,  Curran T. Redox regulation of fos  and jun DNA-binding activity in  vitro. Science 1990; 249 (4973):  1157-61. eng. 

[24] Guan Z, Basi D, Li Q, Mariash A,  Xia Y-F, Geng J-G, et al. Loss of  redox factor 1 decreases NFkappaB activity and increases  susceptibility of endothelial cells to  apoptosis. Arterioscler Thromb  Vasc Biol 2005; 25 (1): 96-101.  eng. 

[25] Martin KR, Barrett JC. Reactive  oxygen species as double-edged  swords in cellular processes: lowdose cell signaling versus highdose toxicity. Hum Exp Toxicol  2002; 21 (2): 71-75. eng. 

[26] Ramana CV, Boldogh I, Izumi T,  Mitra S. Activation of  apurinic/apyrimidinic endonuclease  in human cells by reactive oxygen  species and its correlation with  their adaptive response to  genotoxicity of free radicals. Proc  Natl Acad Sci USA 1998; 95 (9):  5061-66. eng. 

[27] Jayaraman L, Murthy KG, Zhu C,  Curran T, Xanthoudakis S, Prives  C. Identification of redox/repair  protein Ref-1 as a potent activator  of p53. Genes Dev 1997; 11 (5):  558-

[28] 70. eng. 

[29] Hafsi H, Hainaut P. Redox control  and interplay between p53 isoforms:  roles in the regulation of basal p53  levels, cell fate, and senescence.  Antioxid Redox Signal 2011; 15  (6): 1655-67. eng. 

[30] Maillet A, Pervaiz S. Redox  regulation of p53, redox effectors  regulated by p53: a subtle balance.  Antioxid Redox Signal 2012; 16  (11): 1285-94. eng. 

[31] Gaiddon C, Moorthy NC, Prives C.  Ref-1 regulates the transactivation and pro- apoptotic functions of p53  in vivo. EMBO J 1999; 18 (20):  5609-21. eng. 

[32] Members WG, Roger VL, Go AS,  Lloyd-Jones DM, Benjamin EJ,  Berry JD, et al. Executive  Summary: Heart Disease and  Stroke Statistics—2012 Update: A  Report From the American Heart  Association. Circulation 2012; 125  (1): 188-97. en. 

[33] Ames BN, Shigenaga MK, Hagen  TM. Oxidants, antioxidants, and  the degenerative diseases of aging.  Proc Natl Acad Sci USA 1993; 90  (17): 7915-22. eng. 

[34] D'Onofrio N, Servillo L, Balestrieri  ML. SIRT1 and SIRT6 Signaling  Pathways in Cardiovascular  Disease Protection. Antioxid Redox  Signal 2017. 

[35] Farías JG, Molina VM, Carrasco  RA, Zepeda AB, Figueroa E,  Letelier P, et al.Antioxidant  Therapeutic Strategies for  Cardiovascular Conditions  Associated with Oxidative Stress.  Nutrients 2017; 9 (9). eng. 

[36] Aonuma T, Takehara N, Maruyama  K, Kabara M, Matsuki M,  Yamauchi A, et al. Abstract 12613:  Apurinic/apyrimidinic  Endonuclease/redox Factor-1 Gene  Enhances Anti-apoptotic Function  of Cardiac Progenitor Cells via  TAK1-Activation and Promotes  Cardiac Regeneration in  Myocardial Infarction. Circulation  2015; 132 (Suppl 3): A12613-A13.  en. 

[37] Jin S-A, Seo HJ, Kim SK, Lee YR,  Choi S, Ahn K-T, et al. Elevation  of the Serum  Apurinic/Apyrimidinic  Endonuclease 1/Redox Factor-1 in  Coronary Artery Disease. Korean  Circ J 2015; 45 (5): 364-71. 

[38] Hou X, Yoshida T, Higashi Y, Shai  SY, Kim C, Delafontaine P, et al.  Abstract 15762: Gapdh Interaction  With Ape1 Endonuclease Protects  Vascular Smooth Muscle Cells  Against Apoptosis: Potential Role  of These Enzymes in Prevention of  Atherosclerotic Plaque  Destabilization. Circulation 2015;  132 (Suppl 3): A15762-A62. en. 

[39] Sukhanov S, Yoshida T,  Delafontaine P. GAPDH prevents  oxidant-induced apoptosis in  smooth muscle cells via upregulation of APE1/Ref-1  endonuclease (1093.1). FASEB J  2014; 28 (1 Supplement): 1093.1.  en. 

[40] Hou X, Snarski P, Higashi Y,  Yoshida T, Jurkevich A,  Delafontaine P, et al. Nuclear  complex of glyceraldehyde-3- phosphate dehydrogenase and DNA  repair enzyme  apurinic/apyrimidinic endonuclease  I protect smooth muscle cells  against oxidant- induced cell death.  FASEB J 2017; 31 (7): 3179-92.  eng. 

[41] Yamauchi A, Kawabe J-i, Kabara  M, Matsuki M, Asanome A,  Aonuma T, et al.  Apurinic/apyrimidinic  endonucelase 1 maintains adhesion  of endothelial progenitor cells and  reduces neointima formation.  American Journal of Physiology - Heart and Circulatory Physiology  2013; 305 (8): H1158-H67. en. 

[42]Kim CS, Son SJ, Kim EK, Kim SN,  Yoo DG, Kim HS, et al.  Apurinic/apyrimidinic  endonuclease1/redox factor-1  inhibits monocyte adhesion in  endothelial cells. Cardiovasc Res  2006; 69 (2): 520-26. eng. 

[43] Patterson C. Blood Pressure  Control Goes Nuclear. Circulation  Research 2004; 95 (9): 849-51. en. 

[44] Jeon BH, Gupta G, Park YC, Qi B,  Haile A, Khanday FA, et al.  Apurinic/Apyrmidinic  Endonuclease 1 Regulates  Endothelial NO Production and  Vascular Tone. Circulation  Research 2004; 95 (9): 902-10. en. 

[45] Song SH, Cho EJ, Park MS, Lee  YR, Joo HK, Kang G, et al. Redox  Regulating Protein APE1/Ref-1  Expression is Increased in  Abdominal Aortic Coarctationinduced Hypertension Rats. Journal  of the Korean Society of  Hypertension 2012; 18 (3): 126. ko. 

[46] Naganuma T, Nakayama T, Sato N,  Fu Z, Soma M, Yamaguchi M, et al.  Haplotype- based case-control  study on human  apurinic/apyrimidinic endonuclease  1/redox effector factor-1 gene and  essential hypertension. Am J  Hypertens 2010; 23 (2): 186-

[47] 91. eng. 

[48] Sengupta S, Chattopadhyay R,  Mantha AK, Mitra S, Bhakat KK.  Regulation of mouse- renin gene by  apurinic/apyrimidinic-endonuclease  1 (ape1/ref-1) via recruitment of  histone deacetylase 1 corepressor  complex. Journal of Hypertension  2012; 30 (5): 917-25. English. 

[49] Huttner HB, Bergmann O,  Salehpour M, Rácz A, Tatarishvili  J, Lindgren E, et al. The age and  genomic integrity of neurons after  cortical stroke in humans. Nature  Neuroscience 2014; 17 (6): 801-03.  en. 

[50] Li P, Leak R, Zhang F, Cao G, Gao  Y, Chen J. Abstract 8: APE1  Upregulation Reduces Oxidative  DNA Damage and Protects  Hippocampal Neurons from  Ischemic Injury. Stroke 2014; 45  (Suppl 1): A8-A8. en. 

[51] Leak RK, Li P, Zhang F, Sulaiman  HH, Weng Z, Wang G, et al.  Apurinic/Apyrimidinic  Endonuclease 1 Upregulation  Reduces Oxidative DNA Damage  and Protects Hippocampal Neurons  from Ischemic Injury. Antioxid  Redox Signal 2013; 22 (2): 135- 48. 

[52] Stetler RA, Gao Y, Leak RK,  Weng Z, Shi Y, Zhang L, et al.  APE1/Ref-1 facilitates recovery of  gray and white matter and  neurological function after mild  stroke injury. PNAS 2016; 113 (25):  E3558-E67. en. 

[53] Dyrkheeva NS, Lebedeva NA,  Lavrik OI. AP Endonuclease 1 as a  Key Enzyme in Repair of  Apurinic/Apyrimidinic Sites.  Biochemistry Mosc 2016; 81 (9):  951-67. eng.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2025 Science, Technology, Engineering and Mathematics.   All Rights Reserved.