Science, Technology, Engineering and Mathematics.
Open Access

COMPOSITE OVER-WRAPPED PRESSURE VESSEL TECHNOLOGY FOR SPACECRAFT PROPULSION SYSTEMS

Download as PDF

Volume 3, Issue 1, Pp 53-67, 2025

DOI: https://doi.org/10.61784/msme3020

Author(s)

Bin Yu1,2*, TianJu Ma2Yun Zhang2, Cheng Huang1SenDong Gu2, HaiYan Li2, LinFeng Chen2

Affiliation(s)

1Light Alloy Research Institute, Central South University, Changsha 410000, Hunan, China.

2Aerospace Pressure Vessel Division, Lanzhou Institute of Physics, Lanzhou 730000, Gansu, China.

Corresponding Author

Bin Yu

ABSTRACT

This paper systematically reviews global progress in composite overwrapped pressure vessels (COPVs) for space applications and projects their trajectory, synthesizing key advances from the United States, Europe and leading Asian nations in structural and reliability design, stress-fracture and low-cycle-fatigue life prediction, material selection, forming, qualification and non-destructive testing, including high-strength fibers, ultra-thin metallic liners, inheritable design principles and validated failure models, and summarizing representative work by principal Chinese institutes and universities; on this basis it proposes future Chinese directions-high-strength fiber optimization, advanced liner alloys, burst-factor and performance-factor tuning, next-generation NDT, upstream pre-research and Standardization-to underpin independent R&D and technological upgrading of high-performance aerospace COPVs.

KEYWORDS

Aerospace propulsion systems; Composite pressure vessels; Metal liners; Fiber-reinforced composites; Reliability; Stress fracture life

CITE THIS PAPER

Bin Yu, TianJu Ma, Yun Zhang, Cheng Huang, SenDong Gu, HaiYan Li, LinFeng Chen. Composite over-wrapped pressure vessel technology for spacecraft propulsion systems. Journal of Manufacturing Science and Mechanical Engineering. 2025, 3(1): 53-67. DOI: https://doi.org/10.61784/msme3020.

REFERENCES

[1] Landers R E. Glass Fiber Reinforced Metal Pressure Vessel Design Guide. NASA-CR-120917. 1972. DOI: doi.org/10.2514/6.1972-120917.

[2] Landers R E. filament reinfored metal composite pressure vessel evaluation and performance demonstration. NASA-CR-134975. 1976. DOI: doi.org/10.2514/6.1976-134975.

[3]  Morris E E, Darms F J, Lynn V, et al. Lower cost, high-performance composite fiberment tanks for spacecraft. AIAA-1986-1694. 1986. DOI: doi.org/10.2514/6.1986-1694.

[4] Morris E E, Segimoto M, Lynn V. Lighter weight fiber metal pressure vessels using carbon overwrap. AIAA-1986-1504. 1986. DOI: doi.org/10.2514/6.1986-1504.

[5] Rabel H. Sustained load behavior of graphite epoxy metal-lined pressure vessels for long-life space applications, AIAA-1989-2644. 1986. DOI: doi.org/10.2514/6.1989-2644.

[6] Haddock R C, Darms F J. Space system applications of advanced composite fiber metal pressure vessels. AIAA-1990-2227. 1990. DOI: doi.org/10.2514/6.1990-2227.

[7] Haddock R C, Morris E E, Darms F J. Safety of filament-wound carbon epoxy composite pressure vessels for aerospace applications. AIAA-1991-2409. 1991. DOI: doi.org/10.2514/6.1990-2227.

[8] Braun C A. Manufacturing process controls for high reliability carbon filament-wound seamless aluminum lined composite pressure vessels. AIAA-1992-3609. 1992. DOI: doi.org/10.2514/6.1992-3609.

[9] Gleich D. Design Considerations and Structural Performance of Prestressed Composite Pressure Vessels. AIAA-1982-1230. 1982. DOI: doi.org/10.2514/6.1982-1230.

[10]  Gleich D. Continuing report on Kevlar-49 overwrap study composite pressure vessel safety program. AIAA-1988-2849. 1988. DOI: doi.org/10.2514/6.1988-2849.

[11]  Sneddon K, Saunders S, Devey R, et al. Development and qualification of the Eurostar 2000+ helium COPV. AIAA-1997-3033. 1997. DOI: doi.org/10.2514/6.1997-3033.

[12] Escalona A. Design of high performance load sharing lined COPVfor atlas centaur. AIAA-1997-3031. 1997. DOI: doi.org/10.2514/6.1997-3031.

[13] Sneddon K, Anselmo E, Gorin B. Design, Qualification, and Thermal Testing of a Specialized Composite Overwrap Pressure Vessel (COPV). AIAA-2007-5558. 2007. DOI: doi.org/10.2514/6.2007-5558.

[14]  Ray D M, Greene N J, Revilock D, et al. High Pressure Composite Overwrapped Pressure Vessel Development Tests at Cryogenic Temperatures. AIAA-2008-1912. 2008. DOI: doi.org/10.2514/6.2007-5558.

[15] Tam W H, Ballinger A, Kuo J, et al. Design and manufacture of a composite overwrapped xenon conical pressure vessel. AIAA-1996-2752. 1996. DOI: doi.org/10.2514/6.1996-2752.

[16] Tam W H, Jcakson A C, Nishida E. Design and manufacture of the ETS VIII xenon tank. AIAA-2000-3677. 2000. DOI: doi.org/10.2514/6.2000-3677.

[17] Tam W H. Design and Manufacture of a Composite Overwrapped Elastomeric Diaphragm Tank. AIAA-2004-3507. 2004. DOI: doi.org/10.2514/6.2004-3507.

[18]  Tam W H, Ballinger A. Conceptual design of space efficient tanks. AIAA-2006-5058. 2006. DOI: doi.org/10.2514/6.2006-5058.

[19] Babel H, Ledesma L G. Delta IV COPV risk mitigation composite overwrapped pressure vessels. AIAA-1999-2832. 1999. DOI: doi.org/10.2514/6.1999-2832.

[20] Ledesma L G. Comparison of stress-rupture life prediction techniques for composite pressure vessels. IAF. 2000-1.6.01. 2000. DOI: doi.org/10.2514/6.2000-1.6.01.

[21] Abdi F, Israeli L, Johnson S, et al. Composite tank permeation prediction-and verification. AIAA-2003-1760. 2003. DOI: doi.org/10.2514/6.2003-1760.

[22] Robinson M J, Johnson S E. Trade study results for a second-generation reusable launch vehicle composite hydrogen tank. AIAA-2004-1932. 2004. DOI: doi.org/10.2514/6.2004-1932.

[23] Arritt B J, Wegner P M, Fosness E R, et al. Composite tank development efforts at the Air Force Research Laboratory Space Vehicles Directorate. AIAA-2001-4606. 2001. DOI: doi.org/10.2514/6.2001-4606.

[24] Mallick K, Cronin J, Ryan K, et al. An Integrated Systematic Approach to Linerless Composite Tank Development. AIAA-2005-2089. 2005. DOI: doi.org/10.2514/6.2005-2089.

[25] Bechel V T, Kim R Y, Donaldson S L. Composites Containing Barrier Layers for Reduced Permeability at Cryogenic Temperature. AFRL-2006-0455. 2006. DOI: doi.org/10.2514/6.2006-0455.

[26] Falugi M A. Minimum Weight Design of Cryogenic Tank Configurations for a Space Operating Vehicle (SOV). AIAA-2007-6199. 2007. DOI: doi.org/10.2514/6.2007-6199.

[27] Revilock D M, Thesken J C, Schmidt T E, et al. Three-dimensional digital image correlation of a composite overwrapped pressure vessel during hydrostatic pressure tests. NASA/TM-214938. 2007. DOI: doi.org/10.2514/6.2007-214938.

[28] Murthv P L, Gvekenvesi J P, Ledesma L G, et al. Reliability considerations for composite overwrapped pressure vessels on spacecraft. AIAA-2007-2150. 2007. DOI: doi.org/10.2514/6.2007-2150.

[29] Murthv P L, Thesken J C, Phoenix S L, et al. Stress rupture life reliability measures for composite overwrapped pressure vessels. NASA/TM-2007-214848. 2007. DOI: doi.org/10.2514/6.2007-214848.

[30] Murthv P L, Phoenix S L. Designing of a fleet-leader program for carbon composite overwrapped pressure vessels. AIAA-2009-2517. 2009. DOI: doi.org/10.2514/6.2009-2517.

[31] Murthv P L, Phoenix S L, Ledesma L G. Fiber breakage model for carbon composite stress rupture phenomenon: theoretical development and applications. NASA/TM-2010-215831. 2010. DOI: doi.org/10.2514/6.2010-215831.

[32] Murthv P L. Reliability of COPVs accounting for margin of safety on design burst. NASA/TM-2012-217638. 2012. DOI: doi.org/10.2514/6.2012-217638.

[33] Emery L, Zisk E J. Health monitoring of reusable composite cryogenic tanks. AIAA-1995-1073. 1995. DOI: doi.org/10.2514/6.1995-1073.

[34] Achary D C, Biggs R W, Bouvier C G, et al. Composite development & applications for cryogenic tankage. AIAA-2005-2160. 2005. DOI: doi.org/10.2514/6.2005-2160.

[35] Veys R B, Cederberg A R, Dale Tiller B. Design and development of an aluminum lined composite overwrapped spherical pressure vessel. AIAA-1989-2642. 1989. DOI: doi.org/10.2514/6.1989-2642.

[36] Veys R B, Cederberg A R, Schimenti J D. Design and analysis techniques for composite pressurant tankage with plastically operating aluminum liners. AIAA-1990-2345. 1990. DOI: doi.org/10.2514/6.1990-2345.

[37] Veys R B, Cederberg A R, Schimenti J D. Fatigue analysis techniques for composite tankage with plastically operating aluminum liners. AIAA-1991-1974. 1991. DOI: doi.org/10.2514/6.1991-1974.

[38] Murray C F, Newhouse N L, Khawand G. All-composite pressurant tanks for aerospace applications. AIAA,1993-2095. 1993. DOI: doi.org/10.2514/6.1993-2095.

[39] ANSI/AIAA S-081-2000. Space Systems- Composite Overwrapped Pressure Vessels (COPVs). 2000.

[40] ANSI/AIAA S-080. Space systems- metallic pressure vessels, Pressurized structures, and pressure components. 1998.

[41] Grant J, Kaul R, Taylor S, et al. Distributed Sensing of Carbon-Epoxy Composites and Filament Wound Pressure Vessels using Fiber-Bragg Gratings. International Society for Optics and Photonics, 2002. DOI: 10.1117/12.469076.

[42] Grant J. Optical Sensing using Fiber Bragg Gratings for Monitoring Structural Damage in Composite Over-wrapped Pressure Vessels. Conference on Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications. NASA Marshall Space Flight Center Huntsville, AL 35759, 2005.

[43] Beeson H D, Payne K S, CHANG J B. Effects of Impact Damage and Exposure on Graphite/Epoxy Composite Overwrapped Pressure Vessel. AIAA-1996-3264. 1996. DOI: doi.org/10.2514/6.1996-3264.

[44]  Greene N, Yoder T, Saulsberry R, et al. Stress Rupture Testing and Analysis of the NASA WSTF-JPL Carbon Overwrapped Pressure Vessels. Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, & Materials Conference. 2013. DOI: 10.2514/6.2007-2323.

[45] Greene N, Saulsberry R, Yoder T. et al. Testing of Full-scale Flight-qualified Kevlar Composite Overwrapped Pressure Vessels. AIAA 2007-2326. 2007. DOI: doi.org/10.2514/6.2007-2326.

[46] Abraham A R A, Johnson K L, Nichols C T, et al. Use of Statistical Analysis of Acoustic Emission Data on Carbon-Epoxy COPV Materials-of-Construction for Enhanced Felicity Ratio Onset Determination. 2012. DOI: 10.13140/RG.2.1.1627.6005.

[47] Radtke D W, Krings H, Forster R. et al. Manufacturing techniques for lightweight tankage. AIAA-1988-2580. 1988. DOI: doi.org/10.2514/6.1988-2580.

[48] Radtke D W. Novel Manufacturing Methods for Titanium Tanks and Liners. AIAA-2006-5269. 2006. DOI: doi.org/10.2514/6.2006-5269.

[49]  Charpentier P. Aerospatiale Pressurant Tank Range Widens: A 35 liter Tank Has Been Qualified For The EUROSTAR Platform, AIAA-1984-1017: 1-9. DOI: doi.org/10.2514/6. 1984-1017.

[50] Charpentier P, Zorzetto D. High Performance Titanium Carbon Composite Gas Storage Pressure Vessel for Space Use. AIAA-1990-2223.1990. DOI: doi.org/10.2514/6.1990-2223.

[51] Teissier A, Liquide A. Liquid helium storage for Ariane 5 main stage oxygen tank pressurization. AIAA-1995-2956.1995. DOI: doi.org/10.2514/6.1995-2956.

[52] Morino Y, Shimoda T, Morimoto T. et al. Feasibility Study of the Cryogenic Composite Tank for Reusable Launch Vehicles.IAF-99-I3.06. 1999.

[53] Torano Y, Arita M, Takahashi H. et al. Current Study Status of the Advanced Technologies for the J-I Upgrade Launch Vehicle-Cryogenic Composite Tank. AIAA-2001-1877. 2001. DOI: doi.org/10.2514/6.2001-1877.

[54] Ishikawa T, Morimoto T, Yokozeki T. Pressurization of CF/Epoxy Model Tank at LN2 Temperature and Identification of Leak Path Formation in Tank Wall. AIAA-2004-1839. 2004. DOI: doi.org/10.2514/6.2004-1839.

[55] Masuda I, Masuda T, MOURI K. et al. Development of new composite propellant tank for satellites. AIAA-2014-3995. 2014. DOI: doi.org/10.2514/6.2014-3995.

[56] Hwang T K, Hong C S, Kim C G. Size effect on the fiber strength of composite pressure vessels. Composite Structures, 2003, 59: 489-498. DOI: 10.1016/S0263-8223(02)00250-7.

[57] Hwang T K, Hong C S, Kim C G. Probabilistic deformation and strength prediction for a filament wound pressure vessel. Composites, 2003, B34: 481-497. DOI: 10.1016/S1359-8368(03)00021-0.

[58] ZHANG T P, LIU Z D, YANG F Q, et al. A Design and its identification of composite overwrapped helium tank applicable to propulsion system of satellites. Aerospace SHANGHAI, 2006(03): 41-48. DOI: 10.19328/j.cnki.1006-1630.2006.03.010.

[59] LI Y F, JING Q C, LIU ZD. Filament-wound design and ANSYS analysis for composite material high-pressure vessel. Journal of Propulsion Technology, 2013, 34(7): 968-976. DOI: 10.13675/j.cnki.tjjs.2013.07.018.

[60] YU B, LIU Z D, JIN Q C, et al. A Structure design method for composite over-wrapped helium vessel in propulsion system of satellites. Journal of Propulsion Technology, 2013, 34(5): 680-686. DOI: 10.13675/j.cnki.tjjs.2013.05.016.

[61] YU B, ZHANG J J, GU S D, et al. Structure design study of composite overwrapped pressure vessel with plastically working liner. Journal of Propulsion Technology, 2022, 43(2): 1-9. DOI: 10.13675/j.cnki.tjjs.200364.

[62] YU B, HUANG C, YANG W B, et al. Development technique of large-scale composite tank for space-vehicle. Pressure vessel technology, 2022, 32(9): 77-86. DOI: 10.3969 /j.issn.1001-4837.2022.09.011.

[63] YU B, MA T J, HUANG C, et al. Research progress of active cooling thermal coupling technology foraerospace cryogenic propellant tanks. Vacuum and Cryogenics, 2023, 29(5): 518-524. DOI: 10.3969/j.issn.1006-7086.2023.05.012.

[64] YU B, HUANG C, MA T J, et al. Research progress and key technology analysis of satellite cryogenic tank storage and supply technology(1). Pressure vessel technology, 2024, 41(4): 60-71. DOI: 10.3969/j.issn.1001-4837.2024.04.008.

[65] YU B, HUANG C, MA T J, et al. Research progress and key technology analysis of satellite cryogenic tank storageand supply technology(2). Pressure vessel technology, 2024, 41(5): 67-79. DOI: 10.3969/j.issn.1001-4837.2024.05.009.

[66] WANG C C, ZHUANG CP, YAN C J, et al. Design and experimental study of 6 W@ 80 K space coaxial vascular tube cryocooler. Cryogenics, 2024(02): 1-7. DOI: 1000-6516(2024)02-0001-07.

[67] QU F J, YAN C J, LUO X K, et al. Research on phase modulation performance of dual-diameter inertance tube in pulse tube cryocooler. Cryogenics, 2023(05): 1-7. DOI: 1000-6516(2023)05-0001-07.

[68] PAN Q Y, WANG H R, WANG B, et al. Advances in piezoelectric-driven miniature regenerative refrigerators, 2022, 50(08): 1-7. DOI: 10.16711/j.1001-7100.2022.08.001.

[69] LI Y F, ZHAO J P, ZHANG H, et al. Effects of high-low temperature on properties of carbon fiber/epoxy resin composite high-pressure vessel. Engineering plastics application, 2024, 52(09): 119-125. DOI: 10.3969/j.issn.1001-3539.2024.09.018.

[70] TENG S Y, YAN C J, LI L S, et al. Experimental Study of a Thermoelectric Conversion System for Low and Medium Temperature Heat Utilization in Space. Journal of Space Science and Experiment, 2025, 2(02): 91-97. DOI: 10.19963/j.cnki.20974302.2025.02.010.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2025 Science, Technology, Engineering and Mathematics.   All Rights Reserved.