Science, Technology, Engineering and Mathematics.
Open Access

RESEARCH PROGRESS ON STRONTIUM TITANATE PHOTOELECTROCHEMICAL CATHODIC PROTECTION MATERIALS

Download as PDF

Volume 2, Issue 1, Pp 22-28, 2024

DOI: 10.61784/fer240117

Author(s)

Bushra Moore

Affiliation(s)

Department of Mineral Resources, Bangkok 10400, Thailand. 

Corresponding Author

Bushra Moore

ABSTRACT

Photoelectrochemical cathodic protection is a green, pollution-free metal cathodic protection method. In recent years, it has been favored by more and more scientific researchers in the field of corrosion protection. SrTiO3 has a relatively negative conduction band potential and has the advantages of good stability and non-toxicity. It is an excellent candidate material for photoelectrochemical cathodic protection. Firstly, the principle of photoelectrochemical cathodic protection is introduced. Secondly, the advantages and characteristics of SrTiO3 in this aspect are explained. Then the relevant research progress is reviewed around the preparation and modification methods of SrTiO3. Finally, the research direction and application of photoelectrochemical cathodic protection are summarized and prospected.

KEYWORDS

Corrosion protection; Photoelectrochemical cathode; Strontium titanate; Modification research

CITE THIS PAPER

Bushra Moore. Research progress on strontium titanate photoelectrochemical cathodic protection materials. Frontiers in Environmental Research. 2024, 2(1): 22-28. DOI: 10.61784/fer240117.

REFERENCES

[1] Hou Shizhong. Research and application of cathodic protection technology. Comprehensive Corrosion Control, 2018, 32(10): 39-44+65.

[2] Shi Yunfen, Sun Shusen, Zhang Shilong. Research on the application of sacrificial anode and impressed current combined protection method in long-distance pipelines . Surface Technology, 2019, 48(08): 286-295.

[3] Yuan J, Shigeo T. Characterization of Sol-Gel-Derived TiO2 Coatings and Their Photoeffects on Copper Substrates. Journal of The Electrochemical Society, 1995, 142(10): 3444-3450.

[4] Liu Xingchen, Li Hunter, Jing Jiangping. Principles and research progress of photoelectrochemical cathodic protection . Equipment Environmental Engineering, 2017, 14(06): 1-7.

[5] Zhang Q, Huang Y, Xu LF. Interfaces Visible-Light-Active Plasmonic Ag-SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity. ACS Applied Materials & Interfaces. 2016, 6(8): 4165-4172.

[6] Hao Mengfan. Photoelectrocatalytic splitting of water for hydrogen production using strontium titanate-based series materials. Xi'an: Xi'an University of Electronic Science and Technology, 2019.

[7] Zheng Rui. Study on the photohydrogen production activity and photogenerated charge properties of modified strontium titanate photocatalyst . Changchun: Jilin University, 2016.

[8] Shilpa P, Vasudha H, Pankaj R. Tunable photo catalytic activity of Sr TiO3 for water splitting: Strategies and future scenarios. Journal of Environmental Chemical Engineering. 2020, 8(3): 103791.

[9] Bu Yuyu, Li Weibing, Yu Jianqiang. Assembly of nanometer strontium titanate thin film electrode and its photoelectrochemical corrosion inhibition performance of stainless steel . Acta Physica Sinica, 2011, 27(10): 2393-2399.

[10] Shao Yi, Li Yanan. Properties of strontium titanate nanopowder prepared by hydrothermal method . Journal of Shenyang University of Technology, 2008, 30(5): 535-538.

[11] Kuang Q, Yang S. Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution. ACS applied materials & interfac es. 2013, 5(9): 3683-3690.

[12] Zhang Na. Process optimization and mechanism study of hydrothermal synthesis of strontium titanate. Beijing: University of Chinese Academy of Sciences, 2019.

[13] Lu Hongxia, Jing Hui, Zhang Lingling. Research on the preparation of strontium titanate powder by coprecipitation method . Hunan Nonferrous Metals, 2017, 33(6): 49-51+80.

[14] Li Wenxiu, Zhang Xiao, Jia Aizhong. Construction of hierarchical pore structure of strontium titanate photocatalyst . Acta Petroleum Sinica, 2018, 34(06): 1229-1232.

[15] Tatsuma T, Saitoh S, Ohko Y. Photoelectrochemical Anti corrosion Effect of Sr TiO3 for Carbon Steel . Electrochemical and solid -state letters, 2002, 5(2): B9-B12.

[16] Ji L, Mcdaniel M D, Wang S J. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nature nanotechnology, 2014, 10(1): 84-90.

[17] Wang J, Yin S, Komatsu M. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165(1): 149-156.

[18] Wang D F, Ye J H, Kako T. Photophysical and Photocatalytic Properties of SrTiO3 Doped with Cr Cations on Different Sites. The Journal of Physical Chemistry B, 2006, 110(32): 15824-15830.

[19] Katsuya I, Akihiko K. Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. Journal of the American Chemical Society, 2011, 133(34): 13272- 13275.

[20] Kawasaki S, Takahashi R, Akagi K. Electronic Structure and Photoelectrochemical Properties of an Ir-Doped SrTiO3 Photocatalyst. The journal of physical chemistry, 2014, 118(35): 20222-20228.

[21] Kato K, Jiang J Z, Sakata Y. Effect of Na-Doping on Electron Decay Kinetics in SrTiO3 Photocatalyst. ChemCatChem, 2019, 11(24): 6349- 6354.

[22] Kato H, Kudo A Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. The journal of physical chemistry B. 2002, 106(19): 5029-5034.

[23] Comes R, Sushko P, Heald S. Band-Gap Reduction and Dopant Interaction in Epitaxial La, Cr Co- doped SrTiO3 Thin Films. Chemistry of Materials, 2014, 26(24): 7073-7082.

[24] Yu H, Yan S C, Li Z S. Efficient visible-light-driven photocatalytic H2 production over Cr/N-codoped SrTiO3. International Journal of Hydrogen Energy, 2012, 37(17): 12120-12127.

[25] Kawasaki S, Takahashi R, Lippmaa M. Gradient Carrier Doping as a Method for Maximizing the Photon-to-Current Efficiency of a SrTiO3 Water- Splitting Photoanode. The Journal of Physical Chemistry C, 2019, 123(25): 15551-15556.

[26] Cao T P, Li Y J, Wang C H. A Facile in Situ Hydrothermal Method to SrTiO3/TiO2 Nanofiber Heterostructures with High Photocatalytic Activity. Langmuir, 2011, 27(6): 2946-2952.

[27] Choudhary S , Up adh yay S , Kumar P. Nanostructured CuO/SrTiO3 bilayered thin films for photoelectrochemical water splitting. Journal of Solid State Electrochemistry, 2013, 17(9): 1432-8488.

[28] Yang Y, Cheng Y F. Bi-layered CeO2/SrTiO3 nanocomposite photoelectrode for energy storage and photocathodic protection. Electrochimica Acta, 2017, 253. 134-141.

[29] Wei YZ, Wang JY, Yu R. Constructing SrTiO3/TiO2 Heterogeneous Hollow Multi-shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie, 2019, 58(5): 1422-1426.

[30] Ouyang S, Tong H, Umezawa N. Surface-Alkali ni zation-Induced Enhancement of Photocatalytic H2 Evolution over SrTiO3-Based Photocatalysts. Journal of the American Chemical Society, 2012, 134(4): 1974-1977.

[31] Miao Jijuan, Wang Lichao, He Mingyu. Preparation and hydrogen production performance of Pt nanoparticle-supported SrTiO3/TiO2 heterojunction structure . Materials Science and Technology, 2018, 26(01): 16-23.

[32] Li X R, Ge Z C, Xue F. Lattice-oriented contact in Pd/SrTiO3 heterojunction for rapid electron transfer during photocatalytic H2 production . Materials Research Bulletin, 2020, 123. 110722.

[33] Bashir i R , I rfan M , Mohamed N M. Hierarchically SrTiO3 @TiO2 @Fe2O3 nano rod heterostructures for enhanc-ed photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2020, (DOI: 10. 1016/j. ijhydene. 2020. 02. 106). 

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.