Science, Technology, Engineering and Mathematics.
Open Access

SPATIAL LOCALIZATION AND NEURAL MECHANISMS OF PATH INTEGRATION

Download as PDF

Volume 1, Issue 2, Pp 1-8, 2023

DOI:10.61784/wjbs231237

Author(s)

Preeti Shah

Affiliation(s)

Oral & Maxillofacial Surgery, Gurgaon, Haryana, India.

Corresponding Author

Preeti Shah

ABSTRACT

In the past one hundred years, research on brain functions has continuously explored the principles of coding and decoding of the nervous system, including perception, recognition, positioning, The coding principles of motor control, decision-making, etc. are interpreted layer by layer. since 1971 Since the discovery of place cells, scholars have John O'Keefe Neuroscientists represented by the Department of Neurosurgery have conducted a large number of representative studies on spatial localization and path integration. Different types of nerve cells have been discovered one after another, and the neural network mechanisms encoded by them have become increasingly clear. At the same time, due to the vigorous development of unmanned systems in recent years, There is also a strong desire for good spatial algorithms in the engineering field. In this review, we review the current research progress in spatial localization in the field of neuroscience and discuss the latest relevant theoretical results achieved by applying artificial neural networks. In the foreseeable future, neuroscience experimental research and artificial neural network model research will promote each other and make iterative progress, and this cyclic development model will also make greater contributions to the fields of neuroscience and engineering.


KEYWORDS

Path integration; Hippocampus; Entorhinal cortex; Grid cells

CITE THIS PAPER

Preeti Shah. Spatial localization and neural mechanisms of path integration. World Journal of Biomedical Sciences. 2023, 1(2): 1-8. DOI:10.61784/wjbs231237.

REFERENCES

[1] O'Keefe J, Dostrovsky J.The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat.Brain Res, 1971, 34 171 ~175.

[2] Jung MW, Wiener SI, McNaughton BL.Comparison of spa- tial firing characteristics of units in dorsal and ventral hippo- campus of the rat.J Neurosci, 1994, 14 7347 ~7356.

[3] O'Keefe J, Burgess N, Donnett JG, et al.Place cells, naviga- tional accuracy, and the human hippocampus.Philos Trans R Soc Lond B Biol Sci, 1998, 353 1333 ~1340.

[4] Muller RU, Kubie JL.The effects of changes in the environ- ment on the spatial firing of hippocampal complex-spike cells.J Neurosci, 1987, 7 1951 ~1968.

[5] O'Keefe J.Place units in the hippocampus of the freely mov- ing rat.Exp Neurol, 1976, 51:78 ~109.

[6] McNaughton BL, Barnes CA, Meltzer J, et al.Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge. Exp. Brain Res, 1989, 76: 485 ~496.

[7] Brun VH, Otnass MK, Molden S, et al. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry.Science, 2002, 296: 2243 ~2246.

[8] Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex. Nature, 2005, 43(6)9:801 ~806.

[9] Brun VH, Solstad T, Kjelstrup KB, et al.Progressive in- crease in grid scale from dorsal to ventral medial entorhinal cortex.Hippocampus, 2008, 18 1200 ~1212.

[10] Stensola H, Stensola T, Solstad T, et al.The entorhinal grid map is discretized.Nature, 2012, 492 72 ~78.

[11] Stemmler M, Mathis A, Herz AVM.Connecting multiple spatial scales to decode the population activity of grid cells.Sci Adv, 2015, 1 e1500816 ~e1500816.

[12] Taube JS.Head direction cells recorded in the anterior tha- lamic nuclei of freely moving rats.J Neurosci, 1995, 15: 70 ~86.

[13]  Longtang L. ChenLie-Huey LinEdward J. Gree, et al. Head-direction cells in the rat posterior cortex.I.Anatom- ical distribution and behavioral modulation. Exp.Brain Res, 1994, 101 8 ~23.

[14] Giocomo LM, Stensola T, Bonnevie T, et al.Topography of head direction cells in medial entorhinal cortex.Curr Biol, 2014, 24 252 ~262.

[15] Stackman RW, Taube JS. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J Neurosci, 1998, 18 9020 ~ 9037.

[16] Winter SS, Clark BJ, Taube JS.Spatial navigation.Disrup- tion of the head direction cell network impairs the parahipp- ocampal grid cell signal.Science, 2015, 347 870 ~874.

[17] Blar HT, Sharp PE, Cho J.The antomical and compuataional basis of the rat head-direction cell signal.Trends in neuro- sciences, 2001, 24 289 ~294.

[18] Seelig JD, Jayaraman V.Neural dynamics for landmark ori- entation and angular path integration.Nature, 2015, 52(1): 186 ~191.

[19] Kropff E, Carmichael JE, Moser MB, et al.Speed cells in the medial entorhinal cortex. Nature, 2015, 523 419 ~ 424.

[20] Hinman JR, Brandon MP, Climer JR, et al.Multiple run- ning speed signals in medial entorhinal cortex. Neuron, 2016, 91 666 ~679.

[21] Ye J, Witter MP, Moser MB, et al.Entorhinal fast-spiking speed cells project to the hippocampus.Proc Natl Acad Sci USA, 2018, 115 E1627 ~E1636.

[22] Lever C, Burton S, Jeewajee A, et al. Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci, 2009, 29 9771 ~9777.

[23] Solstad T, Boccara CN, Kropff E, et al. Representation of geometric borders in the entorhinal cortex.Science.2008, 322 1865 ~1868.

[24] Boccara CN, Sargolini F, Thoresen V H, et al.Grid cells in pre-and parasubiculum.Nat Neurosci, 2010, 13 987 ~ 994

[25] Save E, Guazzelli A, Poucet B.Dissociation of the effects of bilateral lesions of the dorsal hippocampus and parietal cortex on path integration in the rat.Behav Neurosci, 2001, 115 1212 ~1223.

[26] Chersi F, Burgess N.The Cognitive architecture of spatial navigation: hippocampal and striatal contributions. Neu- ron, 2015, 88 64 ~77.

[27] Ito HT, Zhang SJ, Witter MP, et al.A prefrontal-thalamo- hippocampal circuit for goal-directed spatial navigation. Nature, 2015, 522 50 ~55.

[28] McNaughton BL, Battaglia FP, Jensen O, et al.Path inte- gration and the neural basis of the'cognitive map Nat Rev Neurosci, 2006, 7 663 ~678.

[29] Fuhs MC, Touretzky DS.A spin glass model of path integra- tion in rat medial entorhinal cortex.J Neurosci, 2006, 26: 4266 ~4276.

[30] Burgess N, Barry C, O'Keefe J, An oscillatory interference model of grid cell firing.Hippocampus, 2007, 17 801 ~ 812.

[31] Hasselmo ME. Grid cell mechanisms and function: contri- butions of entorhinal persistent spiking and phase resetting. Hippocampus, 2008, 18 1213 ~1229.

[32] Blair HT, Gupta K, Zhang K.Conversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cells. Hippocampus, 2008, 18 1239 ~1255.

[33] Burak Y, Fiete IR. Accurate path integration in continuous attractor network models of grid cells.PLoS Comput Biol, 2009, 5 e1000291 ~e1000291.

[34] Navratilova Z, Giocomo LM, Fellous JM, et al.Phase pre- cession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic af- ter-spike dynamics.Hippocampus, 2012, 22 772 ~789.

[35] Zilli EA.Models of grid cell spatial firing published 2005- 2011.Front Neural Circuit, 2016, 6 16 ~16.

[36] Burgess N.Grid cells and theta as oscillatory interference: Theory and predictions.Hippocampus, 2008, 18 1157 ~ 1174.

[37] O'Keefe J, Recce ML, Phase relationship between hipp- ocampal place units and the EEG theta rhythm.Hippocam- pus, 1993, 3 317 ~330.

[38] Hafting T, Fyhn M, Bonnevie T, et al.Hippocampus-inde- pendent phase precession in entorhinal grid cells.Nature, 2008, 453 1248 ~1252.

[39] Giocomo LM, Hussaini SA, Zheng F, et al.Grid cells use HCN1 channels for spatial scaling. Cell, 2011, 14(7): 1159 ~1170.

[40] Couey JJ, Witoelar A, Zhang SJ, et al. Recurrent inhibito- ry circuitry as a mechanism for grid formation.Nat Neuros- ci, 2013, 16 318 ~324.

[41] Miao C, Cao Q, Moser MB, et al.Parvalbumin and soma- tostatin interneurons control different space-coding networks in the medial entorhinal cortex. Cell, 2017, 171 507 ~ 521.

[42] Burgess N, O'Keefe J. Neuronal computations underlying the firing of place cells and their role in navigation.Hippo- campus, 1996, 6 749 ~762.

[43] Hartley T, Burgess N, Lever C, et al. Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus, 2000, 10 369 ~379.

[44] Barry C, Lever C, Hayman R, et al.The boundary vector cell model of place cell firing and spatial memory. Rev Neurosci, 2006, 17 71 ~97.

[45] Banino A, BarryC, Uria B, et al. Vector-based navigation using grid-like representations in artificial agents.Nature, 2018, 557 429 ~433

[46] O'Keefe J, Burgess N.Geometric determinants of the place fields of hippocampal neurons.Nature, 1996, 381 425 ~ 428.

[47] Krupic J, Bauza M, Burton S, et al. Grid cell symmetry is shaped by environmental geometry. Nature, 2015, 51(8):232 ~235.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.