Science, Technology, Engineering and Mathematics.
Open Access

THE TECHNOLOGICAL FRONTIER OF COMMERCIAL PHOTOVOLTAICS: CURRENT STATUS AND FUTURE DIRECTIONS FOR SILICON AND THIN-FILM TECHNOLOGIES

Download as PDF

Volume 3, Issue 1, Pp 51-58, 2025

DOI: https://doi.org/10.61784/wjmp3017

Author(s)

XiZhi Zhang*, XiYuan Zhang

Affiliation(s)

Portola High School, Irvine 92618, Orange County, U.S.A.

Corresponding Author

XiZhi Zhang

ABSTRACT

This review sheds light on the photovoltaic technologies’ evolving progress, a technology involving light conversion into electricity via the photovoltaic effect. While with main focus on the first and second generation photovoltaic technologies, the scope of this review covers three generations of solar cell materials, examining the triumphs and challenges of the most representative and leading materials for each, in order to delineate the state of the art in the area. The technologies covered include: first-generation crystalline silicon (c-Si), second-generation commercial thin-film technologies such as cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS), and third-generation emerging cells like perovskites. While c-Si is the leading PV technology due to its high maturity, high efficiency, and reliable large-scale manufacturing, its efficiency is limited theoretically. Thin-film technologies offer lower manufacturing costs, but rely on pricier encapsulation and scarce materials. Emerging technologies sit at the research frontier and can potentially surpass the efficiencies of the first and second generations, but lack demonstrated module-scale systems, and, in the case of the most efficient perovskites, face moisture-induced degradation and toxicity concerns. The conclusion is that as dominant technologies reach plateaus of performance improvement, future development focus must shift toward interface-oriented strategies, innovative architectures like the cross-fertilizing tandem cells, and solutions for material and environmental sustainability to continue advancing the field.

KEYWORDS

Crystalline silicon; Cadmium telluride; Copper indium gallium diselenide; Hydrogenated amorphous silicon; Photovoltaics; Perovskite solar cells

CITE THIS PAPER

XiZhi Zhang, XiYuan Zhang. The technological frontier of commercial photovoltaics: current status and future directions for silicon and thin-film technologies. World Journal of Mathematics and Physics. 2025, 3(1): 51-58. DOI: https://doi.org/10.61784/wjmp3017.

REFERENCES

[1] MIT Energy Initiative. The Future of Solar Energy. MIT Energy Initiative. 2015. https://energy.mit.edu/research/future-solar-energy/.

[2] REN21. Renewables 2014 Global Status Report. Renewable Energy Policy Network for the 21st Century. 2014. http://www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full%20report_low%20res.pdf

[3] International Energy Agency. Solar PV. Retrieved October 13, 2025, from https://www.iea.org/energy-system/renewables/solar-pv#tracking.

[4] Jean Joel, Patrick R Brown, Robert L Jaffe, et al. Pathways for solar photovoltaics. Energy & Environmental Science, 2015, 8: 1200-1219. DOI: 10.1039/c4ee04073b.

[5] Urone Paul Peter, Roger Hinrichs. College Physics. OpenStax, 2012. https://openstax.org/books/college-physics/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units.

[6] Einstein Albert. On a Heuristic Point of View Concerning the Production and Transformation of Light. Annalen der Physik, 1905, 17(6): 132-148. DOI: 10.1002/andp.19053220607.

[7] Brownson Jeffrey R S. Solar Energy Conversion Systems. Academic Press, 2014, 1-457. DOI: 10.1016/B978-0-12-397021-3.00001-6.

[8] Mdallal Ayman, Yasin Ahmad, Mahmoud Montaser, et al. A comprehensive review on solar photovoltaics: Navigating generational shifts, innovations, and sustainability. Sustainable Horizons, 2025, 13, 100137. DOI: 10.1016/j.horiz.2025.100137.

[9] Electric Power Research Institute. History of First U.S. Compressed-Air Energy Storage (CAES) Plant (110MW 26h): Volume 2: Construction. (Report No. TR-101751-V2). Electric Power Research Institute. 1994. http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=TR101751-V2.

[10] Smith B L, Woodhouse M, Horowitz K A W, et al. Photovoltaic (PV) Module Technologies: 2020 Benchmark Costs and Technology Evolution Framework Results. NREL Technical Report, 2021, NREL/TP-7A40-78173: 1-52. https://docs.nrel.gov/docs/fy22osti/78173.pdf

[11] B A Andersson. Materials availability for large-scale thin-film photovoltaics. Progress in  Photovoltaics. 2000, 8(1): 61-76.

[12] Nkuissi Hervé Joel Tchognia, Konan Fransisco Kouadio, Hartiti Bouchaib, et al. Toxic Materials Used in Thin Film Photovoltaics and Their Impacts on Environment. Reliability and Ecological Aspects of Photovoltaic Modules, 2019, 1-18. DOI: 10.5772/intechopen.88326.

[13] Masson G, de l'Epine M, Kaizuka I. Trends in Photovoltaic Applications 2024. IEA PVPS Report, 2024, T1-43: 1-101. DOI: https://doi.org/10.69766/JNEW6916.

[14] Olson Carol, Geerligs Bart, Goris Maurice, et al. Current and future priorities for mass and material in silicon PV module recycling. EUPVSEC, Netherlands. 2013, 6BV.8.2.

[15] Nayak P K, Mahesh S, Snaith H J, et al. Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 2019, 4(4): 269-285. DOI: 10.1038/s41578-019-0097-0.

[16] Kant N, Singh P. Review of next generation photovoltaic solar cell technology and comparative materialistic development. Materials Today: Proceedings, 2022, 56: 3460-3470. DOI: 10.1016/J.MATPR.2021.11.116.

[17] Czochralski J. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Zeitschrift für Physikalische Chemie, 1918, 92(1): 219-258. DOI:  https://doi.org/10.1515/zpch-1918-9212.

[18] Teal G K, Little J B. Growth of Germanium Single Crystals. Physical Review, 1950, 78(5): 647. DOI: 10.1103/PhysRev.78.647.

[19] Oubda Daouda, Kébré Bawindsom Marcel, Ouédraogo Soumaila, et al. Numerical Simulation of the Solar Cell Based on the Quaternary System Cu(In, Ga) Se2. Various Uses of Copper Material, 2023, 1-22. DOI: 10.5772/intechopen.1003946.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2025 Science, Technology, Engineering and Mathematics.   All Rights Reserved.