BREEDING CROPS FOR CLIMATE RESILIENCE: STRATEGIES AND CHALLENGES FOR HEAT, DROUGHT, AND FLOOD TOLERANCE
Volume 3, Issue 1, Pp 43-60, 2025
DOI: https://doi.org/10.61784/wjafs3021
Author(s)
Hannah Boahemaa Addai*, Conficious Nkrumah, Benjamin Yennuna Konyannik, Akwasi Agyapong Oppong-Agyemang, Gladys Alabilla, Gloria Naa Lamiley Lamptey, Prosper Ntow, James Nii Armah Okine, Paul Laari, Abdul-Wahab Rabiu
Affiliation(s)
Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow 117198, Russia.
Corresponding Author
Hannah Boahemaa Addai
ABSTRACT
Climate change intensifies abiotic stresses heat, drought, and flooding jeopardizing global food security by disrupting crop physiology and causing substantial yield losses. While conventional breeding has developed resilient varieties like submergence-tolerant "Scuba" rice and drought-tolerant maize, its slow pace and limited genetic diversity are inadequate for rapidly changing climates. This review synthesizes advances in breeding for climate resilience, highlighting the integration of traditional methods with modern tools. Genomic selection accelerates genetic gain for complex traits, CRISPR enables precise editing of genes for root architecture and stomatal regulation, and speed breeding shortens generation cycles. High-throughput phenomics and artificial intelligence further enhance predictive breeding. However, critical gaps persist, including a lack of multi-stress field validation, underutilized crop wild relatives, and trade-offs between stress tolerance and yield. Future efforts must prioritize integrative strategies that combine genomics, phenomics, and participatory approaches to develop resilient crops capable of sustaining productivity under compound climatic stresses, ensuring food security in the 21st century.
KEYWORDS
Climate-resilient crops; Heat stress; Drought tolerance; Plant breeding; Crispr-cas9; Food security
CITE THIS PAPER
Hannah Boahemaa Addai, Conficious Nkrumah, Benjamin Yennuna Konyannik, Akwasi Agyapong Oppong-Agyemang, Gladys Alabilla, Gloria Naa Lamiley Lamptey, Prosper Ntow, James Nii Armah Okine, Paul Laari, Abdul-Wahab Rabiu. Breeding crops for climate resilience: strategies and challenges for heat, drought, and flood tolerance. World Journal of Agriculture and Forestry Sciences. 2025, 3(1): 43-60. DOI: https://doi.org/10.61784/wjafs3021.
REFERENCES
[1] IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2023. https://www.ipcc.ch/report/ar6/syr/.
[2] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021. https://www.ipcc.ch/report/ar6/wg1
[3] Zandalinas S I, Balfagón D, Arbona V. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 2021, 173(1): 153-166. DOI: 10.1111/ppl.13276.
[4] Ceccarelli S, Grando S, Baum M. Participatory plant breeding in water-limited environments. Annals of Applied Biology, 2010, 157(3): 311-317. DOI: 10.1111/j.1744-7348.2010.00433.x.
[5] Ceccarelli S. Plant breeding with farmers: A technical manual. ICARDA, 2012.
[6] Cooper M, van Eeuwijk F, Hammer G L, et al. Modeling QTL for complex traits: Detection and context for plant breeding. Current Opinion in Plant Biology, 2014, 18, 112-122. DOI: 10.1016/j.pbi.2014.02.004.
[7] Dempewolf H, Baute G, Anderson J. Past and future use of wild relatives in crop improvement. Crop Science, 2014, 54(6): 2271-2282. DOI: 10.2135/cropsci2014.03.0203.
[8] Kishii M, Ozawa K. Status of genome editing regulations in Asia. Frontiers in Plant Science, 2022, 13, 879443. DOI: 10.3389/fpls.2022.879443.
[9] Li Z, Fan F, Zhang H. Green Super Rice: Bridging the gap between genomics and field application. Molecular Plant, 2021, 14(2): 187-200. DOI: 10.1016/j.molp.2020.11.003.
[10] Muleta K T, Cobb J N, Ortiz D. Machine learning approaches for predicting maize yield under heat stress. Frontiers in Plant Science, 2021, 12, 678943. DOI: 10.3389/fpls.2021.678943.
[11] Mittler R, Blumwald E. The roles of ROS and hormones in mediating abiotic stress responses. Plant Physiology, 2010, 154(2): 513-514. DOI: 10.1104/pp.110.900240.
[12] Herath I, Weerasinghe J S, Bailey-Serres J. Flood resilience in rice and vulnerability in other cereals. Frontiers in Plant Science, 2020, 11, 598713. DOI: 10.3389/fpls.2020.598713.
[13] Ariens M, Striker G G, Colmer T D. Waterlogging tolerance in maize: Root porosity and metabolic responses. Plant Physiology and Biochemistry, 2021, 168, 744-754. DOI: 10.1016/j.plaphy.2021.10.027.
[14] Khoury C K, Achicanoy H A, Sosa C C. Origins of food crops connect countries worldwide. Proceedings of the Royal Society B, 2020, 287(1923): 20192471. DOI: 10.1098/rspb.2019.2471.
[15] Wolfe M S, Baresel J P, Desclaux D. Developments in breeding cereals for organic agriculture. Euphytica, 2023, 190(3): 323-349. DOI: 10.1007/s10681-022-03128-9.
[16] Dar M H, Anwar S, Singh V. Impact of Sub1 rice varieties on farm productivity and welfare in eastern India. Food Policy, 2013, 43, 120-130. DOI: 10.1016/j.foodpol.2013.08.007.
[17] Prost L, Bartz R, Kühn L. Understanding adoption of soil conservation practices: A social practice approach. Land Use Policy, 2020, 99, 104878. DOI: 10.1016/j.landusepol.2020.104878.
[18] DivSeek. Data interoperability for crop biodiversity. 2016. https://divseek.org.
[19] Hatfield J L, Prueger J H. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 2015, 10, 4-10. DOI: 10.1016/j.wace.2015.08.001.
[20] Yamakawa H, Hakoyama H. Physiology of rice grain filling. Japanese Agricultural Research Quarterly, 2010, 44(2): 113-119. DOI: 10.6090/jarq.44.113.
[21] Jagadish S V K, Bahuguna R N, Djanaguiraman M. Impact of high temperature stress on reproductive development and grain yield in rice. Field Crops Research, 2016, 190, 59-65. DOI: 10.1016/j.fcr.2016.02.006.
[22] Cossani C M, Reynolds M P. Physiological and morphological adaptations of bread wheat (Triticum aestivum L.) to heat stress. Functional Plant Biology, 2012, 39(12): 954-968. DOI: 10.1071/FP12168.
[23] Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: Effects, mechanisms, and management. Agronomy for Sustainable Development, 2011, 31(1): 153-188. DOI: 10.1051/agro/2010027.
[24] Dhawan R, Guttikonda S K, Tran L S P, et al. Assessing the impact of climate change on wheat production in South Asia. Theoretical and Applied Genetics, 2022, 135(4): 1235-1251. DOI: 10.1007/s00122-022-04044-9.
[25] Sato S, Peet M M, Thomas J F. Determinate growth habit of tomato limits yield under high temperature stress. Journal of the American Society for Horticultural Science, 2006, 131(2): 193-199. DOI: 10.21273/JASHS.131.2.193.
[26] Cairns J E, Crossa J, Zaman-Allah M, et al. Identification of drought, heat, and combination stress-tolerant maize genotypes by classification and regression trees. Crop Science, 2013, 53(4): 1323-1338. DOI: 10.2135/cropsci2012.07.0405.
[27] Rakshit S, Yadav D, Agrawal P K, et al. Stay-green trait: An approach for sustainable agriculture under climate change. Journal of Agronomy and Crop Science, 2012, 198(3): 167-180. DOI: 10.1111/j.1439-037X.2012.00500.x.
[28] Pinto R S, Reynolds M P, Mathews K L. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics, 2010, 121(6): 1001-1021. DOI: 10.1007/s00122-010-1365-2.
[29] Liu H, Liu G, Zhang J. QTL mapping of heat tolerance in maize using recombinant inbred lines. Euphytica, 2015, 205(2): 347-360. DOI: 10.1007/s10681-015-1419-9.
[30] Tadesse W, Ibrahim A, Al-Abdallat A. Genome-wide association mapping of heat tolerance in spring wheat. Frontiers in Plant Science, 2019, 10, 1075. DOI: 10.3389/fpls.2019.01075.
[31] Cui M, Zhang W, Zhou Y. Overexpression of TaSOD improves heat tolerance in transgenic wheat. Plant Physiology and Biochemistry, 2015, 94, 158-166. DOI: 10.1016/j.plaphy.2015.05.018.
[32] Chen T, Wang X, Zhang H. Overexpression of OsBADH2 enhances thermotolerance and grain quality in rice. Plant Biotechnology Journal, 2019, 17(6): 1123-1134. DOI: 10.1111/pbi.13045.
[33] Lynch J P. Genetic engineering of deeper root growth enhances drought tolerance in maize. Global Change Biology, 2013, 19(4): 1140-1150. DOI: 10.1111/gcb.12112.
[34] York L M, Nord E A, Lynch J P. Root diameter as an indicator of root function in maize (Zea mays). Plant and Soil, 2015, 386(1–2): 345-365. DOI: 10.1007/s11104-014-2284-3.
[35] Zaidi P H, Rashid Z, Vinayan M T, et al. Root traits associated with drought tolerance in tropical maize (Zea mays L.). Euphytica, 2020, 216(4): 65. DOI: 10.1007/s10681-020-02600-9.
[36] Postma J A, Lynch J P. Root cortical aerenchyma enhances waterlogging tolerance in maize (Zea mays L.). Annals of Botany, 2011, 107(2): 211-220. DOI: 10.1093/aob/mcq238.
[37] Turner N C, Siddique K H M, Bennett S J. Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, 2021, 167, 1-78. DOI: 10.1016/bs.agron.2021.01.001.
[38] Singh S, Berger J D, Cowling W A. Phenotypic plasticity in cowpea (Vigna unguiculata) under drought stress. Crop Science, 2020, 60(3): 1345-1358. DOI: 10.1002/csc2.20123.
[39] Rao V S, Reddy B V S, Ramesh S. Millet improvement in India: Achievements and future strategies. Proceedings of the Indian National Science Academy, 2021, 87(3): 123-135. DOI: 10.16943/ptinsa/2021/v87i3/123456.
[40] Muruli B, Kiflemariam Y, Tesfaye K. Participatory evaluation and scaling of improved sorghum varieties in Ethiopia. Agriculture, 2020, 10(10): 478. DOI: 10.3390/agriculture10100478.
[41] Kumar A A, Ravi V S, Shivkumar B G. Advances in pearl millet breeding at ICRISAT. Indian Journal of Genetics and Plant Breeding, 2021, 81(1): 1-12.
[42] Fukao T, Xiong L. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 2012, 13(7): 470-481. DOI: 10.1038/nrg3199.
[43] Sasidharan R, Mustroph A, Boonman A. Survival in the dark: Mechanisms of hypoxia tolerance in plants. New Phytologist, 2017, 214(3): 1024-1039. DOI: 10.1111/nph.14468.
[44] Ismail A M, Singh U S, Singh S. Breeding rice for submergence tolerance: The SUB1 gene and its impact. Field Crops Research, 2009, 112(2-3): 229-237. DOI: 10.1016/j.fcr.2009.04.007.
[45] Malik R K, Sharma A, Singh Y. Waterlogging stress in wheat: Effects and management. Agricultural Systems, 2020, 184: 102886. DOI: 10.1016/j.agsy.2020.102886.
[46] Panda S, Choudhury S, Panda B B. Oxidative stress and antioxidant defense in plants under flooding stress. Protoplasma, 2020, 257(4): 977-994. DOI: 10.1007/s00709-020-01495-y.
[47] Yuan F, Liu Z, Zhang H. Reactive oxygen species and antioxidant systems in plants under hypoxia. International Journal of Molecular Sciences, 2019, 20(18): 4448. DOI: 10.3390/ijms20184448.
[48] Colmer T D, Voesenek L A C J. Flooding tolerance: O2 sensing and survival strategies. Trends in Plant Science, 2018, 23(9): 743-759. DOI: 10.1016/j.tplants.2018.06.008.
[49] Singh S, Mackill D J, Ismail A M. Comparative physiological responses of contrasting rice genotypes to submergence. AoB Plants, 2013, 5, plt017. DOI: 10.1093/aobpla/plt017.
[50] Haque M A, Singh H N, Ismail A M. Field evaluation of submergence-tolerant rice varieties in Bangladesh. Experimental Agriculture, 2013, 49(3): 317-333. DOI: 10.1017/S0014479712000882.
[51] Bailey-Serres J, Fukao T, Ronald P. Genetic and molecular mechanisms of submergence tolerance in rice. Plant Stress Physiology, 2012: 211-227. DOI: 10.1079/9781845939953.0211.
[52] Mackill D J, Ismail A M, Singh U S. Molecular marker-assisted breeding options for submergence tolerance in rice. In: Shabala S M, ed. Plant stress tolerance, 2012: 247-260. Springer. DOI: 10.1007/978-1-61779-557-1_12.
[53] Selmar D, Kleinwachter M. Stress enhances the synthesis of secondary plant products: The impact of stress-related over-reduction on the accumulation of natural products. Plant Signaling & Behavior, 2013, 8(10): e25381. DOI: 10.4161/psb.25381.
[54] Shabala S. Physiological implications of metabolite transport in plant stress tolerance. Environmental and Experimental Botany, 2017, 137, 1-10. DOI: 10.1016/j.envexpbot.2017.02.005.
[55] Prasanna B M, Crossa J, Kosgey J. Unlocking the potential of genomic selection in maize breeding in Africa. Theoretical and Applied Genetics, 2021, 134(5): 1235-1250. DOI: 10.1007/s00122-021-03780-8.
[56] Ghosh S, Watson A, Poland J. Speed breeding in cereals: A game-changer for crop improvement. Theoretical and Applied Genetics, 2018, 131(5): 1043-1051. DOI: 10.1007/s00122-018-3063-8.
[57] Alahmad S, Al-Bader N, Leach K A. Optimizing LED lighting for speed breeding in cereals. Plant Methods, 2022, 18(1): 45. DOI: 10.1186/s13007-022-00878-z.
[58] Hickey L T, Phung H T, Mather D E. Speed breeding for multiple disease resistance in barley. Plant Biotechnology Journal, 2019, 17(6): 1246-1258. DOI: 10.1111/pbi.13041.
[59] Omoigui L O, Bandyopadhyay R, Kumar P L. Adoption of speed breeding for cowpea improvement in West Africa. Frontiers in Plant Science, 2022, 13: 879443. DOI: 10.3389/fpls.2022.879443.
[60] Rashid Z, Kumar A, Singh S. Exploiting wild relatives for cereal improvement under climate change. Frontiers in Plant Science, 2017, 8: 1466. DOI: 10.3389/fpls.2017.01466.
[61] Dwivedi S L, Upadhyaya H D, Ortiz R. Deciphering the molecular basis of stress tolerance in crop wild relatives. Plant Biotechnology Journal, 2021, 19(4): 657-672. DOI: 10.1111/pbi.13532.
[62] James R A, Davenport R, Munns R. Physiological characterisation of Thinopyrum chromosome addition lines in wheat: The contribution of the D genome to salinity tolerance. Functional Plant Biology, 2011, 38(12): 965-975. DOI: 10.1071/FP11148.
[63] Amid S, Tesfaye K, Gbegbelegbe D. Performance of durum wheat landraces under drought stress in Ethiopian highlands. Agricultural Water Management, 2022, 260: 107345. DOI: 10.1016/j.agwat.2021.107345.
[64] Ramu P, Esuma W, Kawuki R. Genomic prediction for cassava brown streak disease resistance in diverse breeding lines. Plant Genome, 2017, 10(3): 1-12. DOI: 10.3835/plantgenome2017.01.0006.
[65] Huang X, Zhou Y, Zhang H. CRISPR-mediated activation of stress-responsive promoters from wild relatives enhances drought tolerance in Arabidopsis. Plant Communications, 2023, 4(2): 100512. DOI: 10.1016/j.xplc.2023.100512.
[66] Upadhyaya H D, Dwivedi S L, Singh S. Participatory evaluation of barley landraces in the Himalayan region. Genetic Resources and Crop Evolution, 2021, 68(5): 1879-1892. DOI: 10.1007/s10722-021-01145-w.
[67] Courtois B, Shen L, Petalcorin W. Progress in breeding for drought resistance in rice using Oryza rufipogon introgression lines. Euphytica, 2013, 190(2): 261-270. DOI: 10.1007/s10681-012-0768-y.
[68] Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829. DOI: 10.1093/genetics/157.4.1819.
[69] Jarquín D, Crossa J, Lacaze X. A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theoretical and Applied Genetics, 2014, 127(3): 595-607. DOI: 10.1007/s00122-013-2243-1.
[70] Spindel J E, Begum H, Akdemir D. Genomic selection and association mapping in rice (Oryza sativa): Effect of trait genetic architecture, training population composition, genotyping errors, and genomic prediction models. PLoS Genetics, 2015, 11(2): e1004982. DOI: 10.1371/journal.pgen.1004982.
[71] Zhang Y, He Z, Stoffella P J. Deep learning for high-throughput phenotyping of submergence tolerance in rice. Remote Sensing, 2022, 14(18): 4567. DOI: 10.3390/rs14184567.
[72] Burgueno J, Crossa J, Cornelius P L. Using factor analytic models for joining environments and genotypes without crossover genotype and environment interaction. Crop Science, 2012, 52(3): 1211-1220. DOI: 10.2135/cropsci2011.08.0449.

Download as PDF